JPH0489326A - 光学ガラス成形体とその製造方法とその製造装置 - Google Patents

光学ガラス成形体とその製造方法とその製造装置

Info

Publication number
JPH0489326A
JPH0489326A JP20327090A JP20327090A JPH0489326A JP H0489326 A JPH0489326 A JP H0489326A JP 20327090 A JP20327090 A JP 20327090A JP 20327090 A JP20327090 A JP 20327090A JP H0489326 A JPH0489326 A JP H0489326A
Authority
JP
Japan
Prior art keywords
optical glass
molded body
processing jig
optical
press
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20327090A
Other languages
English (en)
Inventor
Hideto Monju
秀人 文字
Masaaki Haruhara
正明 春原
Tadataka Yonemoto
米本 忠孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP20327090A priority Critical patent/JPH0489326A/ja
Publication of JPH0489326A publication Critical patent/JPH0489326A/ja
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B29/00Reheating glass products for softening or fusing their surfaces; Fire-polishing; Fusing of margins
    • C03B29/02Reheating glass products for softening or fusing their surfaces; Fire-polishing; Fusing of margins in a discontinuous way

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、レンズやプリズム等の高精度な光学ガラス素
子のリヒートプレス成形用素材である光学ガラス成形体
およびその製造方法とその製造装置に関する。
従来の技術 近年、光学ガラスレンズは光学機器のレンズ構成の簡略
化とレンズ部分の軽量化の両方を同時に達成しうる非球
面化の方向にある。この非球面レンズの製造にあたって
は、従来の光学レンズの製造方法である研磨法では、加
工および量産化が困難であり、金型を用いた成形法が有
望視されている。
この金型を用いた成形法というのは、予め所望の面品質
および面精度に仕上げた金型上に水酸化アルミニウム、
炭酸マグネンウム、カーボン等の離型剤を塗布あるいは
被覆した状態で、光学ガラスの塊状物を加熱成形するか
、あるいは熔融状態の光学ガラスの塊状物を加熱成形を
行なう方法である(例えば、特公昭54−60312号
公報)。
発明が解決しようとする課題 非球面レンズ、プリズム等の光学ガラス素子の場合、表
面に各種欠陥がないことあるいは離型剤の付着のないこ
と、鏡面と同程度の面粗度であること、およびサブミク
ロンオーダーの面精度であることが要求されるため、光
学ガラス素子および前記光学ガラス素子のリヒートプレ
