JPH01188458A - Production of superconducting ceramic - Google Patents

Production of superconducting ceramic

Info

Publication number
JPH01188458A
JPH01188458A JP63012674A JP1267488A JPH01188458A JP H01188458 A JPH01188458 A JP H01188458A JP 63012674 A JP63012674 A JP 63012674A JP 1267488 A JP1267488 A JP 1267488A JP H01188458 A JPH01188458 A JP H01188458A
Authority
JP
Japan
Prior art keywords
calcined
rare earth
earth element
general formula
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63012674A
Other languages
Japanese (ja)
Inventor
Yutaka Aikawa
豊 相川
Shunji Murai
村井 俊二
Tetsuya Urano
浦野 哲也
Yoshihiro Morino
守野 善弘
Masayuki Fujimoto
正之 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP63012674A priority Critical patent/JPH01188458A/en
Publication of JPH01188458A publication Critical patent/JPH01188458A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To obtain the subject ceramic capable of exhibiting superconducting characteristics even at the b.p. of liquid N2 by precalcining a powder mixture of specified starting materials, dipping the precalcined product in aq. HNO3, then calcining the product after molding. CONSTITUTION:An oxide of a rare earth element expressed by the formula I (Y is Y, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, or Lu) is mixed with BaCO3, etc., and CuO, etc., in a proportion of R:Ba:Cu=1:2:3 for 1-24hr, to obtain a powder mixture having 0.1-5mum particle size consisting of starting materials. The powder mixture is precalcined at 880-960 deg.C for 6-24hr in the air, then crushed to <=100mum particle size and dipped in 1-10wt.% aq. HNO3 for 1-30min. An org. binder is added to the product, and the mixture is molded under 100-1000kg/cm<2> pressure, and calcined at 900-980 deg.C for 3-12hr in O2 atmosphere. Thus, the title ceramic expressed by the formula II is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、液体窒素温度(77K)でも超電導特性が得
られる一般式RBazCu307−で表されRが希土類
元素系の超電導セラミックスの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing superconducting ceramics represented by the general formula RBazCu307-, in which R is a rare earth element, and which exhibits superconducting properties even at liquid nitrogen temperatures (77 K).

〔従来の技術〕[Conventional technology]

従来、絶対温度20にで超電導特性が得られる超電導物
質としては、Nb5Sn系、NbzGe系、NbTi系
等の金属系超電導物質が知られている。このような金属
系超電導物質に対して、はるかに高い絶対温度90に近
くの温度で超電導効果を得ることが可能な一般式RBa
zCuxOt−8で表され、Rが希土類元素系の超電導
セラミックスが最近知られるようになり、実用化に向け
て各方面で検討が進められている。
Conventionally, metal-based superconducting materials such as Nb5Sn-based, NbzGe-based, and NbTi-based superconducting materials are known as superconducting materials that can obtain superconducting properties at an absolute temperature of 20 degrees. For such metallic superconducting materials, the general formula RBa is able to obtain superconducting effects at temperatures close to the much higher absolute temperature of 90.
Superconducting ceramics, represented by zCuxOt-8, in which R is a rare earth element, have recently become known, and studies are underway in various fields for practical use.

この−IQ式RBazCu30.□系超電導セラミック
スの一般的な製造方法は、その原料粉末を所定の比率で
配合し、この配合物をボールミル等の混合手段で混合す
る。この得られた混合粉末を大気中で仮焼してから10
0μm以下に粉砕し、この仮焼粉末に有機質バインダー
を加えて混合し、所定の形状に成型する。この成形物を
酸素雰囲気中で焼成して焼結体とし、さらに必要に応じ
て酸素雰囲気中で熱処理してアニールを行うものである
This -IQ formula RBazCu30. A general method for manufacturing □-based superconducting ceramics is to blend raw material powders in a predetermined ratio and mix this blend using a mixing means such as a ball mill. After calcining the obtained mixed powder in the air,
The powder is pulverized to 0 μm or less, an organic binder is added to the calcined powder, mixed, and molded into a predetermined shape. This molded product is fired in an oxygen atmosphere to form a sintered body, and if necessary, heat-treated in an oxygen atmosphere to perform annealing.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記の従来の製造方法で得られた上記一般式RBazC
uzOt−x系の超電導セラミックス体には、その内部
組織に一般式RzBaCuOs (Rは希土類元素)の
組成の半導体物質が部分的に析出し、この半導体物質が
多いほどこの超電導セラミックス体の臨界電流密度 J
c (A/coりが低下することがわがってきた。
The above general formula RBazC obtained by the above conventional manufacturing method
In the uzOt-x system superconducting ceramic body, a semiconductor substance having the general formula RzBaCuOs (R is a rare earth element) is partially precipitated in its internal structure, and the more this semiconductor substance is present, the higher the critical current density of the superconducting ceramic body is. J
c (It has been found that the A/co ratio decreases.

本発明の目的は、臨界電流密度 Jc (A/cal)
を低下させないことを可能にした一般式RBazCu+
0t−x(Rは希土類元素)系の超電導セラミックス体
の製造方法を提供することにある。
The purpose of the present invention is to obtain critical current density Jc (A/cal)
The general formula RBazCu+ made it possible not to reduce
An object of the present invention is to provide a method for manufacturing a superconducting ceramic body based on 0t-x (R is a rare earth element).

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明は、一般弐RBaz
CuiO1−x(但し、RはY 、、 Nds 5ll
1% Bus Gd5Dy、 80% ErSTm5 
Ybs Luを表す)系超電導セラミックスの原料粉末
を所定の比率に混合した混合粉末を大気中で仮焼する工
程と、この仮焼材料を1〜10重量%の硝酸水溶液中に
1〜30分間浸漬した後取り出す工程と、この浸漬処理
した材料を成型してから酸素雰囲気中で焼成する工程を
有することを特徴とする超電導セラミックスの製造方法
を提供するものである。
In order to achieve the above object, the present invention
CuiO1-x (where R is Y,, Nds 5ll
1% Bus Gd5Dy, 80% ErSTm5
Ybs Lu) system superconducting ceramics raw material powder mixed at a predetermined ratio and calcined in the air, and this calcined material is immersed in a 1-10% by weight nitric acid aqueous solution for 1-30 minutes. The present invention provides a method for producing superconducting ceramics, which comprises a step of taking out the immersion-treated material, and a step of molding the immersed material and then firing it in an oxygen atmosphere.

次に本発明の詳細な説明する。Next, the present invention will be explained in detail.

本発明においては、一般弐RBa2CusO7−xであ
って、RがY % Nd、、5II1% Eu5Gds
 Dy、、 Ho、 Ers Tm。
In the present invention, general 2RBa2CusO7-x, R is Y%Nd, 5II1%Eu5Gds
Dy, Ho, Ers Tm.

Ybs Luで示される希土類元素系超電導セラミック
ス体が対象になるが、その原料粉末としては一般式R,
03(Rは上記希土類元素)の希土類元素酸化物、Ba
C01、CuO等が用いられ、これらは例えばR:Ba
:Cu = 1 :2:3になるように配合される。こ
れらの原料粉末の粒径としては0.1〜5μmが好まし
い。
The target is a rare earth element-based superconducting ceramic body represented by Ybs Lu, and its raw material powder has the general formula R,
Rare earth element oxide of 03 (R is the above rare earth element), Ba
C01, CuO, etc. are used, and these are, for example, R:Ba
:Cu=1:2:3. The particle size of these raw material powders is preferably 0.1 to 5 μm.

この配合物はボールミル等の混合手段により1〜24時
間混合されてから大気中で仮焼される。この仮焼の温度
は880〜960℃、6〜24時間が例示される。この
ようにして得られた仮焼材料は、再度ボールミル等の粉
砕手段で100μm以下の粒径になるまで粉砕される。
This mixture is mixed for 1 to 24 hours using a mixing means such as a ball mill, and then calcined in the atmosphere. The temperature of this calcining is exemplified at 880 to 960°C for 6 to 24 hours. The calcined material thus obtained is crushed again using a crushing means such as a ball mill until it has a particle size of 100 μm or less.

このようにして得られた仮焼粉末は、1〜10重量%の
水溶液に1〜30分浸漬される。これが1重量%未満で
あると、一般式RzBaCuOs (Rは上記希土類元
素)の化合物の溶出のために長時間要するため、水溶液
中のOH機の影響を受けて一般式RBazCu30マー
x (Rは上記希土類元素)化合物が分解される。また
、硝酸含有量が10重量%を越えると、一般式RBaz
CtlzOt−x(Rは上記希土類元素)化合物そのも
のが分解されてしまうため好ましくない。
The calcined powder thus obtained is immersed in a 1-10% by weight aqueous solution for 1-30 minutes. If this is less than 1% by weight, it will take a long time to elute the compound of the general formula RzBaCuOs (R is the above rare earth element), and the general formula RBazCu30merx (R is the above mentioned rare earth element) will be affected by the OH machine in the aqueous solution. Rare earth elements) compounds are decomposed. In addition, when the nitric acid content exceeds 10% by weight, the general formula RBaz
This is not preferable because the CtlzOt-x (R is the above-mentioned rare earth element) compound itself is decomposed.

このような処理を施された仮焼材料は、乾燥後有機質バ
インダーが加えられ、所定の形状に成形されるが、この
際100〜1000 Kg/a+Iの圧力で加圧成形す
ることが好ましい。この有機質バインダーとしてはアク
リル系等の樹脂をエタノール等の溶剤に溶解したものが
挙げられる。
After drying, the calcined material subjected to such treatment is added with an organic binder and molded into a predetermined shape. At this time, pressure molding is preferably performed at a pressure of 100 to 1000 Kg/a+I. Examples of the organic binder include those obtained by dissolving acrylic resin or the like in a solvent such as ethanol.

このようにして得られた成形体は、酸素雰囲気中で90
0〜980℃、3〜12時間焼成される。
The molded body thus obtained was heated to 90% in an oxygen atmosphere.
It is baked at 0 to 980°C for 3 to 12 hours.

〔作用〕[Effect]

一般式RBazCusOy−’x(Rは上記希土類元素
)系超電導セラミックスの原料粉末を仮焼した後、硝酸
水溶液に浸漬処理すると、一般式RzBaCuO2(R
は上記希土類元素)の半導体化合物が硝酸水溶液に溶は
出し、この半導体化合物を仮焼材料から減らすことがで
き、したがって一般式RBazCuz07−x(Rは上
記希土類元素)系超電導セラミックス焼結体にこれらの
半導体成分を少なくできると考えられるが詳細は明らか
でない。
After calcining the raw material powder of superconducting ceramics based on the general formula RBazCusOy-'x (R is the above-mentioned rare earth element), when it is immersed in a nitric acid aqueous solution, the general formula RzBaCuO2 (R
Semiconductor compounds of the above-mentioned rare earth elements) are dissolved in the nitric acid aqueous solution, and this semiconductor compound can be reduced from the calcined material. It is thought that the amount of semiconductor components can be reduced, but the details are not clear.

実施例 実施例1 原料粉末としてY2O3、BaC03% CuOをそれ
ぞれY:Ba:Cuの比が1:2:3になるように配合
し、ボールミルで15時間混合した。
Examples Example 1 Y2O3 and BaC03% CuO were blended as raw material powders so that the ratio of Y:Ba:Cu was 1:2:3, and mixed in a ball mill for 15 hours.

得られた混合粉末を大気中920℃で16時間仮焼した
後常温に冷却した後、再びボールミルに仕込み、100
μm以下になるまで粉砕した。
The obtained mixed powder was calcined in the air at 920°C for 16 hours, cooled to room temperature, and then charged into a ball mill again.
It was ground to a particle size of μm or less.

得られた仮焼粉末を純水を用いて調製した硝酸1重量%
水溶液中に1分間浸漬した後、15μmのメンブランフ
ィルタ−で濾過して前記水溶液と分離し、乾燥させた。
1% by weight of nitric acid prepared from the obtained calcined powder using pure water.
After being immersed in the aqueous solution for 1 minute, it was filtered through a 15 μm membrane filter to separate it from the aqueous solution and dried.

次いで得られた粉末を200 Kg/ eraの圧力で
加圧成形した。
The resulting powder was then pressure molded at a pressure of 200 Kg/era.

この成形物を酸素雰囲気中900℃で5時間焼成し、焼
成体を作製した。
This molded product was fired at 900° C. for 5 hours in an oxygen atmosphere to produce a fired body.

この得られた焼成体をクライオスタンド中で常温から液
体窒素温度まで徐々に冷却し、抵抗値が0になる臨界温
度Tc及び臨界電流密度Jc (A/cj)を測定した
結果を表に示す。
The obtained fired body was gradually cooled in a cryostand from room temperature to liquid nitrogen temperature, and the critical temperature Tc and critical current density Jc (A/cj) at which the resistance value becomes 0 were measured, and the results are shown in the table.

実施例2 実施例1において、硝酸水溶液の濃度を5%にした以外
は同様にして焼成体を作製し、実施例1と同様に測定し
た結果を表に示す。
Example 2 A fired body was prepared in the same manner as in Example 1 except that the concentration of the nitric acid aqueous solution was changed to 5%, and the results of measurements in the same manner as in Example 1 are shown in the table.

実施例3 実施例1において、硝酸水溶液の濃度を1%にした以外
は同様にして焼成体を作製し、実施例1と同様に測定し
た結果を表に示す。
Example 3 A fired body was produced in the same manner as in Example 1 except that the concentration of the nitric acid aqueous solution was changed to 1%, and the results of measurements in the same manner as in Example 1 are shown in the table.

実施例4 実施例1において、硝酸水溶液に対する浸漬時間を30
分にした以外は同様にして焼成体を作製し、実施例1と
同様に測定した結果を表に示す。
Example 4 In Example 1, the immersion time in the nitric acid aqueous solution was 30
A fired body was produced in the same manner as in Example 1, except that the temperature was changed to 100%.The results are shown in the table.

比較例1 実施例1において、仮焼粉末を硝酸水溶液に浸漬する処
理を行わなかった以外は同様にして焼成体を作製し、実
施例1と同様に測定した結果を表に示す。
Comparative Example 1 A calcined body was produced in the same manner as in Example 1 except that the treatment of immersing the calcined powder in an aqueous nitric acid solution was not performed, and the results were measured in the same manner as in Example 1, and the results are shown in the table.

比較例2 実施例1において、硝酸水溶液に浸漬処理する代わりに
純水に仮焼粉末を1時間浸漬処理した以外は同様にして
焼成体を作製し、実施例1と同様に測定した結果を表に
示す。
Comparative Example 2 A fired body was produced in the same manner as in Example 1 except that the calcined powder was immersed in pure water for 1 hour instead of being immersed in a nitric acid aqueous solution, and the results were measured in the same manner as in Example 1. Shown below.

上記実施例及び比較例の結果から明らかの如〈実施例で
得られた焼成体の臨界電流密度Jc (A/C4)はい
ずれも、40 (A/cd)以上であるのに対し、比較
例のJcは20 (A/cd)であり、比較例のものに
はJcの低下が認められる。
As is clear from the results of the above Examples and Comparative Examples, the critical current density Jc (A/C4) of the fired bodies obtained in the Examples is 40 (A/cd) or more, whereas the Jc was 20 (A/cd), and a decrease in Jc was observed in the comparative example.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、一般式RBazCtlsOt−x(R
は上記希土類元素)系超電導セラミックスの原料粉末の
仮焼材料を硝酸処理したので、一般式RJaCuOs(
Rは上記希土類元素)の半4体化合物が選択的に溶解さ
れてその含有量が少なくなり、その結果一般式RBaア
CuzOt−*(Rは上記希土類元素)系超電導セラミ
ックスに含まれるこの半導体量も少なくなったと考えら
れ、その電流密度Jcを大きく保つことができる。
According to the invention, the general formula RBazCtlsOt-x(R
Since the calcined material of the raw material powder of the above-mentioned rare earth element)-based superconducting ceramics was treated with nitric acid, the general formula RJaCuOs (
R is the above-mentioned rare earth element) semi-tetratramic compound is selectively dissolved and its content is reduced, and as a result, the amount of this semiconductor contained in the general formula RBa-CuzOt-* (R is the above-mentioned rare earth element) based superconducting ceramics. It is considered that the current density Jc has decreased, and the current density Jc can be kept high.

昭和63年01月25日January 25, 1985

Claims (1)

【特許請求の範囲】[Claims] (1)一般式RBa_2Cu_3O_7_−_x(但し
、RはY、Nd、Sm、EU、Gd、Dy、Ho、Er
、Tm、Yb、Luを表す)系超電導セラミックスの原
料粉末を所定の比率に混合した混合粉末を大気中で仮焼
する工程と、この仮焼材料を1〜10重量%の硝酸水溶
液中に1〜30分間浸漬した後取り出す工程と、この浸
漬処理した材料を成型してから酸素雰囲気中で焼成する
工程を有することを特徴とする超電導セラミックスの製
造方法。
(1) General formula RBa_2Cu_3O_7_-_x (where R is Y, Nd, Sm, EU, Gd, Dy, Ho, Er
, Tm, Yb, Lu) system superconducting ceramic raw material powder mixed in a predetermined ratio is calcined in the air, and this calcined material is dissolved in a 1 to 10 wt% nitric acid aqueous solution. A method for producing superconducting ceramics, comprising a step of immersing the material for ~30 minutes and then taking it out, and a step of molding the immersed material and then firing it in an oxygen atmosphere.
JP63012674A 1988-01-25 1988-01-25 Production of superconducting ceramic Pending JPH01188458A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63012674A JPH01188458A (en) 1988-01-25 1988-01-25 Production of superconducting ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63012674A JPH01188458A (en) 1988-01-25 1988-01-25 Production of superconducting ceramic

Publications (1)

Publication Number Publication Date
JPH01188458A true JPH01188458A (en) 1989-07-27

Family

ID=11811921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63012674A Pending JPH01188458A (en) 1988-01-25 1988-01-25 Production of superconducting ceramic

Country Status (1)

Country Link
JP (1) JPH01188458A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106664212A (en) * 2014-08-19 2017-05-10 大众汽车有限公司 Switch unit, ethernet network, and method for activating components in an ethernet network

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106664212A (en) * 2014-08-19 2017-05-10 大众汽车有限公司 Switch unit, ethernet network, and method for activating components in an ethernet network

Similar Documents

Publication Publication Date Title
JPH01188458A (en) Production of superconducting ceramic
HUT52646A (en) Method for making super-conducting substance with critical temperature of 90 kelvin grades
JPH01160856A (en) Production of superconducting ceramic
JPS63307155A (en) Production of superconductor
JPH042611A (en) Production of superconductor
JPH01278458A (en) Production of superconductor
JPH02239103A (en) Precursor solution for superconducting ceramics
JPH01103919A (en) Production of superconductive ceramic
JPH01278467A (en) Production of superconductor
JPH01278461A (en) Production of superconductor
JPH01278468A (en) Production of superconductor
JPH04104940A (en) Oxide superconductor and production thereof
JPH01278465A (en) Production of superconductor
JPS63277556A (en) Production of superconductive oxide sintered material
JPH0259466A (en) Oxide superconducting sintered body
JPH02196059A (en) Production of superconductor
JPH01141868A (en) Production of superconducting ceramics
JPH01278464A (en) Production of superconductor
JPH03290318A (en) Oxide superconductor and production thereof
JPH02141420A (en) Oxide superconductor
JPH01100019A (en) Preparation of high-temperature superconducting ceramic raw powder for sintering
JPH01224227A (en) Preparation of powder for sintering superconducting ceramic of bi-alkaline earth element-cu oxide type
JPH0222104A (en) Production of raw material powder for producing high-temperature superconducting form
JPH02196058A (en) Production of superconductor
JPH0193460A (en) Production of superconducting substance