JPH0491443A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0491443A
JPH0491443A JP2204541A JP20454190A JPH0491443A JP H0491443 A JPH0491443 A JP H0491443A JP 2204541 A JP2204541 A JP 2204541A JP 20454190 A JP20454190 A JP 20454190A JP H0491443 A JPH0491443 A JP H0491443A
Authority
JP
Japan
Prior art keywords
resin
insulating substrate
semiconductor device
epoxy resin
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2204541A
Other languages
Japanese (ja)
Other versions
JP2892117B2 (en
Inventor
Miki Mori
三樹 森
Masayuki Saito
雅之 斉藤
Min Tai Kao
カオ・ミン・タイ
Tsugio Sakamoto
坂本 次雄
Michiya Azuma
東 道也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2204541A priority Critical patent/JP2892117B2/en
Publication of JPH0491443A publication Critical patent/JPH0491443A/en
Application granted granted Critical
Publication of JP2892117B2 publication Critical patent/JP2892117B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector

Landscapes

  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Abstract

PURPOSE:To obtain a semiconductor device having excellent thermal impact resistance and moisture resistance by providing steps of sealing a bump with first resin composition, and covering the first composition with second resin composition containing solvent while holding a state connected to an insulating board. CONSTITUTION:A method of manufacturing a semiconductor device having an insulating board 13, a semiconductor element 11 face down-connected to wirings 14 formed on the board 13 through a bump 12, and resin composition 15 for sealing the bump 12, has steps of sealing the bump 12 with the composition 15, and covering the composition 15 with second resin composition 16 containing solvent while holding a state connected to the board 13. For example, a gap between the element 11 and the board 13 is immersed with epoxy resin 15 containing no solvent as first resin composition in a semicured state. Then, phenol curable epoxy resin 16 is used as the second composition, and the resins 15, 16 are, after the resin 15 is so covered as not to be exposed, simultaneously primarily cured.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、絶縁基板と半導体素子とがフリップチップ方
式で接続された半導体装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a method of manufacturing a semiconductor device in which an insulating substrate and a semiconductor element are connected by a flip-chip method.

(従来の技術) 近年、半導体集積回路技術の進歩により、端子数が10
0を越える半導体素子やパッドピッチが100μm以下
の半導体素子が出現してきている。それに伴い半導体素
子の実装密度を高めるために、組立て時に電極の数に依
存せず、−度にボンディングが可能でチップの実装が極
めて小容積にできる、フリップチップ方式、ビームリー
ド方式、テープキャリヤ方式等のワイアレスボンディン
グが注目されている。特にフリップチップ方式は他の方
式のものよりボンディング強度が強く、信頼性が高いの
で期待されている。
(Conventional technology) In recent years, with advances in semiconductor integrated circuit technology, the number of terminals has increased to 10.
Semiconductor devices with a pad pitch of more than 0 and semiconductor devices with a pad pitch of 100 μm or less are emerging. Accordingly, in order to increase the packaging density of semiconductor elements, flip-chip, beam lead, and tape carrier methods are used, which do not depend on the number of electrodes during assembly and allow for one-time bonding, making it possible to package chips in an extremely small volume. Wireless bonding is attracting attention. In particular, the flip-chip method is expected to have stronger bonding strength and higher reliability than other methods.

第5図にはフリップチップ方式を用いた従来の半導体装
置の一例が示されている。
FIG. 5 shows an example of a conventional semiconductor device using the flip-chip method.

半導体素子1にはPb−8n等の半田バンプ2が形成さ
れている。そしてバンプ2と、絶縁基板3に設けられた
配線4とが相対向して接合している。このように構成さ
れた半導体装置では、半導体素子1と絶縁基板3との接
合部であるバンプ2の接点柔軟度が低く、半導体素子1
と絶縁基板3との熱膨張係数の不一致からバンプ2に熱
歪みが生じ易いので接合不良が発生したり、最悪の場合
には疲労破壊するという問題があった。
Solder bumps 2 made of Pb-8n or the like are formed on the semiconductor element 1 . The bump 2 and the wiring 4 provided on the insulating substrate 3 are bonded to face each other. In the semiconductor device configured in this way, the contact flexibility of the bumps 2, which are the joints between the semiconductor element 1 and the insulating substrate 3, is low, and the semiconductor element 1
Because of the mismatch in thermal expansion coefficients between the bumps 2 and the insulating substrate 3, thermal strain tends to occur in the bumps 2, resulting in poor bonding and, in the worst case, fatigue failure.

そこで、第6図に示すように絶縁基板3と半導体素子1
との間の隙間に保護用の樹脂5を充填してバンプ2を補
強する半導体装置が考え出された。
Therefore, as shown in FIG. 6, the insulating substrate 3 and the semiconductor element 1 are
A semiconductor device has been devised in which the bumps 2 are reinforced by filling the gaps between them with a protective resin 5.

このような半導体装置では、絶縁基板3と半導体素子1
との間の隙間が狭いので、樹脂5を隙間に充填するため
に、樹脂5の粘度を低くする必要があった。
In such a semiconductor device, an insulating substrate 3 and a semiconductor element 1
Since the gap between the two is narrow, it was necessary to lower the viscosity of the resin 5 in order to fill the gap with the resin 5.