ス成形用素材の光学ガラス成形体は非常に高価なものに
なっていた。
すなわち光学ガラス成形体の表面に欠陥がない状態(例
えば表面粗さRMSで0.005ミクロン以下の鏡面状
態)にするために、研磨または工。
チング処理を施す必要があり光学ガラス成形体が高価な
ものになっており、低コストで高精度な光学ガラス成形
体が製造できる方法の開発が強く望まれていた。
課題を解決するための手段 本発明は前記課題を解決するために、−面は自由表面で
あり、他面は部分的に熱加工治具の成形面の転写面であ
りかつその他の部分は自由表面である光学ガラス成形体
、及び冷却した熱加工治具にガラス塊を載置した状態で
、ガラス塊を加熱する光学ガラス成形体の製造方法、及
び内部を貫通する冷却経路を設けた熱加工治具を冷却す
る冷却手段と、ガラス塊を載置した熱加工治具及びガラ
ス塊を加熱する加熱手段とを備えた光学ガラス成形体の
製造装置とを提供するものである。
作用 ガラス塊を高温で加熱すると、ガラス塊は熱変形して鏡
面状態の自由面を形成する。しかしながら高温に加熱し
たガラス塊は化学的に極めて活性な状態にあるため、熱
加工治具に非常に大きなダメージを与え、光学ガラスと
反応あるいは融着する。冷却した熱加工治具にガラス塊
を載置した状態で、ガラス塊を加熱すると、熱加工治具
と接触しない面は熱変形して鏡面状態の自由表面であり
、熱加工治具と接触した面は熱加工治具の成形面の転写
面でありかつその他の部分は自由表面である光学ガラス
成形体になる。
例えばガラス塊が平板を研磨した研磨品、熱加工治具の
成形面と周状に接触するためその部分だけが熱加工治具
の成形面の転写面を形成し、それ以外の場所は熱変形し
て鏡面状態の自由表面になる。さらに熱変形が進むとガ
ラス塊の中央部が軟化して垂れはしめて自由表面が熱加
工治具と接触する。その結果、最初周状に接触していた
部分は浮いた状態になり、今度はこの部分が熱変形して
鏡面状態の自由表面になる。また、ガラス塊が熔融ガラ
スから製造したゴブ品の場合、表面にオレンジマークと
呼ばれるしわ状の大きな欠陥が存在しても、熱加工治具
としわ状の欠陥とが点接触するためその部分だけが熱加
工治具の成形面の転写面を形成し、それ以外の場所は熱
変形して鏡面状態の自由表面になる。さらに熱変形が進
むと前述の自由表面が熱加工治具と接触し、最初点接触
した部分が浮いた状態になり、今度はこの部分が熱変形
して鏡面状態の自由表面になる。その結果、−面は自由
表面であり、他面は部分的に熱加工治具の成形面の転写
面でありかつその他の部分は自由表面である光学ガラス
成形体を得ることができさらにこの光学ガラス成形体を
高精度な形状及び鏡面に加工したプレス成形用金型で加
熱加圧成形することにより、表面に欠陥のない光学ガラ
ス素子を製造することができる。
実施例 以下に本発明の一実施例を詳細に示す。
第1図は本発明によって得られる光学ガラス成形体の断
面図、第2図は内部を貫通する冷却経路を設けた熱加工
治具にガラス塊を載置していることを示す断面図、第3
図は熱加工治具に載置したガラス塊を加熱する光学ガラ
ス成形体の製造装置を示す断面図、第4回はゴブ品が熱
加工治具上で熱変形する過程を示す断面図、第5図は研
磨品が熱加工治具上で熱変形する過程を示す断面図、第
6図は光学ガラス成形体のプレス成形を示す断面図であ
る。
実施例1 熱加工治具6としてグラノシーカーボンを使用し、曲率
半径が15胴の凹形の成形面4に加工し、第2図のよう
に成形面4の下に内径7閣の冷却用の貫通穴5をあけた
。プレス成形用金型2021として、超硬合金(WC−
57i C−8Co)を曲率半径が20ffi111の
鏡面の凹金型にしスパッタ法で白金−イリジウム−オス
ミウム合金(PtIr−Os)の薄膜を形成した。
