JPH04124021A - Oxide superconductor and its production - Google Patents

Oxide superconductor and its production

Info

Publication number
JPH04124021A
JPH04124021A JP2243289A JP24328990A JPH04124021A JP H04124021 A JPH04124021 A JP H04124021A JP 2243289 A JP2243289 A JP 2243289A JP 24328990 A JP24328990 A JP 24328990A JP H04124021 A JPH04124021 A JP H04124021A
Authority
JP
Japan
Prior art keywords
oxide superconductor
strontium
calcium
nitrogen atmosphere
bismuth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2243289A
Other languages
Japanese (ja)
Inventor
Keiji Sumiya
圭二 住谷
Hideji Kuwajima
秀次 桑島
Shozo Yamana
章三 山名
Toranosuke Ashizawa
寅之助 芦沢
Shuichiro Shimoda
下田 修一郎
Minoru Ishihara
稔 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2243289A priority Critical patent/JPH04124021A/en
Publication of JPH04124021A publication Critical patent/JPH04124021A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To obtain a Bi-based oxide superconductor of 2,212 phase showing a higher critical temperature than 90 deg.K without passing through a quenching process by blending Bi with Sr, Ca, Na, Ba and Cu in a specific ratio, calcining, grinding, molding and burning in a nitrogen atmosphere. CONSTITUTION:Raw materials containing Bi, Sr, Ca, Na, Ba and Cu are mixed so as to give an atomic ratio of 1.0 Bi, 0.6-1.2 Sr, 0.35-0.7 Ca, 0.05-0.2 Na, 0.05-0.2 Ba and 1.0+ or -0.2 Cu, calcined at 790-870 deg.C, ground, molded and burnt in a nitrogen atmosphere or a nitrogen atmosphere containing <10vol.% oxygen at 780-950 deg.C for 20-100 hours to give a Bi-based oxide superconductor shown by the formula (A is 0.6-1.2; B is 0.35-0.7; C is 0.05-0.2; D is 0.05-0.2; figure shows atomic ratio).

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は酸化物超電導体及びその製造法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to an oxide superconductor and a method for manufacturing the same.

(従来の技術) 従来の酸化物超電導体としては、1988年金属材料技
術研究所の前出総合研究官らによって発見されたビスマ
ス、ストロンチウム、カルシウム及び銅を主成分とする
B1−8r−Ca−Cu−0系(以下Bi系とする)の
酸化物超電導体があるが、このBi系の酸化物超電導体
は、電気抵抗が零になる臨界温度(以下Tcz@rOと
する)が110に付近の2223相が生成しにくいとい
う問題があった。このためT czeroは低いが、生
成温度領域が広い2212相の活用が試みられている。
(Prior art) As a conventional oxide superconductor, B1-8r-Ca-, which has bismuth, strontium, calcium, and copper as its main components, was discovered in 1988 by the above-mentioned general researcher of the Institute of Metals and Materials Technology. There is a Cu-0-based (hereinafter referred to as Bi-based) oxide superconductor, but this Bi-based oxide superconductor has a critical temperature (hereinafter referred to as Tcz@rO) near 110 at which the electrical resistance becomes zero. There was a problem that the 2223 phase was difficult to generate. For this reason, attempts have been made to utilize the 2212 phase, which has a low T czero but a wide temperature range of formation.

(発明が解決しようとするR題) しかしながらBi系の酸化物超電導体の2212相は、
Tc2eroが80に付近であるため液体窒素の冷却(
77K)ではT czeroとの差が小さく超電導特性
が不安定で使用できないおそれがある。
(Problem R to be solved by the invention) However, the 2212 phase of the Bi-based oxide superconductor is
Since Tc2ero is around 80, liquid nitrogen cooling (
77K), the difference from T czero is small and the superconducting properties are unstable and there is a possibility that it cannot be used.