粘度を低くするには樹脂5の充填剤の含有量を減らせば
よい。しかしながらこのような樹脂5でバンプ2を封止
すると、樹脂5の充填材の含有量が減った結果、樹脂5
と絶縁基板3との熱膨張係数の差、樹脂5と半導体素子
1との熱膨張係数の差が大きくなり、熱ストレスに弱く
なり信頼性が低下する。たとえば、多量の樹脂5を用い
てバンプ2を封止した半導体装置に熱衝撃試験を行った
ところ、樹脂5やバンプ2に亀裂が入るという結果を招
いた。また、熱衝撃試験でバンプ2に亀裂が入らない程
度の量の樹脂5を用いてバンプ2を封止した半導体装置
では、封止性が悪くなり信頼性が低下する。たとえば、
高温高湿試験を行ったところ、樹脂5内に水分が容易に
浸入した。
In order to lower the viscosity, the filler content of the resin 5 may be reduced. However, when the bump 2 is sealed with such a resin 5, the content of the filler in the resin 5 is reduced, and as a result, the resin 5
The difference in the coefficient of thermal expansion between the resin 5 and the insulating substrate 3 and the difference in the coefficient of thermal expansion between the resin 5 and the semiconductor element 1 become large, which makes them susceptible to thermal stress and reduces reliability. For example, when a thermal shock test was conducted on a semiconductor device in which bumps 2 were sealed using a large amount of resin 5, cracks appeared in the resin 5 and the bumps 2. Furthermore, in a semiconductor device in which the bumps 2 are sealed using an amount of resin 5 that does not cause cracks in the bumps 2 in a thermal shock test, the sealing performance deteriorates and the reliability decreases. for example,
When a high temperature and high humidity test was conducted, moisture easily penetrated into the resin 5.

また、樹脂5に溶剤を混合しても粘度を低くすることが
できる。しかしながらこのような樹脂5でバンプ2を封
止すると、絶縁基板3と半導体素子1との間の隙間が狭
いので、樹脂5が硬化するときに溶剤が完全に揮発しな
かったり、溶媒が揮発するときの発砲により接続不良が
生じたり、または溶剤が揮発するときに発生したボイド
が完全に消滅せず、これが原因して樹脂5中に水浸入路
が形成され、装置の信頼性が低下するという問題があっ
た。とくに高温高湿に対する信頼性が悪かった。
Furthermore, the viscosity can also be lowered by mixing a solvent with the resin 5. However, when the bumps 2 are sealed with such resin 5, the gap between the insulating substrate 3 and the semiconductor element 1 is narrow, so the solvent may not completely evaporate when the resin 5 hardens, or the solvent may evaporate. It is said that poor connections may occur due to firing during the process, or voids generated when the solvent evaporates are not completely eliminated, resulting in the formation of water infiltration paths in the resin 5, reducing the reliability of the device. There was a problem. In particular, reliability under high temperature and high humidity was poor.

(発明が解決しようとする課題) 上述の如くバンプを樹脂で封止するには、樹脂の粘度を
下げる必要があった。そのために充填剤の含有量が少な
い樹脂でバンプを封止した半導体装置があったが、この
ような半導体装置では樹脂と絶縁基板及び半導体素子と
のそれぞれの熱膨張係数の差が大きいので熱ストレスに
弱く、亀裂が生じ易くなり、信頼性が低下するという問
題があった。また、溶剤が混合した樹脂でバンプを封止
した半導体装置もあったが、このような半導体装置では
溶剤が揮発する際に生じる発砲による断線や、□樹脂内
に残ったボイドに起因する水分浸入により信頼性が低下
するという問題があった。
(Problems to be Solved by the Invention) In order to seal the bumps with resin as described above, it was necessary to lower the viscosity of the resin. For this reason, there have been semiconductor devices in which the bumps are sealed with resin that contains a small amount of filler, but such semiconductor devices suffer from thermal stress due to the large difference in coefficient of thermal expansion between the resin, the insulating substrate, and the semiconductor element. However, there were problems in that it was susceptible to cracking and was prone to cracking, reducing reliability. In addition, some semiconductor devices have sealed bumps with a resin mixed with a solvent, but such semiconductor devices suffer from wire breakage due to gunshots that occur when the solvent evaporates, and moisture intrusion due to voids remaining in the resin. There was a problem that reliability deteriorated.

本発明は、上記事情を考慮してなされたもので、その目
的とするところは、耐熱衝撃性、耐湿性に優れた半導体
装置の製造方法を提供することにある。
The present invention has been made in consideration of the above circumstances, and an object thereof is to provide a method for manufacturing a semiconductor device having excellent thermal shock resistance and moisture resistance.

[発明の構成] (課題を解決するための手段) 上記の目的を達成するために、本発明の半導体装置の製
造方法は、絶縁基板と、この絶縁基板に形成された配線
にバンプを介してフェイスダウンに接続された半導体素
子と、前記バンプを封止する樹脂組成物とを有する半導
体装置の製造方法において、第1の樹脂組成物で前記バ
ンプを封止する工程と、前記絶縁基板に接合に保ちつつ
前記第1の樹脂組成物を溶剤を含む第2の樹脂組成物で
覆う工程とを有することを特徴とする。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, the method for manufacturing a semiconductor device of the present invention includes an insulating substrate and a wiring formed on the insulating substrate through bumps. A method for manufacturing a semiconductor device having a semiconductor element connected face-down and a resin composition for sealing the bumps, comprising: sealing the bumps with a first resin composition; and bonding to the insulating substrate. and covering the first resin composition with a second resin composition containing a solvent while maintaining the same.