ガラス塊7は、シリカ(Si02)30重量パーセント
、酸化バリウム(Bad)50重量パーセントホホウ酸
B203)15重量パーセント、残部が微量成分からな
るホウケイ酸バリウムガラスのゴブ品約3グラムを用い
た。
第3図に示した光学ガラス成形体の製造装置は、全体を
断熱壁12で覆い、ヒータ15でガラス塊7を加熱し、
熱加工治具6の冷却用の貫通穴5に冷却用パイプ11を
接続して熱加工治具6を水冷するとともに、冷却用パイ
プ11を移動させてガラス塊の供給、加熱、冷却、取り
出しを行う。シャッター10の開閉てヒータ15の熱お
よびガス導入口13から導入した雰囲気形成のガスを遮
断しながらガラス塊の供給、取り出しを行う。
第3図の光学ガラス成形体の製造装置において、ガス導
入口13とガス排出口14により窒素ガス20リツタ一
/分、水素ガス2リッター/分の割合で混合した雰囲気
と、ヒータ15により750°Cに保持した。第4図(
a)のように大きなオレンジマークを有したガラス塊7
を熱加工治具6に載置し、熱加工治具6を素早く装置内
に供給した。装置内で5分間加熱した後素早(取り出し
たガラス塊7を観察すると、第4図(b)のようにわず
かにオレンジマークの痕が残っていた。さらに装置内で
5分間(合計10分)加熱した後素早く取り出したガラ
ス塊3を観察すると、第4図(C)のようにオレンジマ
ークの痕がなくなっており、第1図のように上面は自由
表面1であり、下面は部分的に熱加工治具の成形面4の
転写面2でありかつその他の部分は自由表面1である光
学ガラス成形体3を得ることができた。
第6図のようにシリンダ22を高精度に可動させて、ヒ
ータ23に取り付けたプレス成形用金型20及び21で
前述の光学ガラス成形体3をプレス成形した。プレス成
形条件は金型温度560°Cプレス圧力3Qkg/c+
fl、プレス時間2分であった。
その後300 ’Cまで徐冷して光学ガラス素子を取り
出した。
このような工程によって作製した光学ガラス成形体3は
転写面の表面粗さ(RM S)が約2.5nmの光学的
鏡面であり、気泡、傷5あるいは剥離跡といった欠陥は
認められず、自由表面の表面粗さ(RMS)は約2.5
nmの光学的鏡面であった。
また光学ガラス素子の表面粗さ(RMS)は約2、On
mの光学的鏡面であり、面精度もニュートンリング2本
以内、715分の1本以内であり、その光学性能は極め
て優れていた。
実施例2 熱加工治具6としてポロンナイトライドを使用し、曲率
半径が4511II11の凹形の成形面4に加工し、第
2図のように成形面4の下に内径7閣の冷却用の貫通穴
5をあけた。プレス成形用金型20゜21として、オー
ステナイト1liil (SUS316)を用いて曲率
半径が150閣の鏡面の凹金型にスパッタ法でロジウム
−金−タングステン合金(Rh−Au−W)の薄膜を形
成した。
ガラス塊7は、ジルコニア(ZrO2)8重里パーセン
ト、酸化ランタン(La203)30重量パーセント、
ホウ酸(B203)42重量パーセント酸化力ルンウム
(Cab)10重量パーセント、残部が微量成分からな
るランタン系ガラスの研磨品約3グラムを用いた。
第3図の光学ガラス成形体の製造装置において、ガス導
入口13とガス排出口14により窒素ガス20リンタ一
/分、トリクロルトリフルオルエタン(C2Cj28F
3)ガスニリンター7分の割合で混合したハロゲン化炭
化水素雰囲気と、ヒータ15により880°Cに保持し
た。第5図(a)のように円柱状のガラス塊7を熱加工
治具6に載置し、熱加工治具6を素早く装置内に供給し
た。装置内で5分間加熱した後素早く取り出したガラス
塊7を観察すると、第5図ら)のように下面の中央部が
わずかに垂れ下がり、全体的にやや丸みがあった。
