JPH03290318A - Oxide superconductor and production thereof - Google Patents

Oxide superconductor and production thereof

Info

Publication number
JPH03290318A
JPH03290318A JP2089617A JP8961790A JPH03290318A JP H03290318 A JPH03290318 A JP H03290318A JP 2089617 A JP2089617 A JP 2089617A JP 8961790 A JP8961790 A JP 8961790A JP H03290318 A JPH03290318 A JP H03290318A
Authority
JP
Japan
Prior art keywords
oxide superconductor
magnetic field
range
calcined
raw materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2089617A
Other languages
Japanese (ja)
Inventor
Keiji Sumiya
圭二 住谷
Hideji Kuwajima
秀次 桑島
Shuichiro Shimoda
下田 修一郎
Toranosuke Ashizawa
寅之助 芦沢
Shozo Yamana
章三 山名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2089617A priority Critical patent/JPH03290318A/en
Priority to US07/679,318 priority patent/US5238911A/en
Priority to EP91302995A priority patent/EP0450966B1/en
Priority to DE69114164T priority patent/DE69114164T2/en
Publication of JPH03290318A publication Critical patent/JPH03290318A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To suppress deterioration in the critical current density in applying a magnetic field thereto by weighing respective raw materials containing Bi, Sr, Ca, Mg, Ba and Cu so as to provide the composition of a specific composition formula, mixing the raw materials, calcining the resultant mixture, pulverizing the calcined mixture, further forming the powder and burning the formed compact. CONSTITUTION:Respective prescribed amounts of raw material powders such as Bi2O3, SrCO3, MgO, CaCO3, BaCO3 and CuO containing Bi, Sr, Mg, Ca, Ba and Cu are are weighed and wet mixed in a solvent such as methanol. The resultant mixture is then calcined at a temperature within the range of 780-830 deg.C, pulverized, formed and subsequently burned at a temperature within the range of 820-870 deg.C in air or an atmosphere with 1-20vol.% O2 content under a low O2 pressure to afford the objective oxide superconductor composed of the composition expressed by the formula (A is 0.6-1.3; B is 0.3-0.9; C is 0.01-0.3 and D is 0.01-0.3 expressed in terms of atomic ratio) with hardly any deterioration in the critical current density in applying a magnetic field thereto.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は酸化物超電導体及びその製造法罠関する。[Detailed description of the invention] (Industrial application field) The present invention relates to an oxide superconductor and its manufacturing method.

(従来の技術) 従来の酸化物超電導体としてa、1988年。(Conventional technology) a, 1988 as a conventional oxide superconductor.

金属材料技術研究所の前出総合研究官らによって発見さ
れたビスマス、ストロンチウム、カルシウム及び銅を主
成分とするBi −Sr −Ca −Cu−0系(以下
Bi系とする)の酸化物超電導体があるが。
A Bi-Sr-Ca-Cu-0 (hereinafter referred to as Bi-based) oxide superconductor whose main components are bismuth, strontium, calcium, and copper, discovered by the above-mentioned research staff of the Institute of Metals and Materials Technology. Although there is.

このBi系の酸化物超電導体は、電気抵抗が零になる臨
界温度(以下、Zeroとする)が110に付近の22
23相が生成しにくいという問題があった。
This Bi-based oxide superconductor has a critical temperature (hereinafter referred to as "Zero") at which the electrical resistance becomes zero at around 110 and 22
There was a problem that 23 phases were difficult to generate.

この念めT:”’ 4”t 80 K付近と低いながら
も生成温度領域が広い2212相を用いたBi系の酸化
物超電導体が一般に知られている。
To keep this in mind, Bi-based oxide superconductors using the 2212 phase are generally known, which have a low temperature around t 80 K but a wide formation temperature range.

(発明が解決しようとする課題) しかしながら上記のBi系の酸化物超電導体は。(Problem to be solved by the invention) However, the above Bi-based oxide superconductor.

Y−Ba−Cu−0系(以下Y系とする)の酸化物超電
導体に比べ磁場の印加によって臨界電流密度(以下Jc
とする)が低下し易いという問題があシ。
Compared to the Y-Ba-Cu-0 system (hereinafter referred to as Y system) oxide superconductor, the critical current density (hereinafter referred to as Jc
There is a problem in that the value (supposed to be

超電導電磁石、超電導磁気シールド材への適用の面で不
利であった。
This was disadvantageous in terms of application to superconducting electromagnets and superconducting magnetic shielding materials.

