JPH04124015A - Oxide superconductor and its production - Google Patents

Oxide superconductor and its production

Info

Publication number
JPH04124015A
JPH04124015A JP2243283A JP24328390A JPH04124015A JP H04124015 A JPH04124015 A JP H04124015A JP 2243283 A JP2243283 A JP 2243283A JP 24328390 A JP24328390 A JP 24328390A JP H04124015 A JPH04124015 A JP H04124015A
Authority
JP
Japan
Prior art keywords
oxide superconductor
nitrogen atmosphere
temperature
calcium
strontium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2243283A
Other languages
Japanese (ja)
Inventor
Minoru Ishihara
稔 石原
Hideji Kuwajima
秀次 桑島
Shozo Yamana
章三 山名
Toranosuke Ashizawa
寅之助 芦沢
Shuichiro Shimoda
下田 修一郎
Keiji Sumiya
圭二 住谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2243283A priority Critical patent/JPH04124015A/en
Publication of JPH04124015A publication Critical patent/JPH04124015A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To obtain a superconductor showing a higher critical temperature than 90 deg.K without passing through a quenching process by blending Bi with Sc, Sr, Ca, Mg, Ba and Cu in a specific ratio, calcining, grinding, molding and burning in a nitrogen atmosphere. CONSTITUTION:Raw materials containing bismuth, scandium, strontium, calcium, magnesium, barium and copper are weighed so as to give a composition shown by the formula. Then the raw materials are mixed, calcined, ground, molded and burnt in a nitrogen atmosphere or a nitrogen atmosphere containing <10vol.% oxygen to give the objective oxide superconductor. The calcination temperature is properly selected depending upon the blending ratio of the raw materials and is preferably in a range of 780-870 deg.C. The burning temperature is properly selected depending upon the blending ratio of the raw materials and a temperature <= approximately a temperature to melt a specimen, such as 780-950 deg.C is preferable.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は酸化物超電導体及びその製法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to an oxide superconductor and a method for producing the same.

(従来の技術) 従来の酸化物超電導体としては、1988年金属材料技
術研究所の前出総合研究官らによって発見されたビスマ
ス、ストロンチウム、カルシウム及び銅を主成分とする
B1−3r−Ca−Cu−0系(以下Bj系とする)の
酸化物超電導体があるが、このBi系の酸化物超電導体
は、電気抵抗が零になる臨界温度(以下TC2erOと
する)が110に付近の2223相が生成しにくいとい
う問題があった。このためTc2@r0は低いが、生成
温度flI域が広い2212相の活用が試みられている
(Prior art) As a conventional oxide superconductor, B1-3r-Ca-, which has bismuth, strontium, calcium, and copper as its main components, was discovered in 1988 by the above-mentioned general researcher of the Institute of Metals and Materials Technology. There is a Cu-0-based (hereinafter referred to as Bj-based) oxide superconductor, but this Bi-based oxide superconductor has a critical temperature (hereinafter referred to as TC2erO) at which the electrical resistance becomes zero at a temperature of 2223 around 110. There was a problem in that it was difficult to form a phase. For this reason, attempts have been made to utilize the 2212 phase, which has a low Tc2@r0 but a wide generation temperature flI range.

(発明が解決しようとする課題) しかしながらBi系の酸化物超電導体の2212相は 
T c Z″r0が80に付近であるため液体窒素の冷
却(77K)ではTczaroとの差が小さく超電導特
性が不安定で使用できないおそれがある。
(Problem to be solved by the invention) However, the 2212 phase of Bi-based oxide superconductor is
Since T c Z″r0 is around 80, the difference from Tczaro is small when cooled with liquid nitrogen (77 K), and the superconducting properties are unstable and there is a possibility that it cannot be used.

