JP5630660B2 - Magnetic displacement sensor and displacement detection method - Google Patents

Magnetic displacement sensor and displacement detection method Download PDF

Info

Publication number
JP5630660B2
JP5630660B2 JP2011161284A JP2011161284A JP5630660B2 JP 5630660 B2 JP5630660 B2 JP 5630660B2 JP 2011161284 A JP2011161284 A JP 2011161284A JP 2011161284 A JP2011161284 A JP 2011161284A JP 5630660 B2 JP5630660 B2 JP 5630660B2
Authority
JP
Japan
Prior art keywords
coils
coil
row
displacement sensor
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011161284A
Other languages
Japanese (ja)
Other versions
JP2013024779A (en
Inventor
敏 花香
敏 花香
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Machinery Ltd
Original Assignee
Murata Machinery Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Machinery Ltd filed Critical Murata Machinery Ltd
Priority to JP2011161284A priority Critical patent/JP5630660B2/en
Priority to PCT/JP2012/061734 priority patent/WO2013014991A1/en
Priority to TW101125765A priority patent/TWI507662B/en
Publication of JP2013024779A publication Critical patent/JP2013024779A/en
Application granted granted Critical
Publication of JP5630660B2 publication Critical patent/JP5630660B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61BRAILWAY SYSTEMS; EQUIPMENT THEREFOR NOT OTHERWISE PROVIDED FOR
    • B61B13/00Other railway systems
    • B61B13/08Sliding or levitation systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • G01D5/2451Incremental encoders

Description

この発明は磁気式変位センサによる変位の検出に関する。   The present invention relates to detection of displacement by a magnetic displacement sensor.

出願人は、永久磁石の列とコイルの列とを平行に配置することにより、これらの間の相対位置を検出する磁気式変位センサを提案した(特許文献1:JP4513673B)。この磁気式変位センサでは、コイルは永久磁石からの磁界を受けて交流インピーダンスが変化し、永久磁石の配列ピッチを基準とする位相によりコイルを流れる電流が変化する。これに対して発明者は、永久磁石の列とコイルの列との相対速度により磁気式変位センサの出力が変化することと、相対速度の影響は永久磁石の列の端部付近にあるコイルで著しいこととを見出した。これへの対策として永久磁石の列を長くすることは効率的ではないし、カーブ区間での移動体の位置を磁気式変位センサで検出する場合には、長い永久磁石の列を設けても、カーブの曲率のため、コイルの列と向き合わせることが難しい。   The applicant has proposed a magnetic displacement sensor that detects a relative position between a row of permanent magnets and a row of coils arranged in parallel (Patent Document 1: JP4513673B). In this magnetic displacement sensor, the coil receives a magnetic field from the permanent magnet and changes its AC impedance, and the current flowing through the coil changes according to the phase based on the arrangement pitch of the permanent magnets. In contrast, the inventor has found that the output of the magnetic displacement sensor changes depending on the relative speed between the permanent magnet row and the coil row, and the influence of the relative speed is caused by the coil near the end of the permanent magnet row. I found something remarkable. As a countermeasure to this, it is not efficient to lengthen the permanent magnet row, and if the position of the moving body in the curve section is detected by a magnetic displacement sensor, even if a long permanent magnet row is provided, the curve Because of the curvature, it is difficult to face the coil row.

ここで関連する先行技術を示す。特許文献2(JP2005-195391A)は、移動体への非接触給電線からの交流電流による起電力を打ち消すため、磁気式変位センサでのコイルの巻き方を1個毎に逆にし、巻き方が逆の2個のコイルを並列に使用することを開示している。しかし特許文献2は永久磁石の列とコイルの列との相対速度には触れていない。   Here is related prior art. In Patent Document 2 (JP2005-195391A), in order to cancel the electromotive force caused by the alternating current from the non-contact power supply line to the moving body, the winding method of the coil in the magnetic displacement sensor is reversed for each piece. The use of two opposite coils in parallel is disclosed. However, Patent Document 2 does not touch on the relative speed between the row of permanent magnets and the row of coils.

JP4513673BJP4513673B JP2005-195391AJP2005-195391A

この発明の課題は、永久磁石の列とコイルの列との相対速度が変位センサの出力に影響しないようにすることと、永久磁石の列の長さを短くできるようにすることとにある。   An object of the present invention is to prevent the relative speed between the row of permanent magnets and the row of coils from affecting the output of the displacement sensor, and to reduce the length of the row of permanent magnets.

この発明の磁気式変位センサは、被検出用の永久磁石の列とコイルの列との変位を検出し、
変位の検出方向に沿って、同数のコイルから成り、かつ変位の検出方向に沿っての列の始まりと終わりの位置が等しい少なくとも2列のコイルの列と、永久磁石の列とが設けられ、
前記少なくとも2列のコイルでの、向かい合った少なくとも一対のコイルが互いに並列に接続され、
前記少なくとも一対のコイルに、sinωtに従って変化する電圧を加える電源が設けられ、
前記少なくとも一対のコイルを流れる電流を出力として取り出すように構成されて、
永久磁石の列とコイルの列との相対速度と、永久磁石の列からの磁界とによる変位センサの出力への影響を、前記少なくとも2列のコイルの列間でキャンセルするように構成されていることを特徴とする。
The magnetic displacement sensor of the present invention detects displacement between a row of permanent magnets to be detected and a row of coils,
Along the detection direction of displacement, there are provided at least two rows of coils consisting of the same number of coils and having the same start and end position of the row along the detection direction of displacement, and a row of permanent magnets,
At least a pair of coils facing each other in the at least two rows of coils are connected in parallel to each other;
A power source for applying a voltage that changes according to sinωt is provided to the at least one pair of coils,
The current flowing through the at least one pair of coils is taken out as an output,
An influence on the output of the displacement sensor due to the relative speed between the row of permanent magnets and the row of coils and the magnetic field from the row of permanent magnets is canceled between the rows of the at least two rows of coils. It is characterized by that.