本発明は従来の2212相を用い7tBi系の酸化物超
電導体に比べ磁場の印加によるJcが低下しに〈〈、か
つ耳e r Oも従来の2212相と変わらないBi系
の酸化物超電導体及びその製造法を提供するものである
The present invention uses the conventional 2212 phase to create a Bi-based oxide superconductor which has a lower Jc due to the application of a magnetic field than a 7tBi-based oxide superconductor, and also has the same e r O as the conventional 2212-phase. and a manufacturing method thereof.

(課題を解決するための手段) 本発明者らは、上記の欠点について糧々検討した結果、
磁場中で超電導状態を長く保ちつづけ、かつJcを低下
させないためには、超電導体中にビン留めする点9例え
ば不純物、添加物、格子欠陥等を設は磁束線の自由な動
きを止めることがその対策として適切であると考え、さ
らに検討を進めた結果j#!化物超電導体の元素置換に
よシ、結晶格子のゆがみ、欠陥などが生成すれば、これ
らがビン留め点になシ磁場中での特性向上に寄与できる
ものと考えた。またさらに検討を進め之結果、Mg。
(Means for Solving the Problem) As a result of intensive study on the above-mentioned drawbacks, the present inventors found that
In order to maintain the superconducting state for a long time in a magnetic field and to prevent Jc from decreasing, it is necessary to introduce impurities, additives, lattice defects, etc. into the superconductor to stop the free movement of the magnetic flux lines. We thought that this was an appropriate countermeasure, and after further consideration, we found that j#! We thought that if elements such as crystal lattice distortion, defects, etc. are generated by element substitution in a compound superconductor, these could serve as binding points and contribute to improving the properties in a magnetic field. As a result of further investigation, Mg.

Baを含有した2212相のBi系酸化物超電導体は従
来のものに比べ磁場の印加によって低下しにくいことを
見い出し本発明を完成するに至った。
It was discovered that a 2212-phase Bi-based oxide superconductor containing Ba is less susceptible to deterioration due to the application of a magnetic field than conventional ones, and the present invention was completed.

本発明はビスマス、ストロンチウム、カルシウム、マグ
ネシウム、バリウム及び銅を主成分とし。
The main ingredients of the present invention are bismuth, strontium, calcium, magnesium, barium, and copper.

一般式Bil、g SrACasMgoBanCuto
to−tsOX (但しA= 0.6〜1.3.B=0
.3〜0.9.C=0.01〜0.3.D=0.01〜
0.3.数字は原子比を表わす)で示される組成から々
る酸化物超電導体り及び上記の組成となるようにビスマ
ス、ストロンチウム。
General formula Bil, g SrACasMgoBanCuto
to-tsOX (However, A=0.6~1.3.B=0
.. 3-0.9. C=0.01-0.3. D=0.01~
0.3. (Numbers represent atomic ratios) oxide superconductors with compositions shown in Table 1) and bismuth and strontium with the above compositions.

カルシウム、マグネシウム、バリウム及び銅を含む各原
料を秤量し、ついで混合した後、仮焼、粉砕し、さらに
成形後焼成する酸化物超電導体の製造法に関する。
The present invention relates to a method for producing an oxide superconductor, in which raw materials containing calcium, magnesium, barium, and copper are weighed, mixed, calcined, pulverized, molded, and then fired.

本発明において酸化物超電導体を構成する生成物のビス
マス、ストロンチウム、カルシウム、マグネシウム、バ
リウム及び銅を含む原料(出発原料)については特に制
限はないが1例えば、酸化物、炭酸塩、硝酸塩、蓚酸塩
等の1種又は2種以上が用すられる。
In the present invention, there are no particular restrictions on the raw materials (starting raw materials) containing bismuth, strontium, calcium, magnesium, barium, and copper that constitute the oxide superconductor; for example, oxides, carbonates, nitrates, oxalic acid One or more salts may be used.

一般式Bi 1,08rl CaB Mg□ Bap 
cul、o±tt15において。
General formula Bi 1,08rl CaB Mg□ Bap
in cul, o±tt15.

