JPH048728B2 - - Google Patents
Info
- Publication number
- JPH048728B2 JPH048728B2 JP6538181A JP6538181A JPH048728B2 JP H048728 B2 JPH048728 B2 JP H048728B2 JP 6538181 A JP6538181 A JP 6538181A JP 6538181 A JP6538181 A JP 6538181A JP H048728 B2 JPH048728 B2 JP H048728B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- detection
- axis
- saturable core
- head
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000001514 detection method Methods 0.000 claims description 64
- 230000005415 magnetization Effects 0.000 claims description 5
- 230000004907 flux Effects 0.000 description 14
- 238000010586 diagram Methods 0.000 description 7
- 238000005259 measurement Methods 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/12—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
- G01D5/14—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
- G01D5/20—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
- G01D5/2006—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the self-induction of one or more coils
- G01D5/2033—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the self-induction of one or more coils controlling the saturation of a magnetic circuit by means of a movable element, e.g. a magnet
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
- Transmission And Conversion Of Sensor Element Output (AREA)
Description
【発明の詳細な説明】
本発明は、位置検出や位置決めサーボ用のアナ
ログ検出信号を出力する磁気センサに関し、特
に、枠体形状の可飽和コアに巻装した一対の検出
コイルによつて検出信号を得るようにした磁気ヘ
ツドを用いた磁気センサに関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnetic sensor that outputs analog detection signals for position detection and positioning servo, and in particular, detects signals by a pair of detection coils wound around a frame-shaped saturable core. The present invention relates to a magnetic sensor using a magnetic head designed to obtain a magnetic field.
例えば実公昭48−10175号公報や特公昭48−
5512号公報、特公昭48−16855号公報などに開示
されているように、枠体形状の可飽和コアに一対
の検出コイルを巻装してなる磁気センサでは、交
流信号源を上記可飽和コアに巻装された一対の検
出コイルを介してダイオードによる平衡検波器を
接続することによつて、上記可飽和コアに印加さ
れる外部磁界の大きさに比例した検波出力が上記
平衡検波器に得られる。 For example, Utility Model Publication No. 10175, Special Publication No. 1973-
As disclosed in Japanese Patent Publication No. 5512 and Japanese Patent Publication No. 16855/1983, in a magnetic sensor in which a pair of detection coils are wound around a frame-shaped saturable core, an alternating current signal source is connected to the saturable core. By connecting a balanced detector using a diode through a pair of detection coils wound around the core, the balanced detector can obtain a detection output proportional to the magnitude of the external magnetic field applied to the saturable core. It will be done.
すなわち、この種の磁気センサでは、枠体形状
の可飽和コアに外部直流磁界が印加されると、上
記検出コイルが巻装されていない相対向する磁脚
部間に上記外部流磁界による磁位差を生じ、この
磁脚部間の磁位差に応じた磁束が上記一対の検出
コイルが巻装された相対向する磁脚部に同じ向き
に通ることにより、上記各磁脚部の飽和状態が変
化し、上記外部直流磁界の大きさに比例して上記
一対の検出コイルのインピーダンスが差動的に変
化する。従つて、上記可飽和コアに印加される外
部直流磁界の大きさに比例した検派出力が上記平
衡検波器に得られる。 That is, in this type of magnetic sensor, when an external DC magnetic field is applied to the frame-shaped saturable core, the magnetic potential due to the external current magnetic field increases between the opposing magnetic legs on which the detection coil is not wound. A magnetic flux corresponding to the magnetic potential difference between the magnetic legs passes in the same direction through the opposing magnetic legs around which the pair of detection coils are wound, thereby bringing each of the magnetic legs into a saturated state. changes, and the impedance of the pair of detection coils differentially changes in proportion to the magnitude of the external DC magnetic field. Therefore, a detection output proportional to the magnitude of the external DC magnetic field applied to the saturable core is obtained in the balanced detector.
このように、枠体形状の可飽和コアに一対の検
出コイルを巻装してなる磁気センサでは、外部直
流磁界の印加に伴う各磁脚部の飽和状態の変化に
よる一対の検出コイルのインピーダンスの差動的
な変化として、上記外部直流磁界の大きさを検出
することができる。そして、上記検出コイルが巻
装されていない相対向する磁脚部間の磁位差は、
外部直流磁界の大きさに比例するもので、上記外
部直流磁界を発生する発磁体と磁気センサとの相
対位置により変化する。 In this way, in a magnetic sensor in which a pair of detection coils are wound around a frame-shaped saturable core, the impedance of the pair of detection coils changes due to changes in the saturation state of each magnetic leg due to the application of an external DC magnetic field. The magnitude of the external DC magnetic field can be detected as a differential change. Then, the magnetic potential difference between the opposing magnetic legs on which the detection coil is not wound is:
It is proportional to the magnitude of the external DC magnetic field, and changes depending on the relative position of the magnetic sensor and the magnet generating body that generates the external DC magnetic field.
この種の磁気センサは、例えば第1図に示すよ
うに信号用発磁体1と磁気ヘツド2とを相対移動
自在に設け、各種工作機械等における定点検出や
位置決めサーボ制御用の信号を得るようにした所
謂マグネセンサやマグネスイツチとして従来より
知られている。第1図において、信号用発磁体1
は、磁気ヘツド2との相対移動方向(図中矢印X
方向)に一致した方向の磁化が施された永久磁石
である。また、磁気ヘツド2は、枠体形状の可飽
和コア3の相対向する磁脚部に一対の検出コイル
4が巻装されて成り、上記相対移動方向(矢印X
方向)に対して垂直な平面(Y−Z平面)に可飽
和コア3が位置されている。そして、この磁気ヘ
ツ2は、発磁体1による磁界のZ軸方向の磁位差
についてY−Z平面を利用して検出し、上記信号
用発磁体1との相対位置に応じた第2図に示す如
きの検出信号を出力する。 In this type of magnetic sensor, for example, as shown in Fig. 1, a signal magnet 1 and a magnetic head 2 are provided so as to be relatively movable to obtain signals for fixed point detection and positioning servo control in various machine tools. It has been known as a so-called magnetic sensor or magnetic switch. In Fig. 1, the signal magnet 1
is the direction of relative movement with the magnetic head 2 (arrow X in the figure).
It is a permanent magnet that is magnetized in the same direction as the magnet. The magnetic head 2 is constructed by winding a pair of detection coils 4 around opposing magnetic legs of a frame-shaped saturable core 3 in the above-mentioned relative movement direction (arrow X
The saturable core 3 is located on a plane (Y-Z plane) perpendicular to the direction (direction). The magnetic head 2 detects the magnetic potential difference in the Z-axis direction of the magnetic field produced by the magnetic body 1 using the Y-Z plane, and detects the magnetic potential difference in the Z-axis direction of the magnetic field generated by the magnetic body 1 according to the relative position with respect to the signal magnetic body 1 as shown in FIG. A detection signal as shown is output.
また、従来より位置決めサーボ制御等を行う場
合には、上述の第1図に示した如き構成のマグネ
センサによるアナログ検出信号をサーボ信号とし
て用いるとともに、第3図に示すように発磁体5
の着磁面と磁気ヘツド6の可飽和コア7とを平行
に配置したゲート用マグネセンサから第4図に示
すようなゲート信号を得て、該ゲート信号による
動作範囲L内で上記サーボ信号にてサーボ制御を
行なうようにして、上記マグネセンサによるアナ
ログ検出信号の直線性の良好な範囲内にサーボの
安定点を位置させるようにしている。 In addition, when conventionally performing positioning servo control, etc., an analog detection signal from a magnet sensor configured as shown in FIG.
A gate signal as shown in FIG. 4 is obtained from a gate magnet sensor in which the magnetized surface of the magnetic head 6 and the saturable core 7 of the magnetic head 6 are arranged in parallel, and the servo signal is The stable point of the servo is positioned within a range where the linearity of the analog detection signal from the magnetic sensor is good.
ところで、上述の如き各構成の従来のマグネセ
ンサにおいては、発磁体1,5による磁界のX−
Y平面の磁位差に着目した検出を行つているの
で、磁気ヘツド2,6を形成する可飽和コア3,
7の横巾Wよりも広いトラツク巾Tの発磁体1,
5を用いなければならず、マグネセンサ全体の形
状が大型化せざるを得ない。特に、上述の如き2
個のマグネセンサによつてゲート信号とアナログ
サーボ信号とを得るようにする場合には、その取
付け位置等の制約があることから小型化を図るこ
とが望まれている。 By the way, in the conventional magnetic sensors having the above-mentioned configurations, the X-
Since the detection focuses on the magnetic potential difference in the Y plane, the saturable cores 3, which form the magnetic heads 2, 6,
Magnetic generating body 1 with a track width T wider than the width W of 7.
5 must be used, and the overall shape of the magnetic sensor has to be enlarged. In particular, the two
When a gate signal and an analog servo signal are obtained using a single magnetic sensor, it is desired to reduce the size of the magnetic sensor because of restrictions such as its mounting position.
本発明は、上述の如き従来例における問題点に
鑑み、位置決めサーボ制御等の行なうのに使用さ
れる磁気センサの小型化を可能にすることを目的
とし、トラツク巾の狭い発磁体によつて区間信号
を得ることができるようにした磁気センサを提供
するものである。 In view of the above-mentioned problems in the conventional example, the present invention aims to make it possible to miniaturize a magnetic sensor used for positioning servo control, etc. The present invention provides a magnetic sensor that can obtain signals.
以下、本発明について一実施例を示す図面に従
い詳細に説明する。 DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the drawings showing one embodiment.
本発明に係る磁気センサは、例えば第5図に示
す実施例のように、相対移動自在に設けた発磁体
10と磁気ヘツド20とから構成される。この実
施例において、発磁体10は、一方向に着磁に施
こされた永久磁石から成り、その磁化方向が磁気
ヘツド20との相対移動方向に一致した状態で、
上記磁化方向をX軸とするX−Y平面上に配置さ
れている。また、磁気ヘツド20は、X軸とY軸
とに直交する方向をZ軸とするX−Z平面上に配
置された枠体平形状の第1の可飽和コア21と、
該可飽和コア21に対して平行に配置された枠体
平形状の第2の可飽和コア22とを備え、位置検
出用の一対の検出コイル23が上記第1の可飽和
コア21の相対向するZ軸方向の各磁脚21aに
巻装され、またゲート検出用の一対の検出コイル
24が上記第2の可飽和コア22の相対向するX
軸方向の各磁脚部22aに巻装れた構造を有して
いる。 The magnetic sensor according to the present invention is composed of a magnetic body 10 and a magnetic head 20, which are provided relatively movably, as in the embodiment shown in FIG. 5, for example. In this embodiment, the magnetizing body 10 is made of a permanent magnet that is magnetized in one direction, and when the direction of magnetization matches the direction of relative movement with the magnetic head 20,
It is arranged on the XY plane with the magnetization direction as the X axis. Further, the magnetic head 20 includes a first saturable core 21 having a flat frame and arranged on an X-Z plane with a Z-axis in a direction perpendicular to the X-axis and the Y-axis;
A second saturable core 22 having a flat frame shape is arranged parallel to the saturable core 21, and a pair of detection coils 23 for position detection are arranged in the opposite direction of the first saturable core 21. A pair of detection coils 24 for gate detection are wound around each magnetic leg 21a in the Z-axis direction, and a pair of detection coils 24 for gate detection
It has a structure in which it is wound around each magnetic leg portion 22a in the axial direction.
上記発磁体10は、第5図中に模式的に示して
あるように、X軸方向成分HxとZ軸成分Hzから
成る磁束を発生し、上記磁気ヘツド20に対して
X軸方向に相対移動するようになつている。上記
発磁体10が発生する磁束は、該発磁体10の中
央部ではX軸方向成分Hxが最大でZ軸方向成分
Hzが最小になつており、上記中央部分からずれ
るに従つて上記X軸方向成分Hxは減少しZ軸方
向成分Hzは増加して、X軸方向のエツジ部分近
傍においてX軸方向成分Hxが最小でZ軸方向成
分Hzが最大になつている。 As schematically shown in FIG. 5, the magnet generating body 10 generates a magnetic flux consisting of an X-axis component Hx and a Z-axis component Hz , and generates a magnetic flux in the X-axis direction with respect to the magnetic head 20. They are beginning to move relative to each other. The magnetic flux generated by the magnetizing body 10 has a maximum X-axis direction component Hx and a Z-axis component at the center of the magnetizing body 10.
H z is at a minimum, and the X-axis direction component H x decreases and the Z-axis direction component H z increases as it deviates from the center portion, and the X-axis direction component H z increases near the edge portion in the X-axis direction. H x is the minimum and the Z-axis direction component H z is the maximum.
上記第1の可飽和コア21のZ軸方向の磁脚部
21aには、上記発磁体10と上記磁気ヘツド2
0と相対位置(A,B……E)に応じて、上記発
磁体10からの磁束が第6図に模式的に示すよう
に流れる。そして、上記磁脚部21aに巻装され
ている上記位置検出用の検出コイル23は、上記
磁束の大きさに応じてインダクタンスが変化し、
第5図中に模式的に示した上記発磁体10が発生
する磁束のZ軸方向成分Hzの磁位差を検出する。
また、上記第2の可飽和コア22のX軸方向の磁
脚部22aには、上記発磁体10と上記磁気ヘツ
ド20との相対位置(A,B……E)に応じて、
上記発磁体10からの磁束が第7図に模式的に示
すように流れる。そして、上記磁脚部22aに巻
装されている上記ゲート検出用の検出コイル24
は、上記磁束の大きさに応じてインダクタンスが
変化し、第5図中に模式的に示す上記発磁体10
が発生する磁束のX軸方向成分Hzの磁位差を検
出する。 The magnetic leg portion 21a of the first saturable core 21 in the Z-axis direction includes the magnetic body 10 and the magnetic head 2.
0 and the relative position (A, B...E), the magnetic flux from the magnetizing body 10 flows as schematically shown in FIG. The detection coil 23 for position detection, which is wound around the magnetic leg portion 21a, has an inductance that changes depending on the magnitude of the magnetic flux.
The magnetic potential difference in the Z-axis direction component Hz of the magnetic flux generated by the magnetizing body 10 schematically shown in FIG. 5 is detected.
Further, in the magnetic leg portion 22a of the second saturable core 22 in the X-axis direction, depending on the relative position (A, B...E) between the magnetizing body 10 and the magnetic head 20,
The magnetic flux from the magnetizing body 10 flows as schematically shown in FIG. A detection coil 24 for detecting the gate is wound around the magnetic leg portion 22a.
The inductance changes according to the magnitude of the magnetic flux, and the magnetizing body 10 shown schematically in FIG.
detects the magnetic potential difference in the X-axis direction component Hz of the magnetic flux generated.
このような構造の磁気ヘツド20と発磁体10
とを相対移動自在に設けて成る磁気センサの実施
例では、発磁体10の横巾TすなわちY軸方向の
長さ(トラツク巾)が、磁気ヘツド20の各可飽
和コア21,22の厚みtと各検出コイル23,
24の巻径φによつて定まるので、極めて小さく
できる。しかも、各可飽和コア21,22を平行
に設けてあるので、磁気ヘツド20の図示しない
ケース内に収納設置するのにも簡単な構造で良
く、磁気ヘツド20の製造が極めて容易である。
さらに、上記磁気ヘツド20は、ケース内に各可
飽和コア21,22を収納して一体的な構造とし
た場合でも各可飽和コア21,22を平行に配置
したことにより、発磁体10の検出面11Aに対
する間隔(所謂クリアランスC)を十分に小さく
することができるので、各検出コイル23,24
による検出感度が低下することもない。 Magnetic head 20 and magnetic generating body 10 having such a structure
In the embodiment of the magnetic sensor, the width T of the magnetic body 10, that is, the length in the Y-axis direction (track width) is equal to the thickness t of each saturable core 21, 22 of the magnetic head 20. and each detection coil 23,
Since it is determined by the winding diameter φ of 24, it can be made extremely small. Moreover, since the saturable cores 21 and 22 are provided in parallel, a simple structure is required for storing and installing the magnetic head 20 in a case (not shown), and the manufacturing of the magnetic head 20 is extremely easy.
Furthermore, even when the magnetic head 20 has an integrated structure by storing the saturable cores 21 and 22 in the case, the magnetic head 20 can be detected by arranging the saturable cores 21 and 22 in parallel. Since the distance from the surface 11A (so-called clearance C) can be made sufficiently small, each detection coil 23, 24
There is no reduction in detection sensitivity.
ここで、上述の如き実施例について、第8図に
示すような半径がR=40mmの回転軸30の外周面
に上記発磁体10をその磁化方向(X軸方向)と
該回転軸30の回転方向とを一致させた状態に取
り付け、上記発磁体10の表面に垂直は方向をZ
軸としたX−Z平面上に上記磁気ヘツド20を構
成している各可飽和コア21,22を配置し、上
記発磁体10と上記磁気ヘツド20との間のクリ
アランスC(C=1mm〜10mm)として各検出コイ
ル23,24からの検出信号を実測した結果、上
位発磁体10ア発生する磁束のZ軸方向成分Hz
の磁位差を検出する検出コイル23からは第9図
中に実線にて示すような位置検出信号が得られ、
また、上記が発生する磁束のX軸方向成分Hxの
磁位差を検出する検出コイル24からは第9図中
に破線にて示すようなゲート検出信号が得られ
た。なお、上記第9図の各角度位置(A,B……
E)は、上述の第6図および第7図に示した発磁
体10と磁気ヘツド20との各相対位置(A,B
……E)に対応している。また、第1の可飽和コ
ア21に巻装した位置検出用の検出コイル23か
らは、R=60mmとした場合に第10図に示すよう
な特性が得られた。なお、上述の第1図に示した
構造の従来の位置検出用の磁気センサでは、R=
60mmとした場合に第11図に示すような特性であ
つた。 Here, regarding the above-mentioned embodiment, the magnetizing body 10 is attached to the outer peripheral surface of the rotating shaft 30 having a radius of R=40 mm as shown in FIG. The direction perpendicular to the surface of the magnetic body 10 is set to Z.
The saturable cores 21 and 22 constituting the magnetic head 20 are arranged on the X-Z plane as an axis, and the clearance C between the magnetizing body 10 and the magnetic head 20 (C=1 mm to 10 mm) is set. ) as a result of actually measuring the detection signals from each detection coil 23, 24, the Z-axis direction component of the magnetic flux generated by the upper magnet generator 10A is
A position detection signal as shown by the solid line in FIG. 9 is obtained from the detection coil 23 that detects the magnetic potential difference between
Further, a gate detection signal as shown by a broken line in FIG. 9 was obtained from the detection coil 24 which detects the magnetic potential difference of the X-axis direction component H x of the magnetic flux generated above. In addition, each angular position (A, B...
E) is the relative position (A, B) of the magnetizing body 10 and the magnetic head 20 shown in FIG. 6 and FIG.
...corresponds to E). Further, the detection coil 23 for position detection wound around the first saturable core 21 had the characteristics shown in FIG. 10 when R=60 mm. In addition, in the conventional magnetic sensor for position detection having the structure shown in FIG. 1 described above, R=
When the diameter was 60 mm, the characteristics were as shown in Figure 11.
また、本発明に係る磁気センサでは、信号検出
用の可飽和コア21を上述の如くX−Z平面に配
置することによりトラツク巾Tを極めて小さくで
きるので第12図に示すように、ゲート検出用の
検出コイル24A,24Bを巻装した2枚の可飽
和コア22A,22Bで上記位置検出用の可飽和
コア21を挟むようなサンドイツチ構造にしても
良い。なお、この第12図に示した実施例では、
励磁用の磁界が互いに逆向きに作用するように各
ゲート用の検出コイル24A,24Bに電流を流
す。このような構造にすれば、各ゲート用の検出
コイル24A,24Bをともに発磁体10に対し
て等距離に位置させた状態で接近させてゲート検
出感度を向上することができる。 Furthermore, in the magnetic sensor according to the present invention, the track width T can be made extremely small by arranging the saturable core 21 for signal detection on the X-Z plane as described above. A sandwich structure may be used in which the saturable core 21 for position detection is sandwiched between two saturable cores 22A, 22B around which detection coils 24A, 24B are wound. In the embodiment shown in FIG. 12,
Current is passed through the detection coils 24A and 24B for each gate so that the excitation magnetic fields act in opposite directions. With such a structure, the detection coils 24A and 24B for each gate can be brought close to the magnetic body 10 while being positioned at the same distance, thereby improving the gate detection sensitivity.
上述の実施例の説明から明らかなように、本発
明によれば、一方向の着磁が施こされ且つその磁
化方向をX軸としたX−Y平面上に配置された発
磁体と、X軸とY軸とに直交する方向をZ軸とし
たX−Z平面上に配置した枠体平形状の可飽和コ
アの相対向するX軸方向の各磁脚部に一対の区間
検出用の検出コイルを巻装して成る磁気ヘツドと
を備え、上記発磁体と磁気ヘツドとをX軸方向に
相対移動自在に設けたことを特徴とするので、Y
軸方向の巾すなわちトラツク巾を極めて小さくし
た状態で所望の区間信号の得られる磁気センサを
提供することできる。また、本発明によれば、位
置検出用の検出コイルを巻装した可飽和コアとゲ
ート検出用の検出コイルを巻装した可飽和コアと
を並設して共用の発磁体から検出信号を得る場合
でもトラツク巾に薄型の磁気センサを実現するこ
とが可能になる。 As is clear from the description of the above-mentioned embodiments, according to the present invention, a magnetizing body is magnetized in one direction and arranged on an X-Y plane with the direction of magnetization as the X-axis; Detection for detecting a pair of sections on each opposing magnetic leg in the X-axis direction of a flat frame saturable core arranged on an X-Z plane with the Z-axis being a direction perpendicular to the axis and the Y-axis. A magnetic head formed by winding a coil is provided, and the magnetizing body and the magnetic head are provided so as to be relatively movable in the X-axis direction.
It is possible to provide a magnetic sensor that can obtain a desired section signal with an extremely small width in the axial direction, that is, a track width. Further, according to the present invention, a saturable core wrapped with a detection coil for position detection and a saturable core wrapped with a detection coil for gate detection are arranged side by side to obtain a detection signal from a common magnet. It is possible to realize a thin magnetic sensor with a track width even in the case of a magnetic sensor.
第1図ないし第4図は磁気センサの従来例を示
すもので、第1図は位置検出用の磁気センサの構
造を示す斜視図であり、第2図はこの磁気センサ
の出力特性を示す特性線図である。また第3図は
ゲート検出用の磁気センサの構造を示す斜視図で
あり、第4図はこの磁気センサの出力特性を示す
特性線図である。第5図は本発明に係る磁気セン
サの一実施例を示す要部斜視図である。第6図は
上記実施例において発磁体から磁気ヘツドの第1
の可飽和コアに流れる磁束の状態を示す模式図で
あり、第7図は同じく第2の可飽和コアに流れる
磁束の状態を示す模式図である。第8図は上記実
施例により回転検出を行なつてその動作特性を実
測するために用いられた機構を示す模式的な外観
斜視図である。第9図は上記実施例で回転検出を
行つて得られた位置検出信号およびゲート検出信
号の出力特性の実測結果を示す特性線図である。
第10図は上記第6図に示した機構における回転
軸の半径Rを60mmとした場合に上記実施例によつ
て得られた位置検出信号の出力特性の実測結果を
示す特性線図である。第11図は上記第1図に示
した従来の磁気センサによる位置検出信号の出力
特性の実測結果を示す特性線図である。第12図
は本発明に係る磁気センサの他の実施例を示す要
部斜視図である。
10……発磁体、20……磁気ヘツド、21,
22,22A,22B……可飽和コア、21a,
22a……磁脚部、23……位置検出用の検出コ
イル、24,24A,24B……ゲート検出用の
検出コイル。
Figures 1 to 4 show conventional examples of magnetic sensors. Figure 1 is a perspective view showing the structure of a magnetic sensor for position detection, and Figure 2 shows characteristics showing the output characteristics of this magnetic sensor. It is a line diagram. Further, FIG. 3 is a perspective view showing the structure of a magnetic sensor for gate detection, and FIG. 4 is a characteristic line diagram showing the output characteristics of this magnetic sensor. FIG. 5 is a perspective view of essential parts showing an embodiment of the magnetic sensor according to the present invention. FIG. 6 shows the first part of the magnetic head from the magnetizing body in the above embodiment.
FIG. 7 is a schematic diagram showing the state of magnetic flux flowing through the second saturable core, and FIG. 7 is a schematic diagram showing the state of magnetic flux flowing through the second saturable core. FIG. 8 is a schematic external perspective view showing a mechanism used for detecting rotation and actually measuring its operating characteristics according to the above embodiment. FIG. 9 is a characteristic diagram showing actual measurement results of the output characteristics of the position detection signal and gate detection signal obtained by performing rotation detection in the above embodiment.
FIG. 10 is a characteristic diagram showing the actual measurement results of the output characteristics of the position detection signal obtained by the above embodiment when the radius R of the rotating shaft in the mechanism shown in FIG. 6 is 60 mm. FIG. 11 is a characteristic diagram showing actual measurement results of the output characteristics of the position detection signal by the conventional magnetic sensor shown in FIG. 1 above. FIG. 12 is a perspective view of essential parts showing another embodiment of the magnetic sensor according to the present invention. 10... Magnetizing body, 20... Magnetic head, 21,
22, 22A, 22B...Saturable core, 21a,
22a... Magnetic leg portion, 23... Detection coil for position detection, 24, 24A, 24B... Detection coil for gate detection.
Claims (1)
X軸としたX−Y平面上に配置された発磁体と、
X軸とY軸とに直交する方向をZ軸としたX−Z
平面上に配置した枠体平板状の可飽和コアの相対
向するX軸方向の各磁脚部に一対の区間検出用の
検出コイルを巻装して成る磁気ヘツドを備え、上
記発磁体と磁気ヘツドとをX軸方向に相対移動自
在に設けて成る磁気センサ。1. A magnetizing body that is magnetized in one direction and arranged on an X-Y plane with the direction of magnetization as the X-axis;
X-Z with the Z-axis in the direction perpendicular to the X-axis and Y-axis
A magnetic head is provided in which a pair of detection coils for detecting sections are wound around each of the opposing magnetic leg portions in the X-axis direction of a flat plate-like saturable core of a frame arranged on a plane, and the magnetization body and magnetic A magnetic sensor that is provided with a head that is movable relative to the head in the X-axis direction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6538181A JPS57179709A (en) | 1981-04-30 | 1981-04-30 | Magnetic sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6538181A JPS57179709A (en) | 1981-04-30 | 1981-04-30 | Magnetic sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57179709A JPS57179709A (en) | 1982-11-05 |
JPH048728B2 true JPH048728B2 (en) | 1992-02-18 |
Family
ID=13285338
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6538181A Granted JPS57179709A (en) | 1981-04-30 | 1981-04-30 | Magnetic sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS57179709A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0896205A1 (en) * | 1997-01-28 | 1999-02-10 | Sony Precision Technology Inc. | Magnetic displacement detector and carburetor opening detector |
JP5630660B2 (en) * | 2011-07-22 | 2014-11-26 | 村田機械株式会社 | Magnetic displacement sensor and displacement detection method |
WO2021140724A1 (en) * | 2020-01-09 | 2021-07-15 | 株式会社村田製作所 | Position detection device |
-
1981
- 1981-04-30 JP JP6538181A patent/JPS57179709A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS57179709A (en) | 1982-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6275328A (en) | Torque sensor | |
JP3487452B2 (en) | Magnetic detector | |
US5194805A (en) | Inductance-type displacement sensor for eliminating inaccuracies due to external magnetic fields | |
JPH048728B2 (en) | ||
JPH048729B2 (en) | ||
JPS6344730Y2 (en) | ||
JP2514338B2 (en) | Current detector | |
JPH0477268B2 (en) | ||
JP3746354B2 (en) | Magnetic field detector | |
JP2000266619A (en) | Torque sensor and device for detecting torque of steering shaft | |
JPS62148813A (en) | Magnetic sensor | |
JP2596841B2 (en) | Inductance displacement sensor | |
JPH08201061A (en) | Thin film magnetic sensor | |
JP2535503B2 (en) | Geomagnetic direction sensor | |
JPH11166802A (en) | Magnetic displacement detecting device | |
JPS6145449Y2 (en) | ||
JPS6229036B2 (en) | ||
JPH07332912A (en) | Non-contact potentiometer and displacement sensor of moving body | |
JPH0749245A (en) | Magnetic scale device | |
JPS6050429A (en) | Torque sensor | |
JP2514346B2 (en) | Current detector | |
JPS60260822A (en) | Torque sensor | |
JPH09264756A (en) | Position detector | |
JPS62200267A (en) | Clip-on ammeter | |
JPH0355106Y2 (en) |