(作用) 本発明によれば、バンプを封止している第1の樹脂組成
物を第2の樹脂組成物で覆ったので、第1の樹脂組成物
自身または第1の樹脂組成物と絶縁基板との界面から浸
入する水分等を防止できる。また、第2の樹脂組成物は
溶剤を含むので硬化する際に比重の重い充填剤が沈降し
、絶縁基板付近での充填剤の濃度が高くなる。その結果
、第2の樹脂組成物と絶縁基板との界面から浸入する水
分等を防止でき、また、絶縁基板と第2の樹脂組成物と
の界面近傍での熱膨張係数の差が小さくなるので剥離、
亀裂が発生し難くなる。さらに溶剤により第1の樹脂組
成物と第2の゛樹脂組成物とが溶着するので第1の樹脂
組成物と第2の樹脂組成物との密管強度が強まる。
(Function) According to the present invention, since the first resin composition sealing the bump is covered with the second resin composition, the first resin composition is insulated from itself or from the first resin composition. It is possible to prevent moisture and the like from entering from the interface with the substrate. Moreover, since the second resin composition contains a solvent, the filler with a heavy specific gravity settles when it is cured, and the concentration of the filler near the insulating substrate becomes high. As a result, it is possible to prevent moisture from entering from the interface between the second resin composition and the insulating substrate, and the difference in thermal expansion coefficient near the interface between the insulating substrate and the second resin composition is reduced. Peeling,
Cracks are less likely to occur. Further, since the first resin composition and the second resin composition are welded together by the solvent, the strength of the sealed tube between the first resin composition and the second resin composition is increased.

(実施例) 以下、図面を参照しながら実施例を説明をする。(Example) Hereinafter, embodiments will be described with reference to the drawings.

第1図は本発明の第1の実施例に係る半導体装置の断面
図を示し、第2図は同半導体装置の平面図を示している
。なお、第1図は第2図の半導体装置のA−A線に沿っ
た断面図である。
FIG. 1 shows a sectional view of a semiconductor device according to a first embodiment of the present invention, and FIG. 2 shows a plan view of the same semiconductor device. Note that FIG. 1 is a cross-sectional view of the semiconductor device of FIG. 2 taken along line A-A.

これを製造工程に従い説明すると、最初、半導体素子1
1の電極、すなわちアルミポンディングパッド上に、銅
バンプをコアとし、電気メツキにより半日]バンプ12
を形成する。次に、厚さ1mm程度の無アルカリガラス
からなる絶縁基板13上に、I T O(1ndiua
+ Tin 0xlde) 、クロム、金をそれぞれ厚
さ1000人、1000人。
To explain this according to the manufacturing process, first, the semiconductor element 1
1 electrode, that is, on the aluminum bonding pad, with a copper bump as the core, and electroplated for half a day] Bump 12
form. Next, an ITO (1 ndiua
+ Tin 0xlde), chromium, and gold with thicknesses of 1000 and 1000, respectively.

2000人程度に蒸着し、この金属積層膜をパタニング
して配線14を形成する。
A layer of about 2,000 layers is deposited, and this metal laminated film is patterned to form the wiring 14.

次に、バンプ12と配線14との位置合わせを行い、半
導体素子11と絶縁基板13とをフェイスダウンで接合
する。このときの位置合わせの方法として、半導体素子
11と絶縁基板13とにそれぞれ位置合わせ用のマーク
を設け、対応するマーク同士を一致させることにより位
置合わせしてもよい。
Next, the bumps 12 and the wiring 14 are aligned, and the semiconductor element 11 and the insulating substrate 13 are bonded face down. As a method for alignment at this time, alignment marks may be provided on each of the semiconductor element 11 and the insulating substrate 13, and alignment may be performed by matching the corresponding marks.

次に、半導体素子11と絶縁基板13との間の隙間に、
第1の樹脂組成物として例えば、溶剤を含まないエポキ
シ樹脂15を含浸する。そして、エポキシ樹脂15が半
導体素子11と絶縁基板13との間の隙間を埋めてバン
プ12を封止したら、所定の硬化条件よりも緩やかな条
件でエポキシ樹脂15を硬化させ半硬化状態に保つ。
Next, in the gap between the semiconductor element 11 and the insulating substrate 13,
For example, an epoxy resin 15 containing no solvent is impregnated as the first resin composition. After the epoxy resin 15 fills the gap between the semiconductor element 11 and the insulating substrate 13 and seals the bumps 12, the epoxy resin 15 is cured under milder conditions than the predetermined curing conditions and maintained in a semi-cured state.