2212相のT cz6roを高める方法として、ジャ
パニーズ、ジャーナル、オブ、アプライド、フィジツク
ス(Japanese  Journalof  Ap
plied  Physics)Vo127.9号(1
,988年9月刊)、L1626frL1628頁及び
同Vo127,12号(1988年12月刊)、L23
27iL2329号並びにアトパンセス、イン、スーパ
ーコンダクテイビイテイII  (Advances 
 in  5uper−へ conductivityll)+  149−152
頁に示されるように500〜880℃の温度で熱処理し
た後、液体窒素中又は空気中で急冷して得る方法が報告
されている。
As a method to increase the T cz6ro of the 2212 phase, Japanese Journal of Applied Physics (Japanese Journal of Applied Physics)
plied Physics) Vo127.9 (1
, September 1988), L1626frL1628 page and Vo127, No. 12 (December 1988), L23
27iL2329 and Atopances, In, Superconductivity II (Advances
in 5upper- to conductivityll) + 149-152
As shown on page 1, a method has been reported in which the material is obtained by heat treatment at a temperature of 500 to 880° C. and then quenching in liquid nitrogen or air.

この方法は急冷する工程を含むため小型の成形体を作製
することは出来ても大型の成形体を作製することは困難
であるという欠点がある。
Since this method includes a step of rapid cooling, it has the disadvantage that although it is possible to produce a small molded body, it is difficult to produce a large molded body.

本発明は急冷工程を経ることなしに90により高いT 
cZeroを示す2212相のBl系の酸化物超電導体
及びその製造法を提供することを目的とするものである
The present invention achieves a higher T than 90 without going through a quenching process.
The object of the present invention is to provide a 2212-phase Bl-based oxide superconductor exhibiting cZero and a method for producing the same.

(課題を解決するための手段) 本発明はビスマス、ストロンチウム、カルシウム、ナト
リウム、バリウム及び銅を主成分とし。
(Means for Solving the Problems) The present invention contains bismuth, strontium, calcium, sodium, barium, and copper as main components.

一般式Bi1.05rACaBNacBaocu+、。General formula Bi1.05rACaBNacBaocu+.

±o20X (但しA=0.6〜1.2.B=0.35〜0.7゜C
=0.05〜0.2.D=0.05〜O12,数字は原
子比を表わす) で示される組成からなる酸化物超電導体及び上記の組成
となるようにビスマス、ストロンチウム。
±o20X (However, A=0.6~1.2.B=0.35~0.7°C
=0.05~0.2. D=0.05 to O12, numbers represent atomic ratios) An oxide superconductor having the composition shown below, and bismuth and strontium so as to have the above composition.

カルシウム、ナトリウム、バリウム及び綱を含む各原料
を秤量し、ついで混合したのち、仮焼、粉砕し、成形後
窒素雰囲気中又は酸素を10体積%未満で含有する窒素
雰囲気中で焼成する酸化物超電導体の製造法並びに上記
の組成となるようにビスマス、ストロンチウム、カルシ
ウム、ナトリウム、バリウム及び銅を含む各原料を秤量
し、ついで混合した後仮焼,一次焼成し、さらに粉砕後
Oxide superconductors are manufactured by weighing and mixing raw materials including calcium, sodium, barium, and steel, then calcining and pulverizing them, forming them, and then firing them in a nitrogen atmosphere or in a nitrogen atmosphere containing less than 10% by volume of oxygen. The method for manufacturing the body and the raw materials containing bismuth, strontium, calcium, sodium, barium and copper are weighed so as to have the above-mentioned composition, then mixed, then calcined and fired, and then crushed.

成形し、再度窒素雰囲気中又は酸素を7体積%未満で含
有する窒素雰囲気中で二次焼成する酸化物超電導体の製
造法に関する。
The present invention relates to a method for producing an oxide superconductor, which is formed and then fired again in a nitrogen atmosphere or in a nitrogen atmosphere containing less than 7% by volume of oxygen.

本発明において酸化物超電導体を構成する主成分のビス
マス、ストロンチウム、カルシウム、ナトリウム、バリ
ウム及び銅を含む原料については特に制限はないが1例
えば酸化物、炭酸塩、硝酸塩、しゆう酸塩等の1種又は
2種以上が用いられる。
In the present invention, the raw materials containing bismuth, strontium, calcium, sodium, barium, and copper, which are the main components constituting the oxide superconductor, are not particularly limited. One or more types may be used.