Aは原子比でα6〜L3の範囲とされ、0.6未満であ
ると超電導体含有率が低下し、かつ77に以上で安定し
て電気抵抗を零にすることが困難であ、?、1.3を超
えると超電導体以外の結晶、ガラス等の異相が生成し易
< 、 T:eroが低下する。
A is in the range of α6 to L3 in terms of atomic ratio, and if it is less than 0.6, the superconductor content decreases, and if it is 77 or more, it is difficult to stably reduce the electrical resistance to zero. , exceeds 1.3, foreign phases such as crystals other than superconductors, glass, etc. are likely to be generated, and T: ero decreases.

またBは原子比で0.3〜0.9の範囲とされ、0.3
未満であると超電導体含有率が低下し、かつ77に以上
で安定して電気抵抗を零九することが困難であ!2,0
.9を超えると超電導体以外の結晶、ガラス等の異相が
生成し易<、  T:eroが低下する。
In addition, B has an atomic ratio in the range of 0.3 to 0.9, and 0.3
If it is less than 77, the superconductor content will decrease, and if it is more than 77, it will be difficult to stably reduce the electrical resistance to zero. 2,0
.. When it exceeds 9, foreign phases such as crystals other than superconductors and glass are likely to be formed. T: ero decreases.

さらにC及びDは原子比でいずれも0.01〜0.3の
範囲とされ、0.01未満であると顕著な効果が認めら
れず、0.3JえるとBaCuαz、 BaB10z等
の異相が生成し易いという欠点がある。
Furthermore, the atomic ratio of C and D is both in the range of 0.01 to 0.3, and if it is less than 0.01, no significant effect will be observed, and if it exceeds 0.3 J, different phases such as BaCuαz and BaB10z will be generated. It has the disadvantage of being easy to do.

混合方法については特に制限はないが9例えば合成樹脂
製のボールミル内に合成樹脂で被覆し九ボール、エタノ
ール、メタノール等の溶媒及び原料を充填し、湿式混合
することが好ましい。
There are no particular restrictions on the mixing method, but it is preferable to wet-mix, for example, by coating a ball mill made of synthetic resin with a synthetic resin, filling the ball mill with a solvent such as ethanol or methanol, and raw materials.

仮焼条件において、仮焼温度は各原料の配合割合などに
よシ適宜選定されるが、780〜830℃の範囲で仮焼
することが好ましく、また仮焼雰囲気は、大気中、酸素
雰囲気中、真空中、還元雰囲気中等で仮焼することがで
き特に制限はない。
Regarding the calcination conditions, the calcination temperature is appropriately selected depending on the blending ratio of each raw material, etc., but it is preferable to calcinate in the range of 780 to 830°C, and the calcination atmosphere is air or oxygen atmosphere. , in a vacuum, in a reducing atmosphere, etc., and there are no particular restrictions.

粉砕及び成形については特に制限はなく、従来公知の方
法で行うものとする。
There are no particular restrictions on crushing and molding, and conventionally known methods may be used.

焼成条件において、焼成温度は各原料の配合割合などに
よう適宜選定されるが、820〜870℃の範囲で焼成
することが好ましく、また焼成雰囲気は、大気中、空気
気流中、または低酸素圧雰囲気中(酸素の含有量が1〜
20体積チ好ましくは2〜20体積チの範囲)で焼成す
ることが好ましい。
Regarding the firing conditions, the firing temperature is appropriately selected depending on the blending ratio of each raw material, etc., but it is preferable to fire in the range of 820 to 870°C, and the firing atmosphere is air, air current, or low oxygen pressure. In the atmosphere (oxygen content is 1~
It is preferable to fire in a range of 20 volume squares, preferably 2 to 20 volume squares.

本発明の組成においてO(酸素)の量は、CuO量及び
Cuの酸化状態によって定まる。しかし酸化状態がどの
ようになっているかを厳密にそして精度よく測定するこ
とができず本発明においてはXで表わされる。
In the composition of the present invention, the amount of O (oxygen) is determined by the amount of CuO and the oxidation state of Cu. However, it is not possible to measure the oxidation state strictly and accurately, so it is represented by X in the present invention.

(実施例) 以下本発明の詳細な説明する。(Example) The present invention will be explained in detail below.