この発明の変位検出方法は、磁気式変位センサにより、被検出用の永久磁石の列とコイルの列との変位を検出する方法であって、
磁気式変位センサでは、変位の検出方向に沿って、同数のコイルから成り、かつ変位の検出方向に沿っての列の始まりと終わりの位置が等しい少なくとも2列のコイルの列と、永久磁石の列とが設けられ、
前記少なくとも2列のコイルでの、向かい合った少なくとも一対のコイルが互いに並列に接続され、
前記少なくとも一対のコイルに、電源からsinωtに従って変化する電圧を加え、
前記少なくとも一対のコイルを流れる電流を出力として取り出して、
永久磁石の列とコイルの列との相対速度と、永久磁石の列からの磁界とによる変位センサの出力への影響を、前記少なくとも2列のコイルの列間でキャンセルすることを特徴とする。
The displacement detection method of the present invention is a method of detecting displacement between a row of permanent magnets to be detected and a row of coils by a magnetic displacement sensor,
In the magnetic displacement sensor, there are at least two coil rows that have the same number of coils along the displacement detection direction and that have the same start and end positions along the displacement detection direction, and the permanent magnets. A column is provided,
At least a pair of coils facing each other in the at least two rows of coils are connected in parallel to each other;
A voltage that varies according to sinωt from a power source is applied to the at least one pair of coils,
Taking out the current flowing through the at least one pair of coils as an output,
The influence on the output of the displacement sensor due to the relative speed between the row of permanent magnets and the row of coils and the magnetic field from the row of permanent magnets is canceled between the rows of the at least two coils.

磁気式変位センサの出力が相対速度に依存する原因は、永久磁石からの磁界とコイルを流れる電流とにより生じる誘導起電力にある。ここでコイルの列を、永久磁石2個分の長さにすると、1個目の永久磁石と2個目の永久磁石とで、コイルに及ぼす磁界の向きが逆なので、誘導起電力をキャンセルできる。しかし磁石の列の端では、例えば1個の永久磁石のみがコイルの列と向き合う等により、誘導起電力をキャンセルできない。これに対して、2列のコイルの列を設けると、コイルへ流れる電流の向きとコイルの巻き方等により、誘導起電力をコイルの列間でキャンセルできる。このため、相対速度は磁気式変位センサの出力に影響しないようになり、また向き合ったコイル間で誘導起電力をキャンセルするので、永久磁石の列がコイルの列に完全に重なる必要が無くなり、永久磁石の列を短くできる。なおこの明細書において、磁気式変位センサに関する記載はそのまま変位検出方法にも当てはまり、変位検出方法に関する記載はそのまま磁気式変位センサにも当てはまる。   The reason why the output of the magnetic displacement sensor depends on the relative speed is the induced electromotive force generated by the magnetic field from the permanent magnet and the current flowing through the coil. Here, when the length of the coil array is set to two permanent magnets, the direction of the magnetic field exerted on the coil is reversed between the first permanent magnet and the second permanent magnet, so that the induced electromotive force can be canceled. . However, at the end of the magnet row, the induced electromotive force cannot be canceled because, for example, only one permanent magnet faces the coil row. On the other hand, when two rows of coils are provided, the induced electromotive force can be canceled between the rows of coils depending on the direction of the current flowing through the coils and the winding method of the coils. For this reason, the relative speed does not affect the output of the magnetic displacement sensor, and the induced electromotive force is canceled between the coils facing each other, so that it is not necessary that the permanent magnet row completely overlaps the coil row. The magnet row can be shortened. In this specification, the description regarding the magnetic displacement sensor also applies to the displacement detection method as it is, and the description regarding the displacement detection method also applies to the magnetic displacement sensor as it is.

好ましくは、前記少なくとも2列のコイルの列は、向かい合ったコイルの巻き方が同じで電流の向きが逆か、向かい合ったコイルの巻き方が逆で電流の向きが同じになるようにされている。例えば差動結線により、コイルの巻き方を同じにして電流の向きを逆にすると、誘導起電力の向きは逆になる。また例えば和動結線により、向かい合ったコイルの巻き方が逆にして電流の向きが同じにしても、誘導起電力の向きは逆になる。   Preferably, the at least two coils are arranged in the same manner in which the coils facing each other are wound in the opposite direction, or in the opposite direction, or in opposite directions in which the opposite coils are wound. . For example, if the direction of the current is reversed with the same winding method by differential connection, the direction of the induced electromotive force is reversed. In addition, for example, even if the opposite direction of winding is reversed and the direction of current is the same due to the summing connection, the direction of the induced electromotive force is reversed.

また好ましくは、前記少なくとも2列のコイルの列は、各列が4個のコイルから成って、第1のコイル、第2のコイル、第3のコイル、第4のコイルの順に配列され、
第1のコイル〜第4のコイルは、永久磁石の列での永久磁石1個分の長さに配列され、
前記少なくとも2列のコイルの列では、各列の前後両端にダミーのコイルが設けられて、第1のコイルから見て、第2のコイルとは反対側に、第1のダミーコイルが、
第4のコイルから見て、第3のコイルとは反対側に、第2のダミーコイルが配置され、
第1のコイルと第2のコイルと第2のダミーコイルとに、+sinωtに従って変化する電圧が加えられ、
第3のコイルと第4のコイルと第1のダミーコイルとに、−sinωtに従って変化する電圧が加えられ、
第1のコイルからsinθsinωtの出力を、第2のコイルからcosθsinωtの出力を、第3のコイルから−sinθsinωtの出力を、第4のコイルから−cosθsinωtの出力が取り出され、
前記少なくとも2列のコイルの列が、永久磁石の列での永久磁石1個分移動すると、磁気式変位センサの出力は位相θが2π変化する、ように構成されている。ダミーのコイルについて説明する。列の中央部のコイルでは、両側に他のコイルがあるのに対し、列の端のコイルでは片側にしか他のコイルがない。このため列の中央と端とで、コイル間の相互インダクタンスが異なり、コイルのインピーダンスは不揃いな状態になる。ここでコイルの列の前後両端に、ダミーのコイルを設けると、列の何れの位置の検出用のコイルも左右両側に他のコイルがあり、インピーダンスがコイル間で均一になる。
Preferably, the at least two coils are arranged in the order of a first coil, a second coil, a third coil, and a fourth coil, each row including four coils.
The first to fourth coils are arranged in the length of one permanent magnet in the row of permanent magnets,
In the at least two coil rows, dummy coils are provided at both front and rear ends of each row, and when viewed from the first coil, the first dummy coil is on the opposite side of the second coil.
A second dummy coil is disposed on the side opposite to the third coil as seen from the fourth coil,
A voltage that varies according to + sinωt is applied to the first coil, the second coil, and the second dummy coil,
A voltage that varies according to −sinωt is applied to the third coil, the fourth coil, and the first dummy coil,
The output of sinθsinωt is extracted from the first coil, the output of cosθsinωt from the second coil, the output of −sinθsinωt from the third coil, and the output of −cosθsinωt from the fourth coil,
When the row of at least two coils moves by one permanent magnet in the row of permanent magnets, the output of the magnetic displacement sensor is configured to change the phase θ by 2π. The dummy coil will be described. The coil at the center of the row has other coils on both sides, whereas the coil at the end of the row has other coils only on one side. For this reason, the mutual inductance between the coils is different between the center and the end of the row, and the impedances of the coils are not uniform. Here, if dummy coils are provided at both front and rear ends of the coil row, the detection coils at any position in the row have other coils on both the left and right sides, and the impedance becomes uniform between the coils.

実施例での移動体の軌道を模式的に示す図The figure which shows the track | orbit of a moving body in an Example typically 移動体と軌道の鉛直方向断面図Vertical section of moving object and orbit 移動体の走行駆動系のブロック図Block diagram of the traveling drive system of a moving object 磁気式変位センサの出力から制御中心の位置への変換を示す図Diagram showing conversion from output of magnetic displacement sensor to control center position 実施例での磁気式変位センサのコイルの配置を永久磁石とを示す図The figure which shows the arrangement | positioning of the coil of the magnetic displacement sensor in an Example with a permanent magnet 磁気式変位センサでの信号処理回路を示すブロック図Block diagram showing a signal processing circuit in a magnetic displacement sensor 変形例での磁気式変位センサのコイルの配置を永久磁石とを示す図The figure which shows the arrangement | positioning of the coil of the magnetic displacement sensor in a modification with a permanent magnet 第2の変形例でのコイルの配置を示す図The figure which shows arrangement | positioning of the coil in a 2nd modification. 実施例で、端部の永久磁石を変位センサが部分的に向き合っている状態を示す図The figure which shows the state in which the displacement sensor is partially facing the permanent magnet of an edge part in an Example. 比較例での磁気式変位センサと被検出用磁石とを示す図The figure which shows the magnetic displacement sensor and the magnet for a detection in a comparative example

以下に本発明を実施するための最適実施例を示す。この発明の範囲は、特許請求の範囲の記載に基づき、明細書の記載とこの分野での周知技術とを参酌し、当業者の理解に従って定められるべきである。   In the following, an optimum embodiment for carrying out the present invention will be shown. The scope of the present invention should be determined according to the understanding of those skilled in the art based on the description of the scope of the claims, taking into account the description of the specification and well-known techniques in this field.

図1〜図10に、実施例の磁気式変位センサ22とその変形とを示し、センサ22は移動体システム2での移動体8の位置を検出する。各図において、4は移動体8が走行する軌道で、直線区間5とカーブ区間6とを備えている。移動体8は例えば3輪の車輪9,10,10により軌道4に沿って走行し、カーブ区間6では軌道4によりガイドされるガイドローラ11,11によりガイドされる。カーブ区間6で軌道4は90°向きを変えるが、カーブ区間6は1/4円ではなく、入口付近と出口付近で曲率半径が大きく、中心部で曲率半径が小さい。C1はカーブ区間6の入口付近の曲率中心、C2は中心付近の曲率中心、C3は出口付近の曲率中心である。実施例では軌道4はカーブ区間6の両側に直線区間5,5を設けたL字状の軌道であるが、軌道のレイアウト,種類,及び構造は任意で、例えば直線状の軌道でも良い。また移動体8の種類と構造も任意で、例えば建屋の天井スペースに沿って周回走行する天井走行車、あるいはボールネジで移動する移動体等でもよい。   1 to 10 show a magnetic displacement sensor 22 of the embodiment and its deformation. The sensor 22 detects the position of the moving body 8 in the moving body system 2. In each figure, reference numeral 4 denotes a track on which the moving body 8 travels, and includes a straight section 5 and a curve section 6. The moving body 8 travels along the track 4 by, for example, three wheels 9, 10, and 10 and is guided by the guide rollers 11 and 11 guided by the track 4 in the curve section 6. The track 4 changes 90 ° in the curve section 6, but the curve section 6 is not a ¼ circle, but has a large radius of curvature near the entrance and the exit, and a small radius of curvature at the center. C1 is the center of curvature near the entrance of the curve section 6, C2 is the center of curvature near the center, and C3 is the center of curvature near the exit. In the embodiment, the track 4 is an L-shaped track provided with straight sections 5 and 5 on both sides of the curve section 6, but the layout, type, and structure of the track are arbitrary, and may be a linear track, for example. The type and structure of the moving body 8 are also arbitrary, and may be, for example, an overhead traveling vehicle that travels around along the ceiling space of a building, or a moving body that moves with a ball screw.

移動体8は永久磁石の列12を備えており、これはリニアモータの可動子である。以下では、永久磁石の列12を単に永久磁石12ということがある。永久磁石12の側方に、移動体8は被検出用磁石の列14を備えており、以下、この列14を単に磁石の列14ということがある。Gは移動体8の中心から成る制御中心であり、永久磁石12の中心でもあって、この位置Gを基準にリニアモータを制御する。15は制御中心Gの軌道で、16は被検出用磁石14の軌道で、正確には被検出用磁石14の長さ方向の中心部の軌道である。   The moving body 8 includes a row 12 of permanent magnets, which are movers of a linear motor. Hereinafter, the row 12 of permanent magnets may be simply referred to as permanent magnets 12. On the side of the permanent magnet 12, the moving body 8 includes a row 14 of magnets to be detected. Hereinafter, this row 14 may be simply referred to as a magnet row 14. G is a control center composed of the center of the moving body 8, and is also the center of the permanent magnet 12, and controls the linear motor based on this position G. Reference numeral 15 is a trajectory of the control center G, 16 is a trajectory of the magnet 14 to be detected, and more precisely, the trajectory of the central portion of the length of the magnet 14 to be detected.

図2に軌道4と移動体8とを示し、リニア同期モータの1次側コイル18は可動子の永久磁石12に推力を加え、移動体8を走行させる。なおリニアモータの種類は任意で、リニア誘導モータ等でも良く、またリニアモータに代えて通常の走行モータを移動体8に搭載しても良い。さらに移動体8にリニアモータの1次側コイル18を、軌道4に可動子を設けても良い。20はコイル駆動部で、1次側コイル18を駆動する。22は磁気式変位センサで、単に変位センサ22ということがあり、被検出用磁石の列14を検出する。また移動体8は、軌道4側から非接触給電を受け、24はリッツ線、25は受電用のコイルである。26は軌道4の支柱で、非接触給電に代えて、接触式の給電方式としても良く、あるいはリチウムイオン電池などを移動体8に搭載しても良い。   FIG. 2 shows the track 4 and the moving body 8, and the primary side coil 18 of the linear synchronous motor applies thrust to the permanent magnet 12 of the mover to cause the moving body 8 to travel. In addition, the kind of linear motor is arbitrary, a linear induction motor etc. may be sufficient, and it replaces with a linear motor and a normal traveling motor may be mounted in the moving body 8. FIG. Further, the primary coil 18 of the linear motor may be provided on the moving body 8, and the mover may be provided on the track 4. Reference numeral 20 denotes a coil driving unit that drives the primary coil 18. Reference numeral 22 denotes a magnetic displacement sensor, sometimes simply referred to as a displacement sensor 22, which detects the row 14 of magnets to be detected. The moving body 8 receives non-contact power supply from the track 4 side, 24 is a litz wire, and 25 is a coil for receiving power. Reference numeral 26 denotes a support of the track 4. Instead of the non-contact power supply, a contact-type power supply method may be used, or a lithium ion battery or the like may be mounted on the moving body 8.

図3に1次側コイル18と変位センサ22等の配置を示す。1次側コイル18は制御中心の軌道15に沿って配置され、変位センサ22は被検出用磁石の軌道16に沿って配置されている。カーブ区間での複数の変位センサ22の出力は、統合ユニット27中のセレクタ28へ入力され、セレクタ28は振幅が最大となるセンサの出力により、LUT30(参照表)から制御中心の位置を読み出す。LUT30はカーブ区間での制御中心の位置を、カーブ区間6での何番目の変位センサ22を用いているかと、用いている変位センサからの出力とを見出しとして記憶し、読み出した制御中心の位置は統合ユニット27からコントローラ32へ出力される。実施例では1個のLUT30を用いるが、各変位センサ22に個別のLUTを設けて、各変位センサ22からカーブ区間6での制御中心の位置とセンサの出力の振幅を出力し、セレクタ28で選択するようにしても良い。なお隣り合った一対の変位センサ22が同程度の振幅を出力する場合、2つのセンサの出力から各々制御中心の位置を求めて例えば平均しても、あるいは2個のセンサの一方の出力により制御中心の位置を求めても良い。   FIG. 3 shows the arrangement of the primary coil 18 and the displacement sensor 22 and the like. The primary coil 18 is disposed along the track 15 of the control center, and the displacement sensor 22 is disposed along the track 16 of the magnet to be detected. The outputs of the plurality of displacement sensors 22 in the curve section are input to the selector 28 in the integrated unit 27, and the selector 28 reads the position of the control center from the LUT 30 (reference table) by the output of the sensor having the maximum amplitude. The LUT 30 stores the position of the control center in the curve section as the heading of the position of the displacement sensor 22 used in the curve section 6 and the output from the displacement sensor used, and the position of the read control center Is output from the integrated unit 27 to the controller 32. In the embodiment, one LUT 30 is used, but each displacement sensor 22 is provided with an individual LUT, and the position of the control center and the amplitude of the sensor output in the curve section 6 are output from each displacement sensor 22. You may make it select. When a pair of adjacent displacement sensors 22 output the same amplitude, the positions of the control centers are obtained from the outputs of the two sensors, for example, averaged, or controlled by the output of one of the two sensors. The center position may be obtained.

図4に示すように、統合ユニット27への入力は、カーブ区間での変位センサの番号と変位センサの出力とで、前記のようにセレクタ28で変位センサを選択し、LUT30で制御中心の位置に変換する。なおカーブ区間のみでなく、直線区間にも、複数の変位センサの出力を統合し制御中心の位置に変換する統合ユニットを設けても良い。   As shown in FIG. 4, the input to the integrated unit 27 is the number of the displacement sensor and the output of the displacement sensor in the curve section. As described above, the selector 28 selects the displacement sensor, and the LUT 30 positions the control center. Convert to Note that an integrated unit that integrates outputs of a plurality of displacement sensors and converts them into a control center position may be provided not only in the curve section but also in the straight section.

直線区間5では、変位センサ22は変位センサ22よりも間隔を空けて配置されており、例えば変位センサ22により求まる制御中心の座標を直接にコントローラ32へ出力する。以上の結果、直線区間5及びカーブ区間6で移動体8の制御中心の座標が求まり、コントローラ32はこの座標を元にコイル駆動部20を介して1次側コイル18をフィードバック制御し、移動体8を走行させる。   In the straight line section 5, the displacement sensor 22 is arranged with a gap from the displacement sensor 22. For example, the coordinates of the control center obtained by the displacement sensor 22 are directly output to the controller 32. As a result, the coordinates of the control center of the moving body 8 are obtained in the straight section 5 and the curve section 6, and the controller 32 feedback-controls the primary side coil 18 via the coil drive unit 20 based on these coordinates, and the moving body Run 8.

図5に変位センサ22の構造を示す。永久磁石の列14ではN極の磁石34とS極の磁石35とが交互に並び、変位センサ22は少なくとも2列のコイルの列40,42を備えている。以下の各図での黒点はコイルの巻き始めを示し、図5の各コイルは時計回りに巻かれて、列40のコイル44,45は図の左から右への向きに巻かれ、列42のコイル46,47は図の右から左への向きに巻かれている。列40と列42とではコイルは時計回りに巻かれて巻き始めの位置が逆であり、これはコイルの巻き方が逆の例である。なお一方のコイルを時計回りに他方のコイルを反時計回りに巻き、巻き始めの位置を同じにしても、巻き方は逆になる。   FIG. 5 shows the structure of the displacement sensor 22. In the permanent magnet row 14, N-pole magnets 34 and S-pole magnets 35 are alternately arranged, and the displacement sensor 22 includes at least two coil rows 40 and 42. The black dots in the following figures indicate the start of winding of the coils, each coil in FIG. 5 is wound clockwise, and the coils 44 and 45 in the row 40 are wound in the direction from left to right in the drawing, and the row 42 The coils 46 and 47 are wound in the direction from right to left in the figure. In the row 40 and the row 42, the coils are wound clockwise and the winding start position is reversed, which is an example in which the winding method of the coils is reversed. Even if one coil is wound clockwise and the other coil is wound counterclockwise, and the winding start position is the same, the winding method is reversed.

列40,42の各コイルは互いに向き合って、変位の検出方向の位置は同じで、コイルの列40,42の始まりと終わりは同じ位置にある。コイルの列40,42は各6個のコイルを備え、両端のコイル45,47はインピーダンス調整用のダミーコイルで、中央の各4個のコイル44,46は検出用コイルで、コイル45と47及びコイル44と46は和動結線されて、同じ向きに電流が流れる。   The coils in the rows 40 and 42 face each other, the positions in the displacement detection direction are the same, and the beginning and end of the rows 40 and 42 of coils are at the same position. The coil rows 40 and 42 each have six coils, the coils 45 and 47 at both ends are dummy coils for impedance adjustment, and the four coils 44 and 46 at the center are detection coils, and the coils 45 and 47 are coils. The coils 44 and 46 are connected in a Japanese-style manner, and current flows in the same direction.

48はDAコンバータを用いた交流電源で、電源の種類は任意であり、出力をV0sinωtとする。50は相補バッファで、+1/2V0sinωtと-1/2V0sinωtの2つの出力をコイルの列40,42へ供給し、検出用コイル44,46は各4個で磁石34,35の、変位の検出方向に沿った、1個分の長さとなるように配置されている。磁石の列14に対し、変位センサ22が永久磁石1個分移動すると、センサ22の出力は2πだけ位相が変化する。永久磁石に対する位相をθとすると、コイル44,46の出力は 、図の左から右への順に、sinθsinωtとcosθsinωt 並びに−sinθsinωtと−cosθsinωtの4種類となる。   Reference numeral 48 denotes an AC power supply using a DA converter. The type of power supply is arbitrary, and the output is V0sinωt. 50 is a complementary buffer, which supplies two outputs of + 1 / 2V0sinωt and -1 / 2V0sinωt to the coil arrays 40 and 42, and four detection coils 44 and 46 each detect the displacement of the magnets 34 and 35. It arrange | positions so that it may become one length along a direction. When the displacement sensor 22 moves by one permanent magnet with respect to the magnet row 14, the phase of the output of the sensor 22 changes by 2π. Assuming that the phase with respect to the permanent magnet is θ, the outputs of the coils 44 and 46 are four types of sin θ sin ωt and cos θ sin ωt and −sin θ sin ωt and −cos θ sin ωt in order from the left to the right in the figure.

磁石の列14に対する変位センサ22の相対速度が変化すると、磁石34,35から受けるコイル44,46内の磁界が変動することにより、誘導起電力が生じる。ここで図5のように、向かい合ったコイル44,46間で巻き始めの位置を逆にして和動結線すると、誘導起電力は向かい合ったコイル44,46間で逆になり、この結果、誘導起電力をキャンセルできる。   When the relative speed of the displacement sensor 22 with respect to the magnet row 14 changes, the magnetic field in the coils 44 and 46 received from the magnets 34 and 35 fluctuates, thereby generating an induced electromotive force. Here, as shown in FIG. 5, when the winding start position is reversed between the opposed coils 44 and 46 and the summing connection is made, the induced electromotive force is reversed between the opposed coils 44 and 46. As a result, the induced electromotive force is reversed. The power can be canceled.

両端にダミーコイル45,47を設けると、検出用コイル44,46はいずれも左右両側に他のコイルがあるので、コイル間の相互インダクタンスが共通になり、検出用コイル44,46のインピーダンスを均一にできる。   If the dummy coils 45 and 47 are provided at both ends, both the detection coils 44 and 46 have other coils on the left and right sides, so that the mutual inductance between the coils becomes common, and the impedance of the detection coils 44 and 46 is uniform. Can be.

図5の回路からsinθsinωtとcosθsinωt の出力が得られる。以降の信号処理を図6に示し、ωtの値は交流電源48側で既知なので、変換部52はsinθsinωtをsinθcosωtに変換する。次いでsinθcosωtとcosθsinωtとを加算部54で加算すると、sin(θ+ωt)が得られる。そして例えばθ+ωt=nπ(nは整数)となる時刻を0クロッシング検出部56で求めて、位相θを検出する。   The outputs of sinθsinωt and cosθsinωt are obtained from the circuit of FIG. The subsequent signal processing is shown in FIG. 6, and since the value of ωt is known on the AC power supply 48 side, the converter 52 converts sinθsinωt to sinθcosωt. Next, sin (θ + ωt) is obtained by adding sinθcosωt and cosθsinωt by the adding unit 54. Then, for example, a time when θ + ωt = nπ (n is an integer) is obtained by the 0 crossing detector 56, and the phase θ is detected.

図7は変形例の変位センサを示し、特に指摘した点以外は変位センサ22と同じである。60は新たなコイルの列で、61は検出用コイル、62はダミーコイルで、コイル61,62はコイル44,45と巻き方が同じで、差動結線により逆向きに電流が流れるようにしてある。そしてコイル44,61は変位の検出方向に沿って同じ位置に配置され、同様にコイル45,62も変位の検出方向に沿って同じ位置に配置されている。差動結線のため、コイル44,45とコイル61,62とでは電流の向きが逆で、このため相対速度による誘導起電力はコイル44,61間で互いにキャンセルされる。   FIG. 7 shows a modified displacement sensor, which is the same as the displacement sensor 22 except for the points specifically pointed out. 60 is a new coil array, 61 is a detection coil, 62 is a dummy coil, and the coils 61 and 62 are wound in the same way as the coils 44 and 45 so that current flows in the opposite direction by differential connection. is there. The coils 44 and 61 are arranged at the same position along the displacement detection direction. Similarly, the coils 45 and 62 are arranged at the same position along the displacement detection direction. Due to the differential connection, the direction of current is reversed between the coils 44 and 45 and the coils 61 and 62, so that the induced electromotive force due to the relative speed is canceled between the coils 44 and 61.

図8は第2の変形例を示し、磁気式変位センサでの向かい合った1対のコイル80,81のみを示し、コイル80,81が例えば6ペア直列に配置されて、図5のように和動結線されて動作する。コイル80,81は巻き始めの位置が共通で、コイル80は時計回りに、コイル81は反時計回りに巻かれ、図のように電流を加えると、誘導起電力はコイル80とコイル81とで逆向きになってキャンセルされる。   FIG. 8 shows a second modification, showing only a pair of coils 80 and 81 facing each other in a magnetic displacement sensor. For example, six pairs of coils 80 and 81 are arranged in series, and as shown in FIG. Operates with dynamic connection. The coils 80 and 81 have the same winding start position, the coil 80 is wound clockwise, the coil 81 is wound counterclockwise, and when an electric current is applied as shown in the figure, the induced electromotive force is generated between the coil 80 and the coil 81. Reversed and canceled.

実施例の磁気式変位センサは、検出用コイル44,46の一部が永久磁石34,35に向き合っていれば、例えば変位の検出方向に沿って2個以上のコイルが向き合っていれば、変位を検出できる。この状況を図9に示し、右端の検出用コイル44,46は右端の磁石34rからはみ出しているが、磁石34rからの磁界を受けているので、変位を検出できる。これは相対速度による誘導起電力をコイル44,46間でキャンセルしているからである。   In the magnetic displacement sensor of the embodiment, if a part of the detection coils 44, 46 faces the permanent magnets 34, 35, for example, if two or more coils face each other along the displacement detection direction, the displacement Can be detected. This situation is shown in FIG. 9, and the detection coils 44 and 46 at the right end protrude from the magnet 34r at the right end, but the displacement can be detected because they receive the magnetic field from the magnet 34r. This is because the induced electromotive force due to the relative speed is canceled between the coils 44 and 46.

比較例の磁気式変位センサを図10に示し、実施例と同じ符号は同じものを表す。比較例ではコイル44aとコイル44b間で誘導起電力をキャンセルするので、2個の磁石34,35と向き合うことが必要で、長い磁石の列が必要である。また図10のように一部の検出用コイル44bが磁石34からはみ出すと、誘導起電力をキャンセルできない。   The magnetic displacement sensor of a comparative example is shown in FIG. In the comparative example, since the induced electromotive force is canceled between the coil 44a and the coil 44b, it is necessary to face the two magnets 34 and 35, and a long magnet row is required. In addition, when some of the detection coils 44b protrude from the magnet 34 as shown in FIG. 10, the induced electromotive force cannot be canceled.

実施例では以下の効果が得られる。
1) 永久磁石34,35とコイル44,46との相対速度が、変位の検出結果に影響し難い。
2) 永久磁石の列14が短くても、変位を検出できる。また検出用コイル44,46の一部が永久磁石34,35からはみ出していても、変位を検出できる。
3) 長い範囲に渡って永久磁石とコイルを向かい合わせることが難しく、直線区間に対して減速して走行することが多いカーブ区間でも、変位を容易に検出できる。
In the embodiment, the following effects can be obtained.
1) The relative speed between the permanent magnets 34 and 35 and the coils 44 and 46 hardly affects the detection result of the displacement.
2) Even if the permanent magnet row 14 is short, the displacement can be detected. Further, even if a part of the detection coils 44 and 46 protrudes from the permanent magnets 34 and 35, the displacement can be detected.
3) It is difficult to make permanent magnets and coils face each other over a long range, and displacement can be easily detected even in curved sections where the vehicle often travels at a reduced speed relative to a straight section.

2 移動体システム
4 軌道
5 直線区間
6 カーブ区間
8 移動体
9,10 車輪
11 ガイドローラ
12 永久磁石の列(可動子)
14 被検出用磁石の列
15 制御中心の軌道
16 被検出用磁石の中心軌道
18 1次側コイル
20 コイル駆動部
22 磁気式変位センサ
24 リッツ線
25 コイル
26 支柱
27 統合ユニット
28 セレクタ
30 LUT
32 コントローラ
34 N極の磁石
35 S極の磁石
40,42 コイルの列
44,46 検出用コイル
45,47 ダミーコイル
48 交流電源
50 相補バッファ
52 変換部
54 加算部
56 0クロッシング検出部
60 コイルの列
61 検出用コイル
62 ダミーコイル
80,81 コイル

G 制御中心
C1,C2,C3 曲率中心
2 Moving body system 4 Track 5 Straight section 6 Curve section 8 Moving body 9, 10 Wheel 11 Guide roller 12 Row of permanent magnets (mover)
14 Detected magnet array 15 Control center trajectory 16 Detected magnet central trajectory 18 Primary coil 20 Coil drive unit 22 Magnetic displacement sensor 24 Litz wire 25 Coil 26 Strut 27 Integrated unit 28 Selector 30 LUT
32 Controller 34 N-pole magnet 35 S-pole magnet 40, 42 Coil array 44, 46 Detection coil 45, 47 Dummy coil 48 AC power supply 50 Complementary buffer 52 Conversion section 54 Addition section 56 0 Crossing detection section 60 Coil array 61 Coil for detection 62 Dummy coil 80, 81 Coil

G Control center
C1, C2, C3 Center of curvature

Claims (4)

被検出用の永久磁石の列とコイルの列との変位を検出する磁気式変位センサであって、
変位の検出方向に沿って、同数のコイルから成り、かつ変位の検出方向に沿っての列の始まりと終わりの位置が等しい少なくとも2列のコイルの列と、永久磁石の列とが設けられ、
前記少なくとも2列のコイルでの、向かい合った少なくとも一対のコイルが互いに並列に接続され、
前記少なくとも一対のコイルに、sinωtに従って変化する電圧を加える電源が設けられ、
前記少なくとも一対のコイルを流れる電流を出力として取り出すように構成されて、
永久磁石の列とコイルの列との相対速度と、永久磁石の列からの磁界とによる変位センサの出力への影響を、前記少なくとも2列のコイルの列間でキャンセルするように構成されていることを特徴とする、磁気式変位センサ。
A magnetic displacement sensor for detecting a displacement between a row of permanent magnets to be detected and a row of coils,
Along the detection direction of displacement, there are provided at least two rows of coils consisting of the same number of coils and having the same start and end position of the row along the detection direction of displacement, and a row of permanent magnets,
At least a pair of coils facing each other in the at least two rows of coils are connected in parallel to each other;
A power source for applying a voltage that changes according to sinωt is provided to the at least one pair of coils,
The current flowing through the at least one pair of coils is taken out as an output,
An influence on the output of the displacement sensor due to the relative speed between the row of permanent magnets and the row of coils and the magnetic field from the row of permanent magnets is canceled between the rows of the at least two rows of coils. A magnetic displacement sensor.
前記少なくとも2列のコイルの列は、向かい合ったコイルの巻き方が同じで電流の向きが逆か、向かい合ったコイルの巻き方が逆で電流の向きが同じになるようにされていることを特徴とする、請求項1の磁気式変位センサ。   The at least two coils are arranged such that the facing coils are wound in the same direction and the current direction is reversed, or the facing coils are wound in the opposite direction and the current direction is the same. The magnetic displacement sensor according to claim 1. 前記少なくとも2列のコイルの列は、各列が4個のコイルから成って、第1のコイル、第2のコイル、第3のコイル、第4のコイルの順に配列され、The at least two coil rows are each composed of four coils, and are arranged in the order of a first coil, a second coil, a third coil, and a fourth coil,
第1のコイル〜第4のコイルは、永久磁石の列での永久磁石1個分の長さに配列され、  The first to fourth coils are arranged in the length of one permanent magnet in the row of permanent magnets,
前記少なくとも2列のコイルの列では、各列の前後両端にダミーのコイルが設けられて、第1のコイルから見て、第2のコイルとは反対側に、第1のダミーコイルが、  In the at least two coil rows, dummy coils are provided at both front and rear ends of each row, and when viewed from the first coil, the first dummy coil is on the opposite side of the second coil.
第4のコイルから見て、第3のコイルとは反対側に、第2のダミーコイルが配置され、A second dummy coil is disposed on the side opposite to the third coil as seen from the fourth coil,
第1のコイルと第2のコイルと第2のダミーコイルとに、+sinωtに従って変化する電圧が加えられ、  A voltage that varies according to + sinωt is applied to the first coil, the second coil, and the second dummy coil,
第3のコイルと第4のコイルと第1のダミーコイルとに、−sinωtに従って変化する電圧が加えられ、  A voltage that varies according to −sinωt is applied to the third coil, the fourth coil, and the first dummy coil,
第1のコイルからsinθsinωtの出力を、第2のコイルからcosθsinωtの出力を、第3のコイルから−sinθsinωtの出力を、第4のコイルから−cosθsinωtの出力が取り出され、  The output of sinθsinωt is extracted from the first coil, the output of cosθsinωt from the second coil, the output of −sinθsinωt from the third coil, and the output of −cosθsinωt from the fourth coil,
前記少なくとも2列のコイルの列が、永久磁石の列での永久磁石1個分移動すると、磁気式変位センサの出力は位相θが2π変化する、ように構成されていることを特徴とする請求項1または2の磁気式変位センサ。  The output of the magnetic displacement sensor is configured so that the phase θ changes by 2π when the at least two coil arrays move by one permanent magnet in the permanent magnet array. Item 3. A magnetic displacement sensor according to Item 1 or 2.
磁気式変位センサにより、被検出用の永久磁石の列とコイルの列との変位を検出する変位方法であって、
磁気式変位センサでは、変位の検出方向に沿って、同数のコイルから成り、かつ変位の検出方向に沿っての列の始まりと終わりの位置が等しい少なくとも2列のコイルの列と、永久磁石の列とが設けられ、
前記少なくとも2列のコイルでの、向かい合った少なくとも一対のコイルが互いに並列に接続され、
前記少なくとも一対のコイルに、電源からsinωtに従って変化する電圧を加え、
前記少なくとも一対のコイルを流れる電流を出力として取り出して、
永久磁石の列とコイルの列との相対速度と、永久磁石の列からの磁界とによる変位センサの出力への影響を、前記少なくとも2列のコイルの列間でキャンセルすることを特徴とする、変位検出方法。
A displacement method for detecting displacement between a row of permanent magnets to be detected and a row of coils by a magnetic displacement sensor,
In the magnetic displacement sensor, there are at least two coil rows that have the same number of coils along the displacement detection direction and that have the same start and end positions along the displacement detection direction, and the permanent magnets. A column is provided,
At least a pair of coils facing each other in the at least two rows of coils are connected in parallel to each other;
A voltage that varies according to sinωt from a power source is applied to the at least one pair of coils,
Taking out the current flowing through the at least one pair of coils as an output,
The influence on the output of the displacement sensor due to the relative speed between the row of permanent magnets and the row of coils and the magnetic field from the row of permanent magnets is canceled between the rows of the at least two coils, Displacement detection method.
JP2011161284A 2011-07-22 2011-07-22 Magnetic displacement sensor and displacement detection method Active JP5630660B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011161284A JP5630660B2 (en) 2011-07-22 2011-07-22 Magnetic displacement sensor and displacement detection method
PCT/JP2012/061734 WO2013014991A1 (en) 2011-07-22 2012-05-08 Magnetic displacement sensor and method for detecting displacement
TW101125765A TWI507662B (en) 2011-07-22 2012-07-18 Magnetic displacement sensor and displacement detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011161284A JP5630660B2 (en) 2011-07-22 2011-07-22 Magnetic displacement sensor and displacement detection method

Publications (2)

Publication Number Publication Date
JP2013024779A JP2013024779A (en) 2013-02-04
JP5630660B2 true JP5630660B2 (en) 2014-11-26

Family

ID=47600851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011161284A Active JP5630660B2 (en) 2011-07-22 2011-07-22 Magnetic displacement sensor and displacement detection method

Country Status (3)

Country Link
JP (1) JP5630660B2 (en)
TW (1) TWI507662B (en)
WO (1) WO2013014991A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201833095A (en) 2016-11-30 2018-09-16 日商三菱瓦斯化學股份有限公司 Compound, resin, composition, method for forming resist pattern, and method for forming circuit pattern

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5621076A (en) * 1979-07-31 1981-02-27 Kyosan Electric Mfg Co Ltd Magnetism detector
JPS5670466A (en) * 1979-11-13 1981-06-12 Yokogawa Hokushin Electric Corp Detector for change in impedance
JPS57179709A (en) * 1981-04-30 1982-11-05 Sony Magnescale Inc Magnetic sensor
US4658153A (en) * 1984-06-18 1987-04-14 Amnon Brosh Planar coil apparatus for providing a frequency output vs. position
JPS6338101A (en) * 1986-08-02 1988-02-18 Makome Kenkyusho:Kk Iron detecting device
JPH0739922B2 (en) * 1986-10-31 1995-05-01 株式会社マコメ研究所 Position detector for hydraulic or pneumatic cylinders
JPH0325375A (en) * 1989-06-23 1991-02-04 Hitachi Ltd Eddy current measuring instrument
JPH0718684B2 (en) * 1989-10-25 1995-03-06 株式会社マコメ研究所 Position detector
JP3030651B2 (en) * 1990-10-19 2000-04-10 株式会社エスジー Linear position detector
JP3173195B2 (en) * 1992-11-18 2001-06-04 株式会社三洋物産 Detector
JP3399087B2 (en) * 1994-05-20 2003-04-21 株式会社三洋物産 Detector
JPH08168232A (en) * 1994-12-08 1996-06-25 Fanuc Ltd Linear encoder device
JPH08201061A (en) * 1995-01-31 1996-08-09 Shimadzu Corp Thin film magnetic sensor
JPH08271283A (en) * 1995-03-31 1996-10-18 Sony Corp Position sensor and detecting device of position
JP3862033B2 (en) * 1996-05-27 2006-12-27 株式会社アミテック Position detection device
WO1998033041A1 (en) * 1997-01-28 1998-07-30 Sony Precision Technology Inc. Magnetic displacement detector and carburetor opening detector
JPH1114407A (en) * 1997-06-25 1999-01-22 Keenet Syst:Kk Quick-response measurement controller and its measuring system
JPH11223505A (en) * 1997-12-03 1999-08-17 Mitsutoyo Corp Induction type position measurement device
JPH11325808A (en) * 1998-05-14 1999-11-26 Sanyo Electric Co Ltd Displacement sensor
JP4464517B2 (en) * 1999-03-15 2010-05-19 株式会社アミテック Position detection device
JP4403323B2 (en) * 1999-06-15 2010-01-27 ソニー株式会社 POSITION DETECTION DEVICE, CAMERA DEVICE, AND LENS POSITION DETECTION METHOD
JP2001099654A (en) * 1999-10-04 2001-04-13 Alps Electric Co Ltd Flux gate sensor and its manufacturing method
JP2002022488A (en) * 2000-07-13 2002-01-23 Mitsutoyo Corp Induction-type transducer
JP4642987B2 (en) * 2000-09-28 2011-03-02 株式会社アミテック Relative rotational position detector
JP2003156364A (en) * 2001-11-22 2003-05-30 Murata Mach Ltd Direct actuator having slide position detector
JP4248324B2 (en) * 2003-07-09 2009-04-02 三菱電機株式会社 Actuator
JP2005195391A (en) * 2004-01-05 2005-07-21 Murata Mach Ltd Conveying carriage
JP4513673B2 (en) * 2005-07-01 2010-07-28 村田機械株式会社 Mobile system
JP4974849B2 (en) * 2007-10-30 2012-07-11 大和製衡株式会社 Weight sorter with metal detector
JP4835960B2 (en) * 2009-04-24 2011-12-14 村田機械株式会社 Mobile system

Also Published As

Publication number Publication date
WO2013014991A1 (en) 2013-01-31
JP2013024779A (en) 2013-02-04
TW201312084A (en) 2013-03-16
TWI507662B (en) 2015-11-11

Similar Documents

Publication Publication Date Title
JP5333537B2 (en) MOBILE BODY SYSTEM AND MOBILE BODY TRAVEL CONTROL METHOD
CN103608272B (en) Delivery system
JP5486874B2 (en) Distributed linear motor and distributed linear motor control method
JP4189826B2 (en) Traveling cart and traveling cart system
JP5562333B2 (en) Position detector for moving magnet linear motor
US20090195195A1 (en) Position Feedback Device for a Linear Motor
JP2011050200A (en) Mobile system
JP2011220873A (en) Magnetic pole detection system
CN105151927A (en) Magnetic suspension guiding direct-driven transportation system and control method thereof
JP5007753B2 (en) Position sensor
JP6206458B2 (en) MOBILE BODY AND MOBILE BODY POSITION DETECTING METHOD
JP5630660B2 (en) Magnetic displacement sensor and displacement detection method
JP5783410B2 (en) MOBILE SYSTEM AND MOBILE POSITION DETECTING METHOD
CN204661056U (en) Magnetic suspension guide is to directly driving transport systems
JP6191665B2 (en) Moving body
JP2014238685A (en) Unmanned transfer vehicle
JP2012005233A (en) Controller of linear motor
JPWO2011129140A1 (en) Displacement sensor and displacement detection method
JP4919177B2 (en) Linear scale
JPWO2008117345A1 (en) Linear motor and control method thereof
JP7012172B2 (en) Transport device
JP2006149087A (en) Magnetic levitation propulsion device
JP2012100496A (en) Control determination method and control apparatus for linear motor
KR20100008847A (en) Resolver of electric motor driving system

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140924

R150 Certificate of patent or registration of utility model

Ref document number: 5630660

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250