ビスマス、ストロンチウム、カルシウム、ナトリウム、
バリウム及び銅の配合割合は原子比でビスマスが1.0
.ストロンチウムが0.6〜1.22カルシウムが0.
35〜O1〆7.ナトリウムが0.05〜0.2.バリ
ウムが0105〜0.2及び銅が1.0±0,2の範囲
とされ、この範囲から外れると急冷工程なしではTc2
eroが90に台の2212相のBi系の酸化物超電導
体を得ることが困難である。
Bismuth, strontium, calcium, sodium,
The blending ratio of barium and copper is bismuth in atomic ratio of 1.0.
.. Strontium is 0.6-1.22 Calcium is 0.
35~O1〆7. Sodium is 0.05-0.2. Barium is in the range of 0.105~0.2 and copper is in the range of 1.0±0.2, and if it is out of this range, Tc2 is
It is difficult to obtain a 2212-phase Bi-based oxide superconductor with an ero of about 90.

混合方法については特に制限はないが1例えば合成樹脂
製のボールミルに合成樹脂で被覆したボール、エタノー
ル、メタノール等の溶媒及び原料を充填し、@式混合す
ることが好ましい。
Although there are no particular restrictions on the mixing method, it is preferable to fill a ball mill made of synthetic resin with balls coated with synthetic resin, a solvent such as ethanol or methanol, and raw materials, and perform @-style mixing.

仮焼条件において、仮焼温度は各原料の配合割合などに
より適宜選定されるが、780〜870℃の範囲で仮焼
することが好ましく、また仮焼雰囲気は、大気中1wi
素雰囲気中、真空中、還元雰囲気中、中性雰囲気中等で
仮焼することができる。
Regarding the calcination conditions, the calcination temperature is appropriately selected depending on the blending ratio of each raw material, etc., but it is preferable to calcinate in the range of 780 to 870°C, and the calcination atmosphere is 1wi in the air.
Calcination can be performed in an elementary atmosphere, a vacuum, a reducing atmosphere, a neutral atmosphere, etc.

粉砕及び成形法については特に制限はなく、従来公知の
方法で行なうことができる。
There are no particular restrictions on the pulverization and molding methods, and conventionally known methods can be used.

焼成条件において、焼成温度は各原料の配合割合などに
より適宜選定されるが、試料が溶融する温度近傍現下の
温度2例えば780〜950℃の範囲で焼成することが
好ましく、810〜900℃の範囲で焼成すればさらに
好ましい。
Regarding the firing conditions, the firing temperature is appropriately selected depending on the blending ratio of each raw material, etc., but it is preferable to perform firing at a temperature near the melting temperature of the sample, for example in the range of 780 to 950°C, and preferably in the range of 810 to 900°C. It is even more preferable to bake it with

一方焼成雰囲気は、1回焼成の場合、窒素雰囲気中又は
酸素を]O体積%未満含有する窒素雰囲気中で焼成する
ことが必要とされ、また焼成を2回行なう場合、1次焼
成は大気中、酸素雰囲気中、真空中、還元雰囲気中、中
性雰囲気中等特に制限はないが、2次焼成は窒素雰囲気
中又は酸素を7体積%未満含有する窒素雰囲気中で焼成
することが必要とされ、上記以外の条件で焼成を行なう
と急冷工程なしではT czeroが90に台の221
2相のBi系の酸化物超電導体を得ることが困難である
。なお本発明において、仮焼後、必要に応じ粉砕及び成
形を行ない、その後1次焼成してもよし嘔焼成時間は、
5〜10時間でも差し支えはないが、結晶の均質性を高
めるには20〜100時間行なうことが好ましい6 本発明の組成において0(酸素)の量は、Cuの量及び
Cuの酸化状態によって定まる。しかし酸化状態がどの
ようになフているかを厳密にそして精度よく測定するこ
とができない。そのため本発明においてXで表わすこと
にした。
On the other hand, in the case of one-time firing, firing is required in a nitrogen atmosphere or in a nitrogen atmosphere containing less than ]O volume % of oxygen, and in the case of two-time firing, the first firing is in the air. , in an oxygen atmosphere, in a vacuum, in a reducing atmosphere, in a neutral atmosphere, etc. There are no particular restrictions, but the secondary firing is required to be performed in a nitrogen atmosphere or a nitrogen atmosphere containing less than 7% by volume of oxygen, If firing is performed under conditions other than the above, the T czero will be 221 compared to 90 without the rapid cooling process.
It is difficult to obtain a two-phase Bi-based oxide superconductor. In addition, in the present invention, after calcination, pulverization and molding may be performed as necessary, and then primary firing may be performed.
Although 5 to 10 hours is acceptable, it is preferable to conduct for 20 to 100 hours in order to improve the homogeneity of the crystal.6 The amount of 0 (oxygen) in the composition of the present invention is determined by the amount of Cu and the oxidation state of Cu. . However, it is not possible to precisely and accurately measure how the oxidation state changes. Therefore, it has been decided to be represented by X in the present invention.