実施例1〜5 ビスマス、ストロンチウム、マグネシウム、バリウム、
カルシウム及び銅の比率が原子比で第1表に表わす組成
になるように三酸化ビスマス(高純度化学研究所製、純
度99.9%)、炭酸ストロンチウム(レアメタリック
製、純度99.’l)j酸化マグネシウム(高純度化学
研究所友、純度99.9 % ) 、炭酸バリウム(高
純度化学研究新製。
Examples 1 to 5 Bismuth, strontium, magnesium, barium,
Bismuth trioxide (manufactured by Kojundo Kagaku Kenkyujoku, purity 99.9%) and strontium carbonate (manufactured by Rare Metallic, purity 99.'l) were added so that the ratio of calcium and copper would be as shown in Table 1 in terms of atomic ratio. j Magnesium oxide (Kojundo Kagaku Kenkyu Tomo, purity 99.9%), barium carbonate (Newly manufactured by Kojundo Kagaku Kenkyu.

純度99.9%)、炭酸カルシウム(高純度化学研究所
裂、純度99.9チ)及び酸化第二銅(高純度化学研究
新製、純度99.9チ)を秤量し出発原料とした。
(purity 99.9%), calcium carbonate (Kojundo Kagaku Kenkyu Shinsei, purity 99.9%), and cupric oxide (Kojundo Kagaku Kenkyushin Co., Ltd., purity 99.9%) were weighed and used as starting materials.

次に上記の出発原料を合成樹脂製のボールミル内に合成
樹脂で被覆した鋼球ボール及びメタノールと共に充填し
、毎分50回転の条件で72時時間式混合した。乾燥後
アルミナ匣鉢に入れ電気炉を用いて大気中で800℃で
10時間仮焼しついで乳鉢で粗粉砕して酸化物超電導体
用組成物を得友。この後肢酸化物超電導体用組成物を1
47MPaの圧力で直径30m、厚さ1閣のペレットに
プレス成形後1体積比で02: N2= 1 + 10
の低酸素雰囲気中で845℃で100時間焼成してBi
系の酸化物超電導体を得た。この後四端子法でrpge
ro及び磁場中でJcを測定した。その結果を第3表に
示す。
Next, the above starting materials were filled into a synthetic resin ball mill together with steel balls coated with synthetic resin and methanol, and mixed for 72 hours at 50 revolutions per minute. After drying, the mixture was placed in an alumina sagger, calcined in the air at 800°C for 10 hours using an electric furnace, and coarsely ground in a mortar to obtain a composition for an oxide superconductor. This composition for hindlimb oxide superconductor
After press-forming into pellets with a diameter of 30 m and a thickness of 1 cm at a pressure of 47 MPa, the volume ratio is 02: N2 = 1 + 10
Bi
A system oxide superconductor was obtained. After this, rpge using the four terminal method
Jc was measured in ro and magnetic field. The results are shown in Table 3.

比較例1〜5 ビスマス、ストロンチウム、カルシウム及ヒ銅の比率が
原子比で第2表に表わす組成となるよう〜・ぐ 「 評価をした。
Comparative Examples 1 to 5 Evaluations were conducted so that the ratios of bismuth, strontium, calcium, and copper arsenate were as shown in Table 2 in terms of atomic ratio.

その結果を合わせて第3表に示す。The results are shown in Table 3.

【 第3表から明らかなように本発明の実施例になるBi系
の酸化物超電導体は、磁場の印加によるJcつ低下が少
なく、 T:eroも82に以上と従来の2212相と
変わらないことがわかる。これに対−従来のBi系の酸
化物超電導体は、T♂r0は81(以上で従来の221
2相と変わらないが、磁場の印加によシJCが著しく低
下したことがわかる。
[As is clear from Table 3, the Bi-based oxide superconductor according to the embodiment of the present invention has a small decrease in Jc due to the application of a magnetic field, and has a T:ero of 82 or more, which is the same as the conventional 2212 phase. I understand that. In contrast, the conventional Bi-based oxide superconductor has T♂r0 of 81 (which is above 221
Although it is the same as the two-phase case, it can be seen that the JC significantly decreased due to the application of the magnetic field.