さらに装置内で5分間(合計10分)加熱した後素早く
取り出したガラス塊3を観察すると、第5図(C)のよ
うに全体的に丸みがあり、第1回のように上面は自由表
面1であり、下面は部分的に熱加工治具6の成形面4の
転写面2でありかつその他の部分は自由表面1であるガ
ラス成形体3を得ることができた。
第6図のようにシリンダ22を高精度に可動させて、ヒ
ータ23に取り付けたプレス成形用金型20及び21で
前述の光学ガラス成形体3をプレス成形した。プレス成
形条件は金型温度680°Cプレス圧力30kg/cJ
、プレス時間2分であった。
その後400°Cまで徐冷して光学ガラス素子を取り出
した。
このような工程によって作製した光学ガラス成形体3は
転写面の表面粗さ(RMS)が約2.0nmの光学的鏡
面であり、気泡、傷、あるいは剥離跡といった欠陥は認
められず、自由表面の表面粗さ(RMS)は約2. O
n mの光学的鏡面であった。
また光学ガラス素子の表面粗さ(RMS)は約2、On
mの光学的鏡面であり、面精度もニュートンリング2本
以内、アメ5分の1本以内であり、その光学性能は極め
て優れていた。
実施例3 熱加工治具6として窒化アルミを使用し、曲率半径が2
00口の凹形の成形面4に加工し、第2図のように成形
面4の下に内径10肛の冷却用の貫通穴5をあけた。プ
レス成形用金型20.21として、サーメント(TiC
−10Mo−9Ni)を用いて曲率半径が500−の鏡
面の凹金型にスパッタ法で白金−タンタル−レニウム合
金(Pt−Ta−Re)の薄膜を形成した。
ガラス塊7は、シリカ(SiO□)65重量パーセント
酸化カリウム(K2O)9重量パーセントホウ酸(B2
08)I O重量パーセント酸化ナトリウムCNa20
)10重量パーセント、残部が微量成分からなるホウケ
イ酸ガラスの研磨品約3グラムを用いた。
第3図の光学ガラス成形体の製造W置において、ガス導
入口13とガス排出口14によりアルゴンガス20リツ
タ一/分、エチレン(C2H□)lリッター7分の割合
で混合した炭化水素雰囲気と、ヒータ15により830
°Cに保持した。第5図(a)のように円柱状のガラス
塊7を熱加工治具6に載置し、熱加工治具6を素早く装
置内に供給した。
装置内で5分間加熱した後素早く取り出したガラス塊3
を観察すると、第5図(C)のように全体的に丸みがあ
り、第1図のように上面は自由表面1であり、下面は部
分的に熱加工治具6の成形面4の転写面2でありかつそ
の他の部分は自由表面1であるガラス成形体3を得るこ
とができた。
第6図のようにシリンダ22を高精度に可動させて、ヒ
ータ23に取り付けたプレス成形用金型20及び21で
前述の光学ガラス成形体3をプレス成形した。プレス成
形条件は金型温度680°Cブレス圧力80 kg/c
d、プレス時間1分であった。
その後380°Cまで徐冷して光学ガラス素子を取り出
した。
このような工程によって作製した光学ガラス成形体3は
転写面の表面粗さ(RMS)が約2.5nmの光学的鏡
面であり、気泡、傷、あるいは剥離跡といった欠陥は認
められず、自由表面の表面粗さ(RMS)は約2.5n
mの光学的鏡面であった。
また光学ガラス素子の表面粗さ(RMS)は約2、On
mの光学的鏡面であり、面精度もニュートンリング2本
以内、アメ5分の1本以内であり、その光学性能は極め
て優れていた。
実施例4 熱加工治具6として白金−ロジウム合金(Pt−10R
h)を使用し、曲率半径が55皿の凹形の成形面4に加
工し、第2図のように成形面4の下に内径5加の冷却用
の貫通穴5をあけた。プレス成形用金型20.21とし
て、ンリコンを曲率半径が100++uaの鏡面の凹金
型にスパッタ法でロジウム−金−タングステン合金(R
h−Au −W)の薄膜を形成した。