次に第2の樹脂組成物としてフェノール硬化エポキシ樹
脂16を用いて、エポキシ樹Ni15が露出しないよう
に覆う。このとき第1図、第2図に示すように、フェノ
ール硬化エポキシ樹脂16が半導体素子11の裏面を覆
い半導体素子11を保護すると共に、フェノール硬化エ
ポキシ樹脂16と半導体素子11及び絶縁基板13との
密着強度を強め、半導体素子11と絶縁基板との接続を
強固なものとする。
Next, a phenol-cured epoxy resin 16 is used as a second resin composition to cover the epoxy resin Ni 15 so that it is not exposed. At this time, as shown in FIGS. 1 and 2, the phenol-cured epoxy resin 16 covers the back surface of the semiconductor element 11 and protects the semiconductor element 11, and also connects the phenol-cured epoxy resin 16, the semiconductor element 11, and the insulating substrate 13. The adhesion strength is strengthened and the connection between the semiconductor element 11 and the insulating substrate is strengthened.

この後、エポキシ樹脂15.16を同時に本硬化して半
導体素子11及び絶縁基板13との接合が完成する。こ
こで、エポキシ樹脂15を半硬化状態にし、このエポキ
シ樹脂15をフェノール硬化エポキシ樹脂16で覆い、
両エポキシ樹脂15゜16を同時に硬化する方法を採用
したのは、この方法が最もエポキシ樹脂15.16間の
密着性が良くなるからである。
Thereafter, the epoxy resins 15 and 16 are simultaneously fully cured to complete the bonding between the semiconductor element 11 and the insulating substrate 13. Here, the epoxy resin 15 is brought into a semi-cured state, and the epoxy resin 15 is covered with a phenol-cured epoxy resin 16.
The method of curing both epoxy resins 15 and 16 at the same time was adopted because this method provides the best adhesion between the epoxy resins 15 and 16.

上述したフェノール硬化エポキシ樹脂16として第1表
に示したものが使用できる。例えば、住友化学社製の多
官能エポキシ樹脂(ESX−221)、昭和高分子社製
のフェノール樹脂(BRG−556)、東芝セラミック
社製のシリカ充填材、UCC社製のシランカップリン剤
、三菱化成社製のカーボンブラック、四国化成社製のイ
ミダゾール系触媒、一般市販の酢酸セロソルブ。
As the above-mentioned phenol-cured epoxy resin 16, those shown in Table 1 can be used. For example, polyfunctional epoxy resin (ESX-221) manufactured by Sumitomo Chemical Co., Ltd., phenol resin (BRG-556) manufactured by Showa Kobunshi Co., Ltd., silica filler manufactured by Toshiba Ceramic Co., Ltd., silane coupling agent manufactured by UCC Company, Mitsubishi Chemical Co., Ltd. Carbon black manufactured by Kasei Co., Ltd., imidazole catalyst manufactured by Shikoku Kasei Co., Ltd., and commercially available cellosolve acetate.

) ルエ>、 M E ICをそれぞtL13.2.6
.0゜80.0,0.5,0.3,0.1,6.0゜6
.0,6.0重量部で組成したもの用いる。
) Rue>, M E IC respectively tL13.2.6
.. 0゜80.0, 0.5, 0.3, 0.1, 6.0゜6
.. A composition containing 0.6.0 parts by weight is used.

このようにして製造された半導体装置では、バンプ12
を封止したエポキシ樹脂15がフェノール硬化エポキシ
樹脂16により覆われているので、エポキシ樹脂15と
バンプ12の界面から浸入する水分等を防止できる。ま
た、エポキシ樹脂16は溶剤を含むので傾斜材料の役割
を果たすため、エポキシ樹脂16中の組成物に浮沈が生
じ、硬化する際に比重のff1−)充填剤が沈降し、絶
縁基板13とエポキシ樹脂16との接合面近傍で充填剤
の濃度が高くなる。その結果、絶縁基板13とエポキシ
樹脂16との接合面に水分等が入し難くなり、耐湿性が
向上する。また充填剤と絶縁基板13との熱膨張係数の
差は小さいため、絶縁基板13に接合するエポキシ樹脂
1tの熱膨張係数が絶縁基板13のそれに近付き、剥離
や亀裂が生じ難くなり、耐熱衝撃性が向上する。またエ
ポキシ樹脂16に含まれる溶剤により、僅かであるが、
エポキシ樹脂15が溶かされ、溶着が生じ、エポキシ樹
脂15とエポキシ樹脂16との密着強度が強くなり信頼
性が向上する。
In the semiconductor device manufactured in this way, the bump 12
Since the epoxy resin 15 that has been sealed is covered with the phenol-cured epoxy resin 16, moisture and the like can be prevented from entering from the interface between the epoxy resin 15 and the bumps 12. In addition, since the epoxy resin 16 contains a solvent, it plays the role of a gradient material, so the composition in the epoxy resin 16 floats and sinks, and when it hardens, the filler with a specific gravity of ff1-) settles, and the insulating substrate 13 and the epoxy The concentration of the filler increases near the joint surface with the resin 16. As a result, it becomes difficult for moisture to enter the bonding surface between the insulating substrate 13 and the epoxy resin 16, and moisture resistance is improved. Furthermore, since the difference in thermal expansion coefficient between the filler and the insulating substrate 13 is small, the thermal expansion coefficient of the epoxy resin 1t bonded to the insulating substrate 13 approaches that of the insulating substrate 13, making it difficult for peeling and cracking to occur, and improving thermal shock resistance. will improve. Also, due to the solvent contained in the epoxy resin 16,
The epoxy resin 15 is melted, welding occurs, and the adhesion strength between the epoxy resin 15 and the epoxy resin 16 is increased, improving reliability.