(発明の効果) 本発明になる酸化物超電導体は、磁場の印加によるJc
の低下が少なく、かつ耳e rOも従来の2212相と
変わらず、工業的に極めて好適な酸化物超電導体である
(Effects of the Invention) The oxide superconductor of the present invention has Jc
It is an oxide superconductor that is industrially very suitable, as it has a small decrease in phase and has the same 2212 phase as the conventional 2212 phase.

Claims (2)

【特許請求の範囲】[Claims] 1.ビスマス,ストロンチウム,カルシウム,マグネシ
ウム,バリウム及び銅を主成分とし,一般式Bi_1_
._0Sr_ACa_BMg_CBa_DCu_1_.
_0_±_0_._1_5O_X(但しA=0.6〜1
.3,B=0.3〜0.9,C=0.01〜0.3,D
=0.01〜0.3,数字は原子比を表わす)で示され
る組成からなる酸化物超電導体。
1. The main components are bismuth, strontium, calcium, magnesium, barium and copper, with the general formula Bi_1_
.. _0Sr_ACa_BMg_CBa_DCu_1_.
_0_±_0_. _1_5O_X (However, A=0.6~1
.. 3, B=0.3~0.9, C=0.01~0.3, D
= 0.01 to 0.3, numbers represent atomic ratios).
2.請求項1記載の組成となるようにビスマス,ストロ
ンチウム,カルシウム,マグネシウム,バリウム及び銅
を含む各原料を秤量し,ついで混合した後,仮焼,粉砕
し,さらに成形後焼成することを特徴とする酸化物超電
導体の製造法。
2. Each raw material containing bismuth, strontium, calcium, magnesium, barium, and copper is weighed so as to have the composition according to claim 1, and then mixed, calcined, pulverized, and further shaped and fired. Method for manufacturing oxide superconductors.
JP2089617A 1990-04-04 1990-04-04 Oxide superconductor and production thereof Pending JPH03290318A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2089617A JPH03290318A (en) 1990-04-04 1990-04-04 Oxide superconductor and production thereof
US07/679,318 US5238911A (en) 1990-04-04 1991-04-02 Oxide superconductor Bi--Sr--Ca--Mg--Ba--Cu--O
EP91302995A EP0450966B1 (en) 1990-04-04 1991-04-04 Oxide superconductor and process for production thereof
DE69114164T DE69114164T2 (en) 1990-04-04 1991-04-04 Superconducting oxide and process for its production.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2089617A JPH03290318A (en) 1990-04-04 1990-04-04 Oxide superconductor and production thereof

Publications (1)

Publication Number Publication Date
JPH03290318A true JPH03290318A (en) 1991-12-20

Family

ID=13975714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2089617A Pending JPH03290318A (en) 1990-04-04 1990-04-04 Oxide superconductor and production thereof

Country Status (1)

Country Link
JP (1) JPH03290318A (en)

Similar Documents

Publication Publication Date Title
JPH03290318A (en) Oxide superconductor and production thereof
JPH03290319A (en) Oxide superconductor and production thereof
JP2630397B2 (en) Superconductor manufacturing method
JPH03265561A (en) Production of high-density oxide superconductor
JPH03223118A (en) Production of oxide superconductor
JP2854338B2 (en) Copper oxide superconductor
JPH04124019A (en) Oxide superconductor and its production
JPH04124025A (en) Oxide superconductor and its production
JPH042611A (en) Production of superconductor
JPH04124021A (en) Oxide superconductor and its production
JPH04124022A (en) Oxide superconductor and its production
JPH04193718A (en) Oxide superconductor and its production
JPH0570138A (en) Oxide superconductor and its production
JPH0477315A (en) Oxide superconductor and its production
JPH04124020A (en) Oxide superconductor and its production
JPH01172259A (en) Production of ceramic superconducting molded body
JPH04124016A (en) Oxide superconductor and its production
JPH0570133A (en) Oxide superconductor and its production
JPH04124027A (en) Oxide superconductor and its production
JPH04124029A (en) Oxide superconductor and its production
JPH04124018A (en) Oxide superconductor and its production
JPH0558639A (en) Oxide superconductor and its production
JPH0477316A (en) Oxide superconductor and its production
JPH0543245A (en) Oxide superconductor and production thereof
JPH04124017A (en) Oxide superconductor and its production