(実施例) 以下本発明の詳細な説明する。(Example) The present invention will be explained in detail below.

実施例1〜2 ビスマス、ストロンチウム、ナトリウム、バリウム、カ
ルシウム及び銅の比率が原子比でtI/11表に示す組
成になるように二酸化ビスマス(高純度化学研究新製、
純度99.9%)、炭酸ストロンチウム(レアメタリッ
ク製、純度99.9%)、炭酸ナトリウム(高純度化学
研究新製、純度99.9%)、炭酸バリウム(高純度化
学研究新製、純度99.9%)、炭酸カルシウム(高純
度化学研究新製、純度99.9%及び酸化第二銅(高純
度化学研究新製、純度99.9%)を秤量し出発原料と
した。
Examples 1-2 Bismuth dioxide (manufactured by Kojundo Kagaku Kenkyushin,
(purity 99.9%), strontium carbonate (Rare Metallic, purity 99.9%), sodium carbonate (Kojundo Kagaku Kenkyushin, purity 99.9%), barium carbonate (Kojundo Kagaku Kenkyushin, purity 99) .9%), calcium carbonate (manufactured by Kojundo Kagaku Kenkyushin, purity 99.9%) and cupric oxide (manufactured by Kojundo Kagaku Kenkyushin, purity 99.9%) were weighed and used as starting materials.

次に上記の出発原料を合成樹脂製のボールミル内に合成
樹脂で被覆した鋼球ボール及びメタノールと共に充填し
、毎分50回転の条件で72時時間式混合した。乾燥後
アルミナこう鉢に入れ電気炉を用いて大気中で800℃
で10時間仮焼し。
Next, the above starting materials were filled into a synthetic resin ball mill together with steel balls coated with synthetic resin and methanol, and mixed for 72 hours at 50 revolutions per minute. After drying, place it in an alumina pot and heat it in the air at 800℃ using an electric furnace.
Bake for 10 hours.

ついで乳鉢で粗粉砕して酸化物超電導体用組成物を得た
。この後肢酸化物超電導体用組成物を147 M P 
aの圧力で直径30 m rri、 を厚さ1mmのペ
レットにプレス成形後2体積比でO,:N2=1:20
の低酸素雰囲気中で840℃100時間焼成してBi系
の酸化物超電導体を得た。
The mixture was then coarsely ground in a mortar to obtain a composition for an oxide superconductor. This composition for hindlimb oxide superconductor was heated to 147 M P
After press-forming into a pellet with a diameter of 30 m rri and a thickness of 1 mm at a pressure of a, the volume ratio of 2 is O, :N2 = 1:20.
A Bi-based oxide superconductor was obtained by firing at 840° C. for 100 hours in a low oxygen atmosphere.

実施例3〜4 ビスマス、ストロンチウム、ナトリウム、バリウム、カ
ルシウム及び綱(いずれも実施例1〜2と同一原料を使
用)の比率が原子比でIF5表に示す組成になるように
秤量し出発原料とした。
Examples 3 to 4 Bismuth, strontium, sodium, barium, calcium, and iron (all using the same raw materials as Examples 1 to 2) were weighed and added to the starting materials so that the atomic ratios were as shown in the IF5 table. did.

以下実施例1〜2と同様の工程を経て酸化物超電導体用
組成物を得た。この後肢酸化物超電導体用組成物を体積
比で酸素雰囲気中で900℃で15時間−次焼成し、つ
いで粉砕した後、147MPaの圧力で直径30mmy
厚さ1mmのペレットにプレス成形後7体積比で= O
P: N2=1 :20の低酸素雰囲気中で830℃で
100時間二次焼成してBiJ%酸化物超電導体を得た
Thereafter, a composition for oxide superconductor was obtained through the same steps as in Examples 1 and 2. This composition for a hindlimb oxide superconductor was calcined by volume at 900°C for 15 hours in an oxygen atmosphere, and then pulverized.
After press molding into pellets with a thickness of 1 mm, the volume ratio is 7 = O
Secondary firing was performed at 830° C. for 100 hours in a low oxygen atmosphere of P:N2=1:20 to obtain a BiJ% oxide superconductor.

(比較例) 比較例1〜2 ビスマス、ストロンチウム、カルシウム及び銅の比率が
13表に示す組成になるように二酸化ビスマス(高純度
化学研究所11.純度99.9%)。
(Comparative Examples) Comparative Examples 1 and 2 Bismuth dioxide (Kojundo Kagaku Kenkyusho 11. Purity 99.9%) was prepared so that the ratios of bismuth, strontium, calcium, and copper were as shown in Table 13.

炭酸ストロンチウム(レアメタリック製、純度99.9
%)、炭酸カルシウム(高純度化学研究新製、純度99
.9%)及び酸化第二銅(高純度化学研究所製純度99
,9%)を秤量し、以下実施例1〜2と同様の工程を経
てBi系の酸化物超電導体を得た。
Strontium carbonate (manufactured by Rare Metallic, purity 99.9
%), calcium carbonate (manufactured by Kojundo Kagaku Kenkyushin, purity 99
.. 9%) and cupric oxide (purity 99 manufactured by Kojundo Kagaku Kenkyusho)
, 9%) was weighed, and the same steps as in Examples 1 and 2 were carried out to obtain a Bi-based oxide superconductor.

比較例3〜4 ビスマス、ストロンチウム、カルシウム及び鯛(いずれ
も比較例1〜2と同一の原料を使用)の比率が原子比で
第4表に示す組成になるように秤量し出発原料とした。
Comparative Examples 3 to 4 Bismuth, strontium, calcium, and sea bream (all using the same raw materials as in Comparative Examples 1 to 2) were weighed and used as starting materials so that the atomic ratios were as shown in Table 4.

以下実施例3〜4と同様の工程を経てBi系の酸化物超
電導体を得た。
Thereafter, a Bi-based oxide superconductor was obtained through the same steps as in Examples 3 and 4.

次に実施例1〜4及び比較例1〜4で得たBi系の酸化
物超電導体を四端子法でT czeroを測定した。そ
の結果を第5表に示す。
Next, T czero of the Bi-based oxide superconductors obtained in Examples 1 to 4 and Comparative Examples 1 to 4 was measured by a four-terminal method. The results are shown in Table 5.

第5表に示されるように本発明の実施例になる酸化物超
電導体は、90に以上の”l” ct@16を有す第 表 ることがわかる。また結晶相を調べたところ2212相
であることが確認された。
As shown in Table 5, the oxide superconductors according to the embodiments of the present invention have "l" ct@16 of 90 or more. Further, when the crystal phase was examined, it was confirmed that it was a 2212 phase.

(発明の効果)(Effect of the invention)

Claims (3)

【特許請求の範囲】[Claims] 1.ビスマス,ストロンチウム,カルシウム,ナトリウ
ム,バリウム及び銅を主成分とし,一般式,Bi_1_
._0Sr_ACa_BNa_CBa_DCu_1_.
_0_±_0_._2O_x (但しA=0.6〜1.2,B=0.35〜0.7,C
=0.05〜0.2,D=0.05〜0.2,数字は原
子比を表わす) で示される組成からなる酸化物超電導体。
1. The main components are bismuth, strontium, calcium, sodium, barium and copper, and the general formula is Bi_1_
.. _0Sr_ACa_BNa_CBa_DCu_1_.
_0_±_0_. _2O_x (However, A=0.6~1.2, B=0.35~0.7, C
=0.05-0.2, D=0.05-0.2, numbers represent atomic ratios).
2.請求項1記載の組成となるようにビスマス,ストロ
ンチウム,カルシウム,ナトリウム,バリウム及び銅を
含む各原料を秤量し,ついで混合した後,仮焼,粉砕し
成形後,窒素雰囲気中又は酸素を10体積%未満で含有
する窒素雰囲気中で焼成することを特徴とする酸化物超
電導体の製造法。
2. Each raw material containing bismuth, strontium, calcium, sodium, barium, and copper is weighed so as to have the composition described in claim 1, then mixed, calcined, pulverized, molded, and then heated in a nitrogen atmosphere or with 10 volumes of oxygen. A method for producing an oxide superconductor, the method comprising firing in an atmosphere containing less than % nitrogen.
3.請求項1記載の組成となるようにビスマス,ストロ
ンチウム,カルシウム,ナトリウム,バリウム及び銅を
含む各原料を秤量し,ついで混合した後,仮焼,一次焼
成し,さらに粉砕後,成形し,再度窒素雰囲気中又は酸
素を7体積%未満で含有する窒素雰囲気中で二次焼成す
ることを特徴とする酸化物超電導体の製造法。
3. Each raw material containing bismuth, strontium, calcium, sodium, barium, and copper is weighed so as to have the composition described in claim 1, then mixed, calcined, primary fired, further crushed, molded, and heated again with nitrogen. A method for producing an oxide superconductor, comprising performing secondary firing in an atmosphere or in a nitrogen atmosphere containing less than 7% by volume of oxygen.
JP2243289A 1990-09-13 1990-09-13 Oxide superconductor and its production Pending JPH04124021A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2243289A JPH04124021A (en) 1990-09-13 1990-09-13 Oxide superconductor and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2243289A JPH04124021A (en) 1990-09-13 1990-09-13 Oxide superconductor and its production

Publications (1)

Publication Number Publication Date
JPH04124021A true JPH04124021A (en) 1992-04-24

Family

ID=17101633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2243289A Pending JPH04124021A (en) 1990-09-13 1990-09-13 Oxide superconductor and its production

Country Status (1)

Country Link
JP (1) JPH04124021A (en)

Similar Documents

Publication Publication Date Title
JPH04124021A (en) Oxide superconductor and its production
JPH04124022A (en) Oxide superconductor and its production
JPH04124020A (en) Oxide superconductor and its production
JPH04124025A (en) Oxide superconductor and its production
JPH04124028A (en) Oxide superconductor and its production
JPH04124024A (en) Oxide superconductor and its production
JPH04124018A (en) Oxide superconductor and its production
JPH04124027A (en) Oxide superconductor and its production
JPH04124023A (en) Oxide superconductor and its production
JPH04124019A (en) Oxide superconductor and its production
JPH04124017A (en) Oxide superconductor and its production
JPH04124026A (en) Oxide superconductor and its production
JPH04124029A (en) Oxide superconductor and its production
JPH04124016A (en) Oxide superconductor and its production
JPH04124030A (en) Production of oxide superconductor
JPH04124031A (en) Oxide superconductor and its production
JPH04124015A (en) Oxide superconductor and its production
JPH05262527A (en) Oxide superconductor and its production
JP2634187B2 (en) Method for producing thallium-based oxide superconductor
JPH04124014A (en) Oxide superconductor and its production
JPH0238359A (en) Production of superconductor
JP2596021B2 (en) Manufacturing method of superconducting material
JPH03265561A (en) Production of high-density oxide superconductor
JPH03290319A (en) Oxide superconductor and production thereof
JPH03290318A (en) Oxide superconductor and production thereof