本実施例のように、バンプ12を溶剤を含まない第1の
樹脂組成物で封止し、更にこの第1の樹脂組成物を溶剤
を含む第2の樹脂組成物で覆うことで、耐湿性、耐熱衝
撃性が改善され、信頼性の高い半導体装置を得ることが
できる。
As in this embodiment, by sealing the bump 12 with a first resin composition that does not contain a solvent, and further covering this first resin composition with a second resin composition that contains a solvent, moisture resistance is achieved. , it is possible to obtain a highly reliable semiconductor device with improved thermal shock resistance.

なお、本実施例では半硬化状態のエポキシ樹脂15をフ
ェノール硬化エポキシ樹脂16で覆った後、両エポキシ
樹脂15.16を同時に硬化させたが、必要に応じて、
例えば製品形態や仕様状況に合わせて、所定の硬化条件
で硬化させたエポキシ樹脂15をエポキシ樹脂16で覆
ってもよい。
In this example, after covering the semi-cured epoxy resin 15 with the phenol-cured epoxy resin 16, both epoxy resins 15 and 16 were cured at the same time.
For example, the epoxy resin 15 cured under predetermined curing conditions may be covered with the epoxy resin 16 depending on the product form and specifications.

逆に、半導体素子11と絶縁基板13との間の隙間に含
浸した直後のエポキシ樹脂15、すなわちほとんど硬化
してない状態でエポキシ樹脂15をエポキシ樹脂16が
覆い、両エポキシ樹脂15゜16を同時に硬化させても
よい。
Conversely, the epoxy resin 16 covers the epoxy resin 15 that has just been impregnated into the gap between the semiconductor element 11 and the insulating substrate 13, that is, the epoxy resin 15 is hardly cured, and both epoxy resins 15 and 16 are simultaneously coated. It may be hardened.

第3図には本発明の第2の実施例に係る半導体装置の断
面図が示されている。なお、第1図と同一部分には同一
符号を付して詳しい説明は省略する。
FIG. 3 shows a cross-sectional view of a semiconductor device according to a second embodiment of the invention. Note that the same parts as in FIG. 1 are given the same reference numerals and detailed explanations will be omitted.

この実施例が先に説明した実施例と異なる点は、フェノ
ール硬化エポキシ樹脂16aが半導体素子11の裏面を
覆わないで、溶剤を含まないエポキシ樹脂15を封止し
たことにある。このようにして製造された半導体装置で
は、半導体素子11がエポキシ樹脂16aにより保護さ
れず露出するが、耐環境試験の結果は第1の実施例のそ
れと較べても遜色なく、信頼性が向上したのを確認した
This embodiment differs from the previously described embodiments in that the phenol-cured epoxy resin 16a does not cover the back surface of the semiconductor element 11, but instead encapsulates the epoxy resin 15 that does not contain a solvent. In the semiconductor device manufactured in this way, the semiconductor element 11 is not protected by the epoxy resin 16a and is exposed, but the results of the environmental resistance test are comparable to those of the first embodiment, and the reliability is improved. I confirmed that.

第4図に本発明の第3の実施例に係る半導体装置の断面
図を示す。なお、第1図と同一部分には同一符号を付し
て詳しい説明は省略する。
FIG. 4 shows a cross-sectional view of a semiconductor device according to a third embodiment of the present invention. Note that the same parts as in FIG. 1 are given the same reference numerals and detailed explanations will be omitted.

この実施例が第1.第2の実施例と異なる点は、半導体
素子11と絶縁基板13との間の隙間をエポキシ樹脂1
5で完全に埋めていないことにある。
This example is the first example. The difference from the second embodiment is that the gap between the semiconductor element 11 and the insulating substrate 13 is filled with epoxy resin 1.
The reason is that the number 5 is not completely filled in.

すなわちエポキシ樹脂15aは、バンプ12を封止する
のに必要な部分だけ半導体素子11と絶縁基板13との
間の隙間を埋めている。
That is, the epoxy resin 15a fills the gap between the semiconductor element 11 and the insulating substrate 13 only in the portion necessary to seal the bump 12.

この実施例では、中央部分に空気が存在しているが、こ
れにより信頼性が損なわれることはなく、先の実施例と
同様の効果が得られた。
In this example, although air is present in the central portion, this does not impair reliability, and the same effects as in the previous example were obtained.

本発明者等は、第1図、第3図、第4図に示される構成
の半導体装置と、第6図に示される構成の半導体装置と
の耐環境性を実際の装置を用いて調べてみた。
The present inventors investigated the environmental resistance of the semiconductor devices having the configurations shown in FIGS. 1, 3, and 4 and the semiconductor device having the configuration shown in FIG. 6 using actual devices. saw.