ガラス塊7は、シリカ(S IO2) 52重量パーセ
ント、酸化カリウム(K2O)6重量バーセント、酸化
鉛(Pb0)35重量パーセント、酸化ナトリウム(N
 a 20 ) 5重量パーセント、残部が微量成分か
らなる重フリントガラスのゴブ品約5グラムを用いた。
第3図の光学ガラス成形体の製造装置において、ガスを
導入しない大気雰囲気と、ヒータ15により630°C
に保持した。第4図(a)のように大きなオレンジマー
クを存したガラス塊7を熱加工治具6に載置し、熱加工
治具6を素早く装置内に供給した。装置内で5分間加熱
した後素早く取り出したガラス塊3を観察すると、第4
図(C)のようにオレンジマークの痕がなくなっており
、第1図のように上面は自由表面1であり、下面は部分
的に熱加工治具の成形面4の転写面2でありかつその他
の部分は自由表面1である光学ガラス成形体3を得るこ
とができた。
第6図のようにシリンダ22を高精度に可動させて、ヒ
ータ23に取り付けたプレス成形用金型20及び21で
前述の光学ガラス成形体3をプレス成形した。プレス成
形条件は金型温度550°Cプレス圧力80kg/d、
プレス時間1分であった。
その後380°Cまで徐冷して光学ガラス素子を取り出
した。
このような工程によって作製した光学ガラス成形体3は
転写面の表面粗さ(RMS)が約2.0nmの光学的鏡
面であり、気泡、傷、あるいは剥離跡といった欠陥は認
められず、自由表面の表面粗さ(RMS)は約2.0n
mの光学的鏡面であった。
また光学ガラス素子の表面粗さ(RMS)は約2.0n
mの光学的鏡面であり、面精度もニュートンリング2本
以内、アメ5分の1本以内であり、その光学性能は極め
て優れていた。
実施例5 熱加工治具6としてオーステナイト鋼(SUS316)
を使用し、曲率半径が15mmの凹形の成形面4に加工
し、第2図のように成形面4の下に内径7閣の冷却用の
貫通穴5をあけた。プレス成形用金型20.21として
、超硬合金(WC−5TiC−8Co)を曲率半径が2
oIIIInの鏡面の凹金型にスパッタ法で白金−イリ
ジウム−オスミウム合金(Pt−1r−Os)の薄膜を
形成した。
ガラス塊7は、シリカ(Sin2)30重量パーセント
、酸化バリウム(BaO)50重量パーセント、ホウ酸
(B203)15重量パーセント、残部が微量成分から
なるホウケイ酸バリウムガラスのゴブ品約3グラムを用
いた。
第3図の光学ガラス成形体の製造装置において、ガス導
入口13とガス排出口14により窒素ガス20リンタ一
/分、水素ガス2リッター/分の割合で混合した雰囲気
と、ヒータ15により900°Cに保持した。第4図(
a)のように大きなオレンジマークを有したガラス塊7
を熱加工治具6に載置し、熱加工治具6を素早く装置内
に供給した。装置内で1分間加熱した後素早く取り出し
たガラス塊3を観察すると、第4図(C)のようにオレ
ンジマークの痕がなくなっており、第1図のように上面
は自由表面1であり、下面は部分的に熱加工治具の成形
面4の転写面2でありかつその他の部分は自由表面lで
ある光学ガラス成形体3を得ることができた。
第6図のようにシリンダ22を高精度に可動させて、ヒ
ータ23に取りつけたプレス成形用金型20及び21で
前述の光学ガラス成形体3をプレス成形した。プレス成
形条件は金型温度560 ’CCブレス力30kg/c
ffl、プレス時間2分であった。
その後300°Cまで徐冷して光学ガラス素子を取り出
した。
このような工程によって作製した光学ガラス成形体3は
転写面の表面粗さ(RMS)が約2.Onmの光学的鏡
面であり、気泡、傷、あるいは剥離跡といった欠陥は認
められず、自由表面の表面粗さ(RMS)は約2.0n
mの光学的鏡面であった。
また光学ガラス素子の表面粗さ(RMS)は約2.0n
mの光学的鏡面であり、面精度もニュートンリング2本
以内、アメ5分の1本以内であり、その光学性能は極め
て優れていた。
なお本発明の光学ガラス成形体およびその製造方法とそ
の製造装置は、−面は自由表面であり、他面は部分的に
熱加工治具の成形面の転写面でありかつその他の部分は
自由表面であるガラス成形体、及び冷却した熱加工治具
にガラス塊を載置した状態で、ガラス塊を加熱する光学
ガラス成形体の製造方法、及び内部を貫通する冷却経路
を設けた熱加工治具を冷却する冷却手段と、ガラス塊を
載置した熱加工治具及びガラス塊を加熱する加熱手段と
を備えた光学ガラス成形体の製造装置であることを特徴
とするものであり、雰囲気、光学ガラス組成、熱加工治
具の材料、熱変形の温度と時間、プレス成形の温度と時
間、あるいは光学ガラス成形体の形状等の条件は本実施
例に限定されるものではない。
ガラス塊を受ける熱加工治具は、溶融ガラスと濡れ性が
悪く、離型性が優れて、鏡面加工し易い材料、例えばグ
ラノシーカーボン、ボロンナイトライド、窒化アルミ、
窒化クロム、ステンレス鋼、及び貴金属、タングステン
、タンタル、レニウムハフニウムの単体あるいはそれら
の合金等が適している。これらの材料はバルクの状態あ
るいは薄膜の状態で用いることができる。
本発明において、ガラス塊を加熱する雰囲気は空気中で
もあるが、好ましくはガラス塊と熱加工治具とが反応あ
るいは融着しない雰囲気は、窒素。
アルゴン、ヘリウム等の不活性ガス、およびこれらの不
活性ガスに水素、あるいは−酸化炭素酸化炭素の炭素酸
化物、メタン、エタン、エチレン、トルエン等の炭化水
素類、トリクロロエチレン、トリクロルトリフルオルエ
タン等のハロゲン化炭化水素類、エチレングリコール 
グリセリン等のアルコール類、F−113,F−11等
のフルオロカーボン類を適宜混合したものである。
これらの雰囲気は、光学ガラス組成、熱加工治具の材料
、熱変形の温度と時間、プレス成形の温度と時間、ある
いは光学ガラス成形体の形状等の条件によって適宜選択
する。
発明の詳細 な説明したように、本発明の光学ガラス成形体およびそ
の製造方法とその製造装置は、冷却した熱加工治具にガ
ラス塊を載置した状態で、ガラス塊を加熱すると、熱加
工治具と接触しない面ば熱変形して鏡面状態の自由表面
であり、熱加工治具と接触した面は熱加工治具の成形面
の転写面でありかつその他の部分は自由表面である光学
ガラス成形体になる。さらにこの光学ガラス成形体をプ
レス成形用金型で加熱加圧成形することにより、表面に
欠陥のない高精度な光学ガラス素子を製造することがで
きる。
すなわち、本発明によって高精度な光学ガラス素子の大
量生産が可能になり、生産性の向上と製造コストの低減
に著しい効果がある。
【図面の簡単な説明】
第1図は光学ガラス成形体の断面図、第2図は熱加工治
具の断面図、第3図は光学ガラス成形体の製造装置の断
面図、第4図はゴブ品の熱変形を示す断面図、第5図は
研磨品の熱変形を示す断面図、第6図は光学ガラス成形
体のプレス成形を示す断面図である。 ■・・・・・・自由表面、2・・・・・・転写面、3・
・・・・・光学ガラス形成体、4・・・・・・成形面、
5・・・・・・貫通穴、6・・・・・・熱加工治具、7
・・・・・・ガラス塊、10・・・・・・シャンク−1
11・・・・・・冷却用パイプ、12・・・・・・断熱
壁、13・・・・・・ガス導入口、14・・・・・・ガ
ス排出口、15・・・・・・ヒータ、20・・・・・・
プレス成形用金型、21・・・・・・プレス成形用金型
、22・・・・・・シリンダ、23・・・・・ヒータ。 代理人の氏名 弁理士 粟野重孝 は力川名第 図 第 図 第 図 (−ガ点覚 2−一一転牢面 ? 第 図 第 図