2212相のT cllroを高める方法として、ジャ
パニーズ、ジャーナル、オブ、アプライド、フィジック
ス(Japanese  Journa]of  Ap
plied  Physics)Vo127.9号(1
988年9月刊)、L1626ヴL1628頁及び同V
o127,12号(1988年12月刊)、L2327
←L2329号並びにアトパンセス、イン、スーパーコ
ンダクティビイテイU (Advances  in 
 5uper−△ conductj vj tyff)+ 149〜i5
2頁に示されるように500〜880℃の温度で熱処理
した後、液体窒素中又は空気中で急冷して得る方法が報
告されている。
As a method to increase the T clro of the 2212 phase, Japanese Journal of Applied Physics (Japanese Journal of Applied Physics)
plied Physics) Vo127.9 (1
Published in September 1988), L1626 page L1628 page and same page V
o127, No. 12 (December 1988), L2327
←L2329 and Atopances, In, Superconductivity U (Advances in
5upper-△ conductj vj tyff) + 149~i5
As shown on page 2, a method has been reported in which the material is heat treated at a temperature of 500 to 880°C and then rapidly cooled in liquid nitrogen or air.

この方法は急冷する工程を含むため小型の成形体を作製
することは出来ても大型の成形体を作製することは困難
であるという欠点がある。
Since this method includes a step of rapid cooling, it has the disadvantage that although it is possible to produce a small molded body, it is difficult to produce a large molded body.

本発明は急冷工程を経ることなしに90により高イT 
c2 e r Oを示す22 ]−2相のBi系の酸化
物超電導体及びその製法を提供することを目的とするも
のである。
The present invention has a high temperature of 90% without going through a quenching process.
The object of the present invention is to provide a 22 ]-2 phase Bi-based oxide superconductor exhibiting c2 e r O and a method for producing the same.

(課題を解決するための手段) 本発明はビスマス、スカンジウム、ストロンチウム、カ
ルシウム、マグネシウム、バリウム及び銅を主成分とし
(Means for Solving the Problems) The present invention contains bismuth, scandium, strontium, calcium, magnesium, barium, and copper as main components.

一般式B 1. +−vS cyS r ACa BM
 gcB a DCu+、o+−o20X (但LA、=0.6−1.2.B=0.35〜0.7゜
C=0.05〜0.2.D=0.05〜0.2.Y=0
.05〜0.3数字は原子比を表わす)で示される組成
からなる酸化物超電導体及び上記の組成となるようにビ
スマス、スカンジウム。
General formula B1. +-vS cyS r ACa BM
gcB a DCu+, o+-o20X (However, LA, = 0.6-1.2.B = 0.35-0.7°C = 0.05-0.2.D = 0.05-0.2. Y=0
.. An oxide superconductor having a composition shown by 05 to 0.3 (numbers represent atomic ratios), and bismuth and scandium so as to have the above composition.

ストロンチウム、カルシウム、マグネシウム、バリウム
及び綱を含む各原料を秤量し、ついで混合したのち、仮
焼、粉砕し、成形後窒素雰囲気中又は酸素を10体積%
未満で含有する窒素雰囲気中で焼成する酸化物超電導体
の製造法並びに上記の組となるようにビスマス、スカン
ジウム、ストロンチウム、カルシウム、マグネシウム、
バリウム及び銅を含む各原料を秤量し、ついで混合した
後仮焼,一次焼成し、さらに粉砕後、成形し、再度窒素
雰囲気中又は酸素を7体積%未満で含有する窒素雰囲気
中で二次焼成する酸化物超電導体の製法に関する。
Each raw material including strontium, calcium, magnesium, barium, and steel is weighed, mixed, calcined, pulverized, and molded in a nitrogen atmosphere or with 10% oxygen by volume.
A method for producing an oxide superconductor by firing in a nitrogen atmosphere containing less than bismuth, scandium, strontium, calcium, magnesium,
Each raw material containing barium and copper is weighed, mixed, calcined and fired first, further crushed, shaped, and then fired again in a nitrogen atmosphere or in a nitrogen atmosphere containing less than 7% by volume of oxygen. The present invention relates to a method for producing an oxide superconductor.

本発明において酸化物超電導体を構成する主成分のビス
マス、スカンジウム、ストロンチウム。
Bismuth, scandium, and strontium are the main components constituting the oxide superconductor in the present invention.

カルシウム、マグネシウム、バリウム及び銅を含む原料
については特に制限はないが9例えば酸化物、炭*@、
鞘酸塩、しゅう酸塩等の1種又は2種以上が用いられる
There are no particular restrictions on raw materials containing calcium, magnesium, barium, and copper, but for example, oxides, charcoal*@,
One or more types of saccharides, oxalates, etc. are used.