一40〜100℃で1サイクル各30分の熱衝撃試験を
行ったところ、第1図、第3図、第4図に示される構成
の半導体装置の600サイクル後におけるそれぞれのバ
ンプ接合部分の抵抗は約1Ω以下であったが、第6図に
示される構成の半導体装置では300サイクルを経過し
ないうちに、樹脂5に亀裂が入り接続が取れなくなる部
分が生じた。
A thermal shock test was conducted at -40 to 100°C for 30 minutes each cycle, and the resistance of each bump bonding portion after 600 cycles of the semiconductor device with the configuration shown in Figures 1, 3, and 4 was found. was about 1 Ω or less, but in the semiconductor device having the configuration shown in FIG. 6, cracks appeared in the resin 5 and there were parts where the connection could not be established before 300 cycles had passed.

また、70℃、90%R,H,の高温高湿放置試験を行
ったところ、第1図、第3図、第4図に示される構成の
半導体装置の100OH後におけるそれぞれのバンプ接
合部分の抵抗は、約1Ω以下で安定であったが、第6図
に示される構成の半導体装置では、600Hでバンプ接
合部分に不良が生じた。
In addition, when we conducted a high temperature and high humidity storage test at 70°C and 90% R and H, we found that the bump bonding portions of the semiconductor devices having the configurations shown in Figs. 1, 3, and 4 after 100OH were Although the resistance was stable at about 1 Ω or less, in the semiconductor device having the configuration shown in FIG. 6, a defect occurred in the bump joint portion after 600 hours.

なお、本発明は上述した実施例に限定されるものではな
い。実施例では溶剤を含まない第1の樹脂組成物として
エポキシ系の樹脂を用いたが、アクリル系樹脂、シリコ
ーン系樹脂等を用いても同様の効果が得られる。要は、
半導体素子11と絶縁基板13との間の隙間に含浸可能
で、半導体素子11と絶縁基板13との間の隙間に充填
されてもほぼ一様に硬化可能な性質を有する溶剤を含ま
ない樹脂組成物であればよい。また、上記実施例では、
溶剤を含む第2の樹脂組成物としてエポキシ系の樹脂で
あるフェノール硬化エポキシ樹脂16を用いたが、アク
リル系樹脂、シリコーン系樹脂、ブタジェン系樹脂等を
用いても同様の効果が得られる。要は、傾斜材料となり
充填剤が沈降して耐湿性、耐熱衝撃性を向上させるもの
であればよい。
Note that the present invention is not limited to the embodiments described above. In the examples, an epoxy resin was used as the first resin composition that does not contain a solvent, but similar effects can be obtained by using an acrylic resin, a silicone resin, or the like. In short,
A solvent-free resin composition that can be impregnated into the gap between the semiconductor element 11 and the insulating substrate 13 and can be almost uniformly cured even when the gap between the semiconductor element 11 and the insulating substrate 13 is filled. It is fine as long as it is a thing. Furthermore, in the above embodiment,
Although phenol-cured epoxy resin 16, which is an epoxy resin, was used as the second resin composition containing a solvent, similar effects can be obtained by using acrylic resin, silicone resin, butadiene resin, or the like. In short, any material may be used as long as it becomes a gradient material in which the filler settles and improves moisture resistance and thermal shock resistance.

また、上記実施例では半導体素子11と絶縁基板13と
をバンプ12を介して接合させた後に、エポキシ樹脂1
5でバンプ12を封止したが、予め絶縁基板13上にエ
ポキシ樹脂15をポツティングして、半導体素子11と
絶縁基板13とを接合してもよい。この場合、配線14
とバンプとは絶縁性接着剤を介して接続されているので
、半田バンプ12のように接続用材料で構成されたバン
プを用いる必要がなくなるので、金、銅等のバンプ材料
を用いることが可能となる。また、第1の樹脂組成物と
してエポキシ系樹脂以外に、前述したアクリル系樹脂、
シリコン系樹脂等の樹脂を用いても同様の効果が得られ
るのは勿論のことである。
Further, in the above embodiment, after bonding the semiconductor element 11 and the insulating substrate 13 via the bumps 12, the epoxy resin 1
Although the bumps 12 are sealed in Step 5, the semiconductor element 11 and the insulating substrate 13 may be bonded by potting the epoxy resin 15 on the insulating substrate 13 in advance. In this case, the wiring 14
Since the and bumps are connected via an insulating adhesive, there is no need to use a bump made of a connection material like the solder bump 12, so bump materials such as gold or copper can be used. becomes. Moreover, as the first resin composition, in addition to the epoxy resin, the above-mentioned acrylic resin,
Of course, the same effect can be obtained by using a resin such as a silicone resin.

また、無アルカリガラス以外の絶縁基板13の材料とし
て、セラミック、ガラスエポキシ、金属コア、ポリイミ
ドまたは紙フエノール等を用いてもよい。また、ITO
,クロム、金の積層膜以外の配線14の材料としては、
ニッケル、銅、チタン、ITO,クロム、アルミニウム
、モリブデン。
Further, as a material for the insulating substrate 13 other than alkali-free glass, ceramic, glass epoxy, metal core, polyimide, paper phenol, or the like may be used. Also, ITO
Materials for the wiring 14 other than the laminated film of , chromium, and gold include:
Nickel, copper, titanium, ITO, chromium, aluminum, molybdenum.

タンタル、タングステン、金、銀、バラジュウムあるい
はこれら配線材料を複数組合わせたものを用いてもよい
Tantalum, tungsten, gold, silver, baradium, or a combination of these wiring materials may be used.