Claims (5)

    【特許請求の範囲】
  1. (1)熱加工治具の成形面に接する部分の転写面と、自
    由表面からなる光学ガラス成形体。
  2. (2)冷却した熱加工治具にガラス塊を載置した状態で
    、ガラス塊を加熱する光学ガラス成形体の製造方法。
  3. (3)成形面と、内部を貫通する冷却経路とを設けた熱
    加工治具。
  4. (4)内部を貫通する冷却経路を設けた熱加工治具を冷
    却する冷却手段と、ガラス塊を載置した熱加工治具及び
    ガラス塊を加熱する加熱手段とを備えた光学ガラス成形
    体の製造装置。
  5. (5)請求項(1)記載の光学ガラス成形体をプレス成
    形用金型で加熱加圧成形する光学ガラス成形体の製造方
    法。
JP20327090A 1990-07-31 1990-07-31 光学ガラス成形体とその製造方法とその製造装置 Pending JPH0489326A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20327090A JPH0489326A (ja) 1990-07-31 1990-07-31 光学ガラス成形体とその製造方法とその製造装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20327090A JPH0489326A (ja) 1990-07-31 1990-07-31 光学ガラス成形体とその製造方法とその製造装置

Publications (1)

Publication Number Publication Date
JPH0489326A true JPH0489326A (ja) 1992-03-23

Family

ID=16471267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20327090A Pending JPH0489326A (ja) 1990-07-31 1990-07-31 光学ガラス成形体とその製造方法とその製造装置

Country Status (1)

Country Link
JP (1) JPH0489326A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9108718B2 (en) 2009-10-08 2015-08-18 Mitsubishi Heavy Industries, Ltd. Composite-material structure and aircraft main wing and aircraft fuselage provided with the same
US9475568B2 (en) 2012-02-29 2016-10-25 Mitsubishi Heavy Industries, Ltd. Composite structure, aircraft wing and aircraft fuselage including composite structure, and method of manufacturing composite structure
US10137664B2 (en) 2014-03-28 2018-11-27 Mitsubishi Heavy Industries, Ltd. Composite material structure, aircraft wing and aircraft fuselage provided with same, and method for manufacturing composite material structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9108718B2 (en) 2009-10-08 2015-08-18 Mitsubishi Heavy Industries, Ltd. Composite-material structure and aircraft main wing and aircraft fuselage provided with the same
US9475568B2 (en) 2012-02-29 2016-10-25 Mitsubishi Heavy Industries, Ltd. Composite structure, aircraft wing and aircraft fuselage including composite structure, and method of manufacturing composite structure
US10137664B2 (en) 2014-03-28 2018-11-27 Mitsubishi Heavy Industries, Ltd. Composite material structure, aircraft wing and aircraft fuselage provided with same, and method for manufacturing composite material structure

Similar Documents

Publication Publication Date Title
US5284501A (en) Method of manufacturing glass optical element
US5087279A (en) Method of producing optical glass element and production apparatus using this method
KR900000622B1 (ko) 광학유리소자의 성형방법 및 광학유리소자의 프레스 성형금형
US4883528A (en) Apparatus for molding glass optical elements
US4964903A (en) Apparatus for molding glass molds
US4929265A (en) Method of molding glass optical elements
JP2005298262A (ja) 光学素子の量産方法
US4897101A (en) Method of forming a precision glass mold and article
JPH0489326A (ja) 光学ガラス成形体とその製造方法とその製造装置
EP0378292B1 (en) Method of manufacturing glass optical element
JPS61183134A (ja) 光学ガラス素子のプレス成形用型
JP3229942B2 (ja) ガラス光学素子の製造方法
JP2875621B2 (ja) 光学ガラス成形体の製造方法と光学ガラス素子の製造方法及び製造装置
AU625180B2 (en) Molding apparatus and method
JPH0421608B2 (ja)
JPH0477320A (ja) 光学ガラス素子の製造方法及びその製造装置
JPH0360435A (ja) 光学ガラス素子の製造方法
JPH02258640A (ja) 光学ガラス素子の製造方法およびその製造方法に用いる製造装置
JPH0345523A (ja) 光学ガラス素子の製造方法並びに該方法に用いる製造装置
JP2892217B2 (ja) ガラス素材の製造方法及び製造装置
JPH0717724A (ja) ガラスゴブの製造方法及び製造装置
JPH0437614A (ja) 光学ガラス素子の製造方法
JPH02188433A (ja) 光学ガラス成形体およびその成形方法
JPH02225324A (ja) 光学ガラス素子の製造方法並びにその方法に用いる製造装置
JP3045433B2 (ja) 光学ガラス素子の製造方法