ビスマス、スカンジウム、ストロンチウム、カルシウム
、マグネシウム、バリウム及び銅の配合割合は原子比で
ビスマスとスカンジウムの和が1.0かつビスマスとス
カンジウムの和に対するスカンジウムの比が0.05〜
0.3.ストロンチウムが0.6〜1,2.カルシウム
が0.35〜0.77、マグネシウムが0.05〜0.
2.バリウムが0.05〜0.2及び銅が1.0±0.
2の範囲とされ、この範囲から外れると急冷工程なしで
はTczeroが9CJK台の2212相(7)Bi系
ノS化物超電導体を得ることが困難である。
The mixing ratio of bismuth, scandium, strontium, calcium, magnesium, barium, and copper is such that the sum of bismuth and scandium is 1.0 in atomic ratio, and the ratio of scandium to the sum of bismuth and scandium is 0.05 to 1.
0.3. Strontium is 0.6-1.2. Calcium is 0.35-0.77, magnesium is 0.05-0.
2. Barium is 0.05-0.2 and copper is 1.0±0.
2, and outside this range, it is difficult to obtain a 2212-phase (7) Bi-based sulfide superconductor with a Tczero of 9CJK without a quenching process.

混合方法については特にI!1llffはないが9例え
ば合成樹n製のボールミルに合成樹脂で被覆したボール
、エタノール、メタノール等の溶媒及び原料を充填し、
湿式混合することが好ましい。
Especially about the mixing method! For example, a ball mill made of synthetic wood is filled with balls coated with synthetic resin, a solvent such as ethanol or methanol, and raw materials.
Wet mixing is preferred.

仮焼条件において、仮焼温度は各原料の配合割合などに
より適宜選定されるが、780〜870℃の範囲で仮焼
することが好ましく、また仮焼雰囲気は、大気中、i!
素雰囲気中、真空中、還元雰囲気中、中性雰囲気中等で
仮焼することができる。
Regarding the calcination conditions, the calcination temperature is appropriately selected depending on the blending ratio of each raw material, etc., but it is preferable to calcinate in the range of 780 to 870°C, and the calcination atmosphere is air, i!
Calcination can be performed in an elementary atmosphere, a vacuum, a reducing atmosphere, a neutral atmosphere, etc.

粉砕及び成形法については特に制限はなく、従来公知の
方法で行なうことができる。
There are no particular restrictions on the pulverization and molding methods, and conventionally known methods can be used.

介 郵 焼成条件において、焼成温度は各原料の配合側台などに
より適宜選定されるが、試料が溶融する温度近傍以下の
温度9例えば780〜950℃の範囲で焼成することが
好ましく、810〜900℃の範囲で焼成すればさらに
好ましい。
Regarding the firing conditions, the firing temperature is appropriately selected depending on the blending temperature of each raw material, etc., but it is preferable to perform firing at a temperature in the vicinity of the melting temperature of the sample, for example in the range of 780 to 950 °C, and 810 to 900 °C. It is more preferable to perform the firing at a temperature within the range of °C.

一方焼成雰囲気は、1回焼成の場合、窒素雰囲気中又は
酸素を104t−積%未満含有する窒素雰囲気中で焼成
することが必要とされ、また焼成を2回行なう場合、1
次焼成は大気中、酸素雰囲気中、真空中、還元雰囲気中
、中性雰囲気中等特に制限はないが、2次焼成は窒素雰
囲気中又は酸素を7体積%未満含有する窒素雰囲気中で
焼成することが必要とさ九、上記以外の条件で焼成を行
なうと急冷工程なしではT c2erQが90に台の2
212相のBi系の酸化物超電導体を得ることが困難で
ある、なお本発明において、仮焼後、必要に応じ粉砕及
び成形を行ない、その後1次焼成してもよい焼成時間は
、5〜10時間でも差し支Δ えはないが、結晶の均質性を高めるには20〜100時
間行なうことが好ましい。
On the other hand, in the case of one-time firing, firing is required in a nitrogen atmosphere or in a nitrogen atmosphere containing less than 104 t-vol% oxygen;
There are no particular restrictions on the secondary firing, such as in the air, oxygen atmosphere, vacuum, reducing atmosphere, or neutral atmosphere, but the secondary firing may be performed in a nitrogen atmosphere or in a nitrogen atmosphere containing less than 7% by volume of oxygen. However, if firing is performed under conditions other than the above, the Tc2erQ will be on the order of 90 without the rapid cooling process.
It is difficult to obtain a 212-phase Bi-based oxide superconductor. In the present invention, after calcination, pulverization and molding may be performed as necessary, and then primary firing may be performed. Although 10 hours is acceptable, it is preferable to carry out the heating for 20 to 100 hours in order to improve the homogeneity of the crystals.

本発明の組成において○(酸素)の量は+Cuの量及び
Cuの酸化状態によって定まる。しがし酸化状態がどの
ようになっているかを厳密にそして精度よく測定するこ
とができない、そのため本発明においてXで表わすこと
にした。
In the composition of the present invention, the amount of ○ (oxygen) is determined by the amount of +Cu and the oxidation state of Cu. However, it is not possible to precisely and precisely measure the oxidation state of the oxidation state, so it is designated as X in the present invention.

(実施例) 以下本発明の詳細な説明する。(Example) The present invention will be explained in detail below.

バ リウム、カルシウム及び銅の比率が原子比で第1表に示
す組成になるように二酸化ビスマス(高純度化学研究新
製、純度99.9%)、酸化スカンジウム(高純度化学
研究新製、純度99.9%)。
Bismuth dioxide (manufactured by Kojundo Kagaku Kenkyushin, purity 99.9%), scandium oxide (manufactured by Kojundo Kagaku Kenkyu Shin, purity 99%) and scandium oxide (manufactured by Kojundo Kagaku Kenkyushin, purity 99%) were prepared so that the proportions of barium, calcium and copper were as shown in Table 1 in atomic ratio. .9%).

炭酸ストロンチウム(レアメタリック製、純度99.9
%)、Ifl化マグネシウム(高純度化学研究新製、純
度99.9%)、炭酸バリウム(高純度化学研究新製、
純度99.9%)、炭酸カルシウム(高純度化学研究新
製、純度99.9%及び酸化第二銅(高純度化学研究新
製、純度99.9%)を秤量し出発I′JK料とした。
Strontium carbonate (manufactured by Rare Metallic, purity 99.9
%), Magnesium Iflide (manufactured by Kojundo Kagaku Kenkyushin, purity 99.9%), barium carbonate (manufactured by Kojundo Kagaku Kenkyushin, purity 99.9%),
Weighed calcium carbonate (manufactured by Kojundo Kagaku Kenkyushin, purity 99.9%) and cupric oxide (manufactured by Kojundo Kagaku Kenkyushin, purity 99.9%) and added them to the starting I'JK material. did.

次に上記の出発原料を合成樹脂製のボールミル内に合成
樹脂で被覆した銅球ボール及びメタノールと共に充填し
、毎分50回転の条件で72時時間式混合した。乾燥後
アルミナこう鉢に入れ電気炉を用いて火気中で800℃
で10時間仮焼し。
Next, the above starting materials were charged into a synthetic resin ball mill together with copper balls coated with synthetic resin and methanol, and mixed for 72 hours at 50 revolutions per minute. After drying, place it in an alumina pot and heat it in an electric furnace at 800°C.
Bake for 10 hours.

ついで乳鉢で粗粉砕して酸化物超電導体用組成、物を得
た。この後肢酸化物超電導体用組成物を147 M P
 aの圧力で直径30 m m +厚さl m mのペ
レットにプレス成形後1体積比でOe:N2=1:20
の低酸素雰囲気中で840”Cl00時間焼成してBi
系の酸化物超電導体を得た。
The mixture was then coarsely ground in a mortar to obtain a composition for an oxide superconductor. This composition for hindlimb oxide superconductor was heated to 147 M P
After press molding into pellets with a diameter of 30 mm + thickness of 1 mm at a pressure of 1 volume ratio Oe:N2 = 1:20
Bi
A system oxide superconductor was obtained.

実施例3〜4 ビスマス、スカンジウム、ストロンチウム、マグネシウ
ム、バリウム、カルシウム及び銅(いずれも実施例1〜
2と同一原料を使用)の比率が原子比で第2表に示す組
成になるように秤量し出発原料とした。
Examples 3-4 Bismuth, scandium, strontium, magnesium, barium, calcium and copper (all of Examples 1-4)
The same raw materials as those used in Example 2 were weighed so as to have the composition shown in Table 2 in terms of atomic ratio, and used as starting materials.

以下実施例1〜2と同様の工程を経て酸化物超電導体用
転成物を得た。この後肢酸化物超電導体用組成物を体積
比で酸素雰囲気中で900 ’Cで15時間−次焼成し
、ついで粉砕した後、147MPaの圧力で直径30m
m、厚さ1mmのペレットにプレス成形後2体積比で、
02: N2;1 :20の低酸素雰囲気中で830’
Cで100時間二次焼成してBi系酸化物超電導体を得
た。
Thereafter, the same steps as in Examples 1 and 2 were carried out to obtain a converted product for an oxide superconductor. This composition for a hindlimb oxide superconductor was calcined by volume at 900'C in an oxygen atmosphere for 15 hours, and then crushed, and then heated to a diameter of 30 m at a pressure of 147 MPa.
m, 2 volume ratio after press molding into pellets with a thickness of 1 mm,
02: N2; 830' in a low oxygen atmosphere of 1:20
A Bi-based oxide superconductor was obtained by secondary firing with C for 100 hours.

(比較例) 比較例1〜2 ビスマス、ストロンチウム、カルシウム及び銅の比率が
第3表に示す組成になるように二酸化ビスマス(高純度
化学研究新製、純度99,9%)。
(Comparative Examples) Comparative Examples 1 and 2 Bismuth dioxide (manufactured by Kojun Kagaku Kenkyushin, purity 99.9%) was prepared so that the ratios of bismuth, strontium, calcium, and copper were as shown in Table 3.

炭酸ストロンチウム(レアメタリック製、純度99.9
%)、炭酸カルシウム(高純度化学研究新製、純度99
.9%)及び酸化第二#4(高純度化学研究所製純度9
9.9%)を秤量し、以下実施例1〜2と同様の工程を
経てBi系の酸化物超電導体を得た。
Strontium carbonate (manufactured by Rare Metallic, purity 99.9
%), calcium carbonate (manufactured by Kojundo Kagaku Kenkyushin, purity 99
.. 9%) and oxidation No. 2 #4 (Kojundo Kagaku Kenkyusho purity 9)
9.9%) was weighed and the same steps as in Examples 1 and 2 were carried out to obtain a Bi-based oxide superconductor.

比較例3〜4 ビスマス、ストロンチウム、カルシウム及び銅(いずれ
も比較例1〜2と同一の原料を使用)の比率が原子比で
第4表に示す組成になるように秤第 表 量し出発原料とした。
Comparative Examples 3-4 Starting materials were weighed on a scale so that the ratios of bismuth, strontium, calcium, and copper (all using the same raw materials as in Comparative Examples 1-2) were as shown in Table 4 in terms of atomic ratio. And so.

以下実施例3〜4と同様の工程を経てBi系の酸化物超
電導体を得た。
Thereafter, a Bi-based oxide superconductor was obtained through the same steps as in Examples 3 and 4.

次に実施例1〜4及び比較例1〜4で得たBi系の酸化
物超電導体な四端子法でTczeroを測定した。その
結果を第5表に示す。
Next, Tczero of the Bi-based oxide superconductors obtained in Examples 1 to 4 and Comparative Examples 1 to 4 was measured by a four-probe method. The results are shown in Table 5.

第5表に示されるように本発明の実施例になる酸化物超
電導体は、90に以上のTcff1er0を有すること
がわかる。また結晶相を調べたところ2212相である
ことが確認された。
As shown in Table 5, it can be seen that the oxide superconductors according to the examples of the present invention have Tcff1er0 of 90 or more. Further, when the crystal phase was examined, it was confirmed that it was a 2212 phase.

(発明の効果)(Effect of the invention)

Claims (3)

【特許請求の範囲】[Claims] 1.ビスマス,スカンジウム,ストロンチウム,カルシ
ウム,マグネシウム,バリウム及び銅を主成分とし, 一般式Bi_1_−_YSc_YSr_ACa_BMg
_CBa_DCu_1_._0_±_0_._2O_x (但しA=0.6〜1.2,B=0.35〜0.7,C
=0.05〜0.2,D=0.05〜0.2,Y=0.
05〜0.3,数字は原子比を表わす)で示される組成
からなる酸化物超電導体。
1. Main ingredients are bismuth, scandium, strontium, calcium, magnesium, barium and copper, with the general formula Bi_1_-_YSc_YSr_ACa_BMg
_CBa_DCu_1_. _0_±_0_. _2O_x (However, A=0.6~1.2, B=0.35~0.7, C
=0.05-0.2, D=0.05-0.2, Y=0.
An oxide superconductor having a composition of 05 to 0.3 (numbers represent atomic ratios).
2.請求項1記載の組成となるようにビスマス,スカン
ジウム,ストロンチウム,カルシウム,マグネシウム,
バリウム及び銅を含む各原料を秤量し,ついで混合した
後,仮焼,粉砕し成形後,窒素雰囲気中又は酸素を10
体積%未満で含有する窒素雰囲気中で焼成することを特
徴とする酸化物超電導体の製法。
2. Bismuth, scandium, strontium, calcium, magnesium,
Each raw material including barium and copper is weighed, mixed, calcined, crushed, and molded in a nitrogen atmosphere or heated with oxygen for 10 minutes.
A method for producing an oxide superconductor, characterized by firing in an atmosphere containing nitrogen in an amount less than % by volume.
3.請求項1記載の組成となるようにビスマス,スカン
ジウム,ストロンチウム,カルシウム,マグネシウム,
バリウム及び銅を含む各原料を秤量し,ついで混合した
後,仮焼,一次焼成し,さらに粉砕後成形し,再度窒素
雰囲気中又は酸素を7体積%未満で含有する窒素雰囲気
中で二次焼成することを特徴とする酸化物超電導体の製
法。
3. Bismuth, scandium, strontium, calcium, magnesium,
Each raw material containing barium and copper is weighed, mixed, calcined, primary fired, further crushed and shaped, and then secondary fired again in a nitrogen atmosphere or in a nitrogen atmosphere containing less than 7% by volume of oxygen. A method for producing an oxide superconductor characterized by:
JP2243283A 1990-09-13 1990-09-13 Oxide superconductor and its production Pending JPH04124015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2243283A JPH04124015A (en) 1990-09-13 1990-09-13 Oxide superconductor and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2243283A JPH04124015A (en) 1990-09-13 1990-09-13 Oxide superconductor and its production

Publications (1)

Publication Number Publication Date
JPH04124015A true JPH04124015A (en) 1992-04-24

Family

ID=17101553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2243283A Pending JPH04124015A (en) 1990-09-13 1990-09-13 Oxide superconductor and its production

Country Status (1)

Country Link
JP (1) JPH04124015A (en)

Similar Documents

Publication Publication Date Title
JPH04124015A (en) Oxide superconductor and its production
JPH04124026A (en) Oxide superconductor and its production
JPH04124017A (en) Oxide superconductor and its production
JPH04124027A (en) Oxide superconductor and its production
JPH04124025A (en) Oxide superconductor and its production
JPH04124031A (en) Oxide superconductor and its production
JPH04124020A (en) Oxide superconductor and its production
JPH04124023A (en) Oxide superconductor and its production
JPH04124019A (en) Oxide superconductor and its production
JPH04124028A (en) Oxide superconductor and its production
JPH04124018A (en) Oxide superconductor and its production
JPH04124021A (en) Oxide superconductor and its production
JPH04124016A (en) Oxide superconductor and its production
JPH04124024A (en) Oxide superconductor and its production
JPH04124022A (en) Oxide superconductor and its production
JPH04124029A (en) Oxide superconductor and its production
JPH04124030A (en) Production of oxide superconductor
JPH04124014A (en) Oxide superconductor and its production
JPH01246131A (en) Production of oxide superconductor
JPH05262527A (en) Oxide superconductor and its production
JPS63236753A (en) Production of superconductive ceramic
JPH0446015A (en) Oxide superconducting material and its production
JPH0292826A (en) Oxide superconductor
JPH03223118A (en) Production of oxide superconductor
JPH06183822A (en) Method of rapid synthesis of bi-based superconductor