なお、上記実施例では銅バンプをコアとし、電気メツキ
を用いて半田バンプ12を形成したが、コアの金属は必
ずしも必要ではない。また、半田バンプ12を形成する
際、電気メツキを用いず、真空蒸着法を用いて半田バン
プ12を形成したり、溶融半田中に半導体素子11を浸
漬させて半田バンプ12を形成してもよい。さらにまた
、使用する製品や製造コニ程に応じて錫と鉛との割合を
変えたり、他の金属材料を用いて半田以外のバンプ材料
を用いてもよい。例えば、液晶表示装置等のように温度
条件が制約される製品には、インジウム。
In the above embodiment, the solder bumps 12 are formed using electroplating using a copper bump as the core, but the metal of the core is not necessarily required. Furthermore, when forming the solder bumps 12, the solder bumps 12 may be formed using a vacuum evaporation method without using electroplating, or the solder bumps 12 may be formed by immersing the semiconductor element 11 in molten solder. . Furthermore, the ratio of tin and lead may be changed depending on the product to be used and the manufacturing process, or other metal materials may be used for bump materials other than solder. For example, indium is used for products where temperature conditions are restricted, such as liquid crystal display devices.

ビスマス、カドニウム等の低融点の金属を用いてバンプ
を形成してもよい。また、バンプの耐腐食性を図りたい
場合には、銀、アンチモン等のバンプ材料を用いるとよ
い。その他、本発明の要旨を逸脱しない範囲で、種々変
形して実施できる。
The bumps may be formed using a metal with a low melting point such as bismuth or cadmium. Further, if it is desired to improve the corrosion resistance of the bump, it is preferable to use a bump material such as silver or antimony. In addition, various modifications can be made without departing from the gist of the present invention.

[発明の効果] 本発明によれば、樹脂に水分が浸入するのを防止でき耐
湿性が改善される。また、絶縁基板と樹脂との接合面で
の熱膨張率の差が小さくなるので耐熱衝撃性も改善され
る。その結果、耐環境性が向上し、信頼性の高い半導体
装置を得ることができる。
[Effects of the Invention] According to the present invention, it is possible to prevent moisture from entering the resin, and the moisture resistance is improved. Furthermore, since the difference in coefficient of thermal expansion at the bonding surface between the insulating substrate and the resin is reduced, thermal shock resistance is also improved. As a result, a semiconductor device with improved environmental resistance and high reliability can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例に係る半導体装置の断面
図、第2図は同半導体装置の平面図、第3図は本発明の
第2の実施例に係る半導体装置の断面図、第4図は本発
明の第3の実施例に係る半導体装置の断面図、第5.第
6図は従来の半導体装置の断面図である。 11・・・半導体素子、12・・・バンプ、13・・・
絶縁基板、14・・・配線、15,15a・・・エポキ
シ樹脂、16.168・・・フェノール硬化エポキシ樹
脂。 出願人代理人 弁理士 鈴江武彦 第2!1 第3図 第5図 第6図
FIG. 1 is a cross-sectional view of a semiconductor device according to a first embodiment of the present invention, FIG. 2 is a plan view of the same semiconductor device, and FIG. 3 is a cross-sectional view of a semiconductor device according to a second embodiment of the present invention. , FIG. 4 is a sectional view of a semiconductor device according to a third embodiment of the present invention, and FIG. FIG. 6 is a sectional view of a conventional semiconductor device. 11... Semiconductor element, 12... Bump, 13...
Insulating substrate, 14... Wiring, 15, 15a... Epoxy resin, 16.168... Phenol-cured epoxy resin. Applicant's agent Patent attorney Takehiko Suzue No. 2!1 Figure 3 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims]  絶縁基板と、この絶縁基板に形成された配線にバンプ
を介してフェイスダウンに接続された半導体素子と、前
記バンプを封止する樹脂組成物とを有する半導体装置の
製造方法において、第1の樹脂組成物で前記バンプを封
止する工程と、前記絶縁基板に接合した状態を保ちつつ
前記第1の樹脂組成物を溶剤を含む第2の樹脂組成物で
覆う工程とを有することを特徴とする半導体装置の製造
方法。
A method for manufacturing a semiconductor device comprising: an insulating substrate; a semiconductor element connected face-down to wiring formed on the insulating substrate via bumps; and a resin composition for sealing the bumps. It is characterized by comprising the steps of: sealing the bump with a composition; and covering the first resin composition with a second resin composition containing a solvent while maintaining the state bonded to the insulating substrate. A method for manufacturing a semiconductor device.
JP2204541A 1990-08-01 1990-08-01 Method for manufacturing semiconductor device Expired - Fee Related JP2892117B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2204541A JP2892117B2 (en) 1990-08-01 1990-08-01 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2204541A JP2892117B2 (en) 1990-08-01 1990-08-01 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH0491443A true JPH0491443A (en) 1992-03-24
JP2892117B2 JP2892117B2 (en) 1999-05-17

Family

ID=16492233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2204541A Expired - Fee Related JP2892117B2 (en) 1990-08-01 1990-08-01 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2892117B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5659952A (en) * 1994-09-20 1997-08-26 Tessera, Inc. Method of fabricating compliant interface for semiconductor chip
US5915170A (en) * 1994-09-20 1999-06-22 Tessera, Inc. Multiple part compliant interface for packaging of a semiconductor chip and method therefor
JPH11251343A (en) * 1998-02-27 1999-09-17 Nec Corp Resin sealing structure for device and sealing method
US6046076A (en) * 1994-12-29 2000-04-04 Tessera, Inc. Vacuum dispense method for dispensing an encapsulant and machine therefor
US6169328B1 (en) 1994-09-20 2001-01-02 Tessera, Inc Semiconductor chip assembly
US6686015B2 (en) 1996-12-13 2004-02-03 Tessera, Inc. Transferable resilient element for packaging of a semiconductor chip and method therefor
US6870272B2 (en) 1994-09-20 2005-03-22 Tessera, Inc. Methods of making microelectronic assemblies including compliant interfaces
US7112879B2 (en) 1995-10-31 2006-09-26 Tessera, Inc. Microelectronic assemblies having compliant layers
WO2012131800A1 (en) * 2011-03-31 2012-10-04 Necエナジーデバイス株式会社 Battery pack and electric bicycle

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6525429B1 (en) 1994-09-20 2003-02-25 Tessera, Inc. Methods of making microelectronic assemblies including compliant interfaces
US5915170A (en) * 1994-09-20 1999-06-22 Tessera, Inc. Multiple part compliant interface for packaging of a semiconductor chip and method therefor
US6870272B2 (en) 1994-09-20 2005-03-22 Tessera, Inc. Methods of making microelectronic assemblies including compliant interfaces
US6723584B2 (en) 1994-09-20 2004-04-20 Tessera, Inc. Methods of making microelectronic assemblies including compliant interfaces
US5659952A (en) * 1994-09-20 1997-08-26 Tessera, Inc. Method of fabricating compliant interface for semiconductor chip
US6133639A (en) * 1994-09-20 2000-10-17 Tessera, Inc. Compliant interface for semiconductor chip and method therefor
US6169328B1 (en) 1994-09-20 2001-01-02 Tessera, Inc Semiconductor chip assembly
US6521480B1 (en) 1994-09-20 2003-02-18 Tessera, Inc. Method for making a semiconductor chip package
US6126428A (en) * 1994-12-29 2000-10-03 Tessera, Inc. Vacuum dispense apparatus for dispensing an encapsulant
US6046076A (en) * 1994-12-29 2000-04-04 Tessera, Inc. Vacuum dispense method for dispensing an encapsulant and machine therefor
US7112879B2 (en) 1995-10-31 2006-09-26 Tessera, Inc. Microelectronic assemblies having compliant layers
US6686015B2 (en) 1996-12-13 2004-02-03 Tessera, Inc. Transferable resilient element for packaging of a semiconductor chip and method therefor
JPH11251343A (en) * 1998-02-27 1999-09-17 Nec Corp Resin sealing structure for device and sealing method
WO2012131800A1 (en) * 2011-03-31 2012-10-04 Necエナジーデバイス株式会社 Battery pack and electric bicycle
JP2012212599A (en) * 2011-03-31 2012-11-01 Nec Energy Devices Ltd Battery pack, and power-assisted bicycle
US9287591B2 (en) 2011-03-31 2016-03-15 Nec Energy Devices, Ltd. Battery pack with protective circuit board and electric bicycle including the battery pack

Also Published As

Publication number Publication date
JP2892117B2 (en) 1999-05-17

Similar Documents

Publication Publication Date Title
JP3648277B2 (en) Semiconductor device
US6373142B1 (en) Method of adding filler into a non-filled underfill system by using a highly filled fillet
KR100236448B1 (en) Electrode structure for semiconductor device, method for forming the same, and mounted body including semiconductor device
US6118183A (en) Semiconductor device, manufacturing method thereof, and insulating substrate for same
JPH09246321A (en) Semiconductor unit and its formation
TW200930190A (en) Module, curcuit board and method of manufacturing module
EP0340492A2 (en) Conformal sealing and interplanar encapsulation of electronic device structures
JP2786734B2 (en) Semiconductor device
JPH0491443A (en) Manufacture of semiconductor device
JP2000022286A (en) Electronic circuit device
JP2930186B2 (en) Semiconductor device mounting method and semiconductor device mounted body
JP3356649B2 (en) Semiconductor device and manufacturing method thereof
JP2002270732A (en) Electronic component with underfill material
JPH0831870A (en) Semiconductor device
JP2637684B2 (en) Semiconductor device sealing method
JP2721790B2 (en) Semiconductor device sealing method
JP2008189760A (en) Underfill agent, semiconductor device obtained by using the same and method for producing the semiconductor device
JP3260249B2 (en) Semiconductor device mounting method and its mounting body
JP2914569B1 (en) Semiconductor device mounting method and its mounting body
JP2965496B2 (en) Semiconductor unit and semiconductor element mounting method
JPH0992654A (en) Electrode structure of semiconductor device, its forming method, mounting body of semiconductor device, and semiconductor device
JP3951903B2 (en) Semiconductor device and method for manufacturing semiconductor device package
JPS60120588A (en) Printed circuit board
JP2004134821A (en) Semiconductor apparatus
JP2009117427A (en) Semiconductor device and method of manufacturing the same

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080226

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090226

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees