JPH07332912A - Non-contact potentiometer and displacement sensor of moving body - Google Patents

Non-contact potentiometer and displacement sensor of moving body

Info

Publication number
JPH07332912A
JPH07332912A JP6123803A JP12380394A JPH07332912A JP H07332912 A JPH07332912 A JP H07332912A JP 6123803 A JP6123803 A JP 6123803A JP 12380394 A JP12380394 A JP 12380394A JP H07332912 A JPH07332912 A JP H07332912A
Authority
JP
Japan
Prior art keywords
moving body
soft magnetic
magnetic core
detected
contact potentiometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6123803A
Other languages
Japanese (ja)
Inventor
Masanori Nagase
永瀬昌紀
Shinji Ichikawa
市川慎司
Takahiro Tsuchiya
土屋高広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP6123803A priority Critical patent/JPH07332912A/en
Publication of JPH07332912A publication Critical patent/JPH07332912A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To accurately measure by winding a primary coil and two secondary differential coils having the same number of turns on a soft magnetic core of an open magnetic path at both the longitudinal outer edges, and longitudinally operating a moving body to be detected. CONSTITUTION:When an AC voltage is applied to a primary coil 1, an alternating magnetic field is generated in a soft magnetic core 13, and induced voltages e1, e2 are obtained from secondary coils 2a, 2b by electromagnetic coupling. In this case, when the wired parts of the two coils 2a, 2b are disposed accurately symmetrically with respect to the center of the core 13, a differential output voltage (e) obtained between the coils 2a and 2b becomes '0' since the amplitudes of the voltages e1 and e2 are equal and the phases of the voltages e1, e2 are different at 180 degrees. When a moving body 14 to be detected is disposed near the longitudinal center of the core 13, a DC bias magnetic field is applied to the part of the core 13 to lower its permeability, but the permeabilities of the cores 13 of the coils 2a, 2b have no difference, and the voltage (e) becomes '0'. When the body 14 is approached to and separated from the end of the magnetic flux 13, a difference occurs between the voltages e1 and e2, thereby obtaining a differential output voltage.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、回転または直線移動を
行う物体の回転角または直線移動量を磁気的に検出する
ための非接触ポテンショメータ、並びに該非接触ポテン
ショメータを用いた移動体の変位センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-contact potentiometer for magnetically detecting a rotation angle or a linear movement amount of an object that rotates or linearly moves, and a displacement sensor of a moving body using the non-contact potentiometer. .

【0002】[0002]

【従来の技術】自動車電装部品用やFA用の角度セン
サ、回転センサ、直線変位センサなどに直列に接続され
た2つの半導体磁気抵抗素子と、これに磁界を印加する
ための永久磁石とヨークを対向配置させ、永久磁石ない
しヨークを2つの半導体磁気抵抗素子間で相対的に移動
させると、移動した側の磁気的結合度の強まりに応じ
て、半導体磁気抵抗素子の中点接続部から差動出力信号
を取りだすことができる非接触ポテンショメータが従来
から広く提案されている(例えば、特開昭59ー159
578号公報)。
2. Description of the Related Art Two semiconductor magnetoresistive elements connected in series to an angle sensor, a rotation sensor, a linear displacement sensor, etc. for automotive electrical components and FA, a permanent magnet and a yoke for applying a magnetic field thereto. When the permanent magnets or the yokes are arranged so as to face each other and are moved relative to each other between the two semiconductor magnetoresistive elements, the differential from the midpoint connection portion of the semiconductor magnetoresistive element is detected depending on the strength of the magnetic coupling degree on the moved side. A non-contact potentiometer capable of taking out an output signal has been widely proposed in the past (for example, JP-A-59-159).
578).

【0003】半導体磁気抵抗素子を用いた非接触ポテン
ショメータは、接触型のポテンショメータに比べノイズ
や振動などに対する信頼性が高いことや、高速応答性に
優れるなど多くの長所がある。この形式の非接触ポテン
ショメータにおける温度ドリフトの改良は、例えば特公
昭63ー56713号公報に開示されている。これによ
れば、同一温度特性の2つの半導体磁気抵抗素子をブリ
ッジ回路にして、個々の出力の差をポテンショメータの
出力にすることによって、出力の温度誤差が小さくなる
ようにしたものである。
The non-contact potentiometer using a semiconductor magnetoresistive element has many advantages as compared with a contact type potentiometer, such as high reliability against noise and vibration, and excellent high-speed response. The improvement of temperature drift in this type of non-contact potentiometer is disclosed, for example, in Japanese Patent Publication No. 63-56713. According to this, two semiconductor magnetoresistive elements having the same temperature characteristic are formed as a bridge circuit, and the difference between the individual outputs is made the output of the potentiometer, so that the temperature error of the output is reduced.

【0004】[0004]

【発明が解決しようとする課題】従来の半導体磁気抵抗
素子を用いた非接触ポテンショメータは、高価格なうえ
素子の温度特性による誤差を補償しなければならなかっ
た。
A conventional non-contact potentiometer using a semiconductor magnetoresistive element must be expensive and must compensate for an error due to the temperature characteristic of the element.

【0005】本発明は、安価で良好な温度特性が得ら
れ、回転角度あるいは直線変位を広範囲かつ高精度に検
出できる新規な構成の非接触ポテンショメータを得るこ
と、さらに、該非接触ポテンショメータを用いて移動体
の変位センサを提供することを目的としている。
The present invention provides a non-contact potentiometer having a novel structure which is inexpensive and has good temperature characteristics, and is capable of detecting a rotation angle or a linear displacement in a wide range and with high accuracy. Further, the non-contact potentiometer is used to move the non-contact potentiometer. It is intended to provide a body displacement sensor.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、本発明の非接触ポテンショメータは、長手方向両端
部外縁が開磁路の軟磁性磁芯に、一次コイルと同一巻き
数で差動的な2つの二次コイルをそれぞれ巻装し、前記
軟磁性磁芯の長手方向に磁気回路を形成するように近接
配置された磁界発生手段からなる被検出移動体が前記軟
磁性磁芯の長手方向で作動するようにしたものである。
In order to achieve the above object, the non-contact potentiometer of the present invention is a differential magnetic coil having the same number of turns as the primary coil on a soft magnetic core whose outer edges at both longitudinal ends are open magnetic paths. Two moving secondary coils, each of which is wound around the soft magnetic core, and the moving body to be detected, which is composed of magnetic field generating means arranged close to each other in the longitudinal direction of the soft magnetic core, forms a magnetic circuit. It is designed to work with.

【0007】前記軟磁性磁芯は、好ましくは透磁率が高
く、保磁力が小さく、比抵抗が高い強磁性体で、また前
記被検出移動体は、好ましくは最大エネルギー積が高い
永久磁石で構成することが好ましい。
The soft magnetic core is preferably a ferromagnetic material having a high magnetic permeability, a small coercive force, and a high specific resistance, and the movable body to be detected is preferably a permanent magnet having a high maximum energy product. Preferably.

【0008】また、前記軟磁性磁芯は、開磁路を構成す
る欠落部を含む略環状であり、前記被検出移動体は、長
手方向両端部にそれぞれ異なる磁極が配設された略棒状
であることが効果的である。
Further, the soft magnetic core is substantially ring-shaped including a missing portion forming an open magnetic path, and the moving body to be detected is substantially rod-shaped with different magnetic poles arranged at both ends in the longitudinal direction. It is effective to have.

【0009】また、前記軟磁性磁芯は、開磁路を構成す
る欠落部を含む略環状であり、前記被検出移動体は、欠
落部を含む略環状の両端部にそれぞれ異なる磁極が配設
されていることが効果的である。
Further, the soft magnetic core has a substantially annular shape including a missing portion forming an open magnetic path, and the detected moving body has different magnetic poles arranged at both ends of the substantially annular shape including the missing portion. That is effective.

【0010】さらに、前記被検出移動体は、複数の該被
検出移動体が軟磁性磁芯の長手方向側面にそれぞれ近接
配置され、前記軟磁性磁芯の長手方向に所要の磁気回路
を併設していることが効果的である。
Further, in the moving body to be detected, a plurality of the moving bodies to be detected are arranged in proximity to the side surfaces in the longitudinal direction of the soft magnetic core, and a required magnetic circuit is provided in the longitudinal direction of the soft magnetic core. Is effective.

【0011】そして、本発明の移動体の変位センサは、
上記非接触ポテンシテンショメータの一次コイルに交流
電圧を印加して2つの二次コイル間の差動出力を被検出
移動体の変位を表す電気信号に処理する手段を含み、前
記被検出移動体が軟磁性磁芯の長手方向で作動するよう
にしたものである。
The displacement sensor of the moving body of the present invention is
The non-contact potentiometer includes a means for applying an AC voltage to the primary coil of the non-contact potentiometer to process a differential output between the two secondary coils into an electric signal representing a displacement of the detected moving body. It is designed to operate in the longitudinal direction of the soft magnetic core.

【0012】[0012]

【作用】上記のように構成された非接触ポテンショメー
タの一次コイルに交流電圧を印加すると、軟磁性磁芯に
交番磁界が発生し、電磁結合により2つの二次コイルか
ら出力電圧が得られる。前記軟磁性磁芯の長手方向の一
部に直流バイアス磁界を付与する磁界発生手段からなる
被検出移動体が、軟磁性磁芯の長手方向中心の外縁に近
接配置されている場合、軟磁性磁芯中心部分の透磁率が
低下し、同一巻き数で差動的な2つの二次コイルの出力
も同率で低下して、差動出力電圧は0になる。◆変位検
出が必要な物体によって磁界発生手段からなる被検出移
動体が、前記軟磁性磁芯の長手方向中心から何れか一方
の端部方向に移動すると、軟磁性磁芯の透磁率は被検出
移動体が移動した側で低下し、遠ざかった側で大きくな
る。このため2つの二次コイルの出力電圧に差が生じ、
差動出力電圧として検出され非接触ポテンショメータと
して機能する。
When an AC voltage is applied to the primary coil of the non-contact potentiometer constructed as described above, an alternating magnetic field is generated in the soft magnetic core, and an output voltage is obtained from the two secondary coils by electromagnetic coupling. When the detected moving body including a magnetic field generating means for applying a DC bias magnetic field to a part of the soft magnetic core in the longitudinal direction is arranged close to the outer edge of the center of the soft magnetic core in the longitudinal direction, the soft magnetic core The magnetic permeability of the central portion of the core is reduced, the outputs of two differential secondary coils having the same number of turns are also reduced at the same rate, and the differential output voltage becomes zero. ◆ When the object to be detected, which is a magnetic field generating means, moves from the longitudinal center of the soft magnetic core toward one of the end portions depending on the object whose displacement needs to be detected, the magnetic permeability of the soft magnetic core is detected. It decreases when the moving body moves and increases when it moves away. Therefore, a difference occurs in the output voltage of the two secondary coils,
It is detected as a differential output voltage and functions as a non-contact potentiometer.

【0013】前記軟磁性磁芯の透磁率が高いと、前記被
検出移動体によるバイアス磁界の変化を二次コイルから
高感度な差動出力として検出でき、高精度な非接触ポテ
ンショメータとして機能する。また、軟磁性磁芯に交番
磁界が加わると、磁芯のヒステリシス損と渦電流損によ
り発熱する。このヒステリシス損は、ヒステリシスルー
プが囲む面積に、渦電流損は、比抵抗に比例するので、
保磁力が小さく、比抵抗が高い軟磁性磁芯を用いると、
ヒステリシス損と渦電流損による発熱が低減され、安定
した特性の非接触ポテンショメータが得られる。さら
に、前記被検出移動体が、最大エネルギー積の高い永久
磁石であると、軟磁性磁芯に強いバイアス磁界を加える
ことができ、二次コイルから高感度な差動出力が検出で
き、高精度な非接触ポテンショメータとして機能する。
When the magnetic permeability of the soft magnetic core is high, a change in the bias magnetic field due to the moving body to be detected can be detected as a highly sensitive differential output from the secondary coil, and the soft magnetic core functions as a highly accurate non-contact potentiometer. When an alternating magnetic field is applied to the soft magnetic core, heat is generated due to hysteresis loss and eddy current loss of the magnetic core. This hysteresis loss is proportional to the area surrounded by the hysteresis loop, and the eddy current loss is proportional to the specific resistance.
Using a soft magnetic core with low coercive force and high specific resistance,
Heat generation due to hysteresis loss and eddy current loss is reduced, and a non-contact potentiometer with stable characteristics can be obtained. Further, when the moving body to be detected is a permanent magnet having a high maximum energy product, a strong bias magnetic field can be applied to the soft magnetic core, a highly sensitive differential output can be detected from the secondary coil, and high accuracy is achieved. Function as a simple non-contact potentiometer.

【0014】また、前記軟磁性磁芯が開磁路を構成する
欠落部を含む略環状で、前記被検出移動体が軟磁性磁芯
に沿った長手方向両端部にそれぞれ異なる磁極が配設さ
れた略棒状の場合、小型かつ簡単な構造で軟磁性磁芯の
一部にバイアス磁界が与えられ高精度な非接触ポテンシ
ョメータとして機能する。
Further, the soft magnetic core has a substantially annular shape including a missing portion forming an open magnetic path, and the moving body to be detected is provided with different magnetic poles at both ends in the longitudinal direction along the soft magnetic core. In the case of a substantially rod shape, a bias magnetic field is applied to a part of the soft magnetic core with a small and simple structure to function as a highly accurate non-contact potentiometer.

【0015】一方、前記軟磁性磁芯が開磁路を構成する
欠落部を含む略環状で、前記被検出移動体が欠落部を含
む略環状の軟磁性磁芯に沿った両端部にそれぞれ異なる
磁極が配設された場合、一般に略棒状の被検出移動体に
対比して磁極間距離が長くなるので磁界発生手段からな
る被検出移動体内部の反磁界が相対的に弱く、磁気回路
に組込まれた時のバイアス磁界が実効的に高くなる。ま
た磁束が効率よく軟磁性磁芯を通過するので、二次コイ
ルからさらに高感度な差動出力が検出できるようになっ
て、より高精度に回転角を検出する非接触ポテンショメ
ータとして機能する。
On the other hand, the soft magnetic core has a substantially annular shape including a missing portion forming an open magnetic path, and the moving body to be detected has different end portions along the substantially annular soft magnetic core including the missing portion. When the magnetic poles are provided, the distance between the magnetic poles is generally longer than that of the substantially rod-shaped moving body to be detected, so that the demagnetizing field inside the moving body to be detected, which is composed of the magnetic field generating means, is relatively weak and the magnetic field is incorporated in the magnetic circuit. The bias magnetic field is effectively increased when it is released. Further, since the magnetic flux efficiently passes through the soft magnetic core, it becomes possible to detect a more sensitive differential output from the secondary coil, which functions as a non-contact potentiometer that detects the rotation angle with higher accuracy.

【0016】さらに、複数の略棒状もしくは欠落部を含
む略環状の前記被検出移動体を前記軟磁性磁芯の長手方
向側面にそれぞれ近接配置した場合、該軟磁性磁芯の長
手方向に磁気回路が実質的に併設されバイアス磁界の範
囲が広く取れるので、回転角度あるいは直線変位を広範
囲かつ高精度に検出できる非接触ポテンショメータとし
て機能する。
Further, when the plurality of substantially rod-shaped or substantially annular moving bodies to be detected including the cutout portions are respectively arranged close to the longitudinal side surfaces of the soft magnetic core, a magnetic circuit is provided in the longitudinal direction of the soft magnetic core. Since it is installed side by side and a wide range of bias magnetic field can be taken, it functions as a non-contact potentiometer capable of detecting a rotation angle or linear displacement in a wide range and with high accuracy.

【0017】そして、本発明に係わる上記非接触ポテン
シテンショメータの一次コイルに交流電圧を印加し、変
位検出が必要な物体の移動に連動する部材により磁界発
生手段からなる被検出移動体が軟磁性磁芯の長手方向中
心から何れか一方の端部方向に移動すると、この部分の
バイアス磁界が大きくなり、2つの二次コイル間に差動
出力が発生する。この差動出力をACアンプ、同期検
波、平滑を含む整流回路で処理することで移動体の変位
センサとして機能する。
Then, an AC voltage is applied to the primary coil of the non-contact potentiometer according to the present invention, and a member to be detected which is a magnetic field generating means is made of a soft magnetic material by a member interlocking with the movement of an object which requires displacement detection. When moving from the center of the magnetic core in the longitudinal direction to either one of the ends, the bias magnetic field in this portion becomes large, and a differential output is generated between the two secondary coils. By processing this differential output with an AC amplifier, a synchronous detection, and a rectifying circuit including smoothing, it functions as a displacement sensor of the moving body.

【0018】以下、図面を参照して実施例を説明する。
Embodiments will be described below with reference to the drawings.

【0019】[0019]

【実施例】図1は、本発明の非接触ポテンショメータの
基本構造に、交流電源を付記した結線図である。図1の
非接触ポテンショメータは、開磁路を構成している軟磁
性磁芯13と、一次コイル1と、2つの二次コイル2
a、2bと、磁界発生手段からなる被検出移動体14
で、基本的に構成されている。
FIG. 1 is a connection diagram in which an AC power source is added to the basic structure of the non-contact potentiometer of the present invention. The non-contact potentiometer of FIG. 1 has a soft magnetic core 13 forming an open magnetic path, a primary coil 1, and two secondary coils 2
a moving body 14 to be detected including a and 2b and magnetic field generating means
And, it is basically configured.

【0020】開磁路を構成している軟磁性磁芯13と、
一次コイル1と、前記軟磁性磁芯13の中心から粗密の
ないように長手方向両端部方向に差動的に巻装されてい
る2つの同一巻き数の二次コイル2a、2bは、固定ト
ランス部8を構成している。
A soft magnetic core 13 forming an open magnetic path,
The primary coil 1 and the two secondary coils 2a and 2b having the same number of turns, which are differentially wound from both ends of the soft magnetic core 13 in the longitudinal direction at both ends so that there is no density, are fixed transformers. It constitutes part 8.

【0021】被検出移動体14は、軟磁性磁芯13の長
手方向に所要の磁気回路を形成するように、軟磁性磁芯
13の長手方向に近接配置されている。前記被検出移動
体14は、変位検出が必要な物体の移動にともない軟磁
性磁芯13の長手方向中心から何れか一方の端部方向に
連動する。
The moving body 14 to be detected is arranged in the longitudinal direction of the soft magnetic core 13 so as to form a required magnetic circuit in the longitudinal direction of the soft magnetic core 13. The moving body to be detected 14 is interlocked with any one of the end portions from the center of the soft magnetic core 13 in the longitudinal direction along with the movement of an object that requires displacement detection.

【0022】一次コイル1に交流電圧を印加することに
より、軟磁性磁芯13に交番磁界が発生し電磁結合によ
り二次コイル2a、2bから誘起電圧e1、e2が得られ
る。このとき、2つの二次コイル2a、2bの結線部を
軟磁性磁芯13の中心に対し精度良く対称に配置する
と、二次コイル2a、2b間から得られる差動出力電圧
eは、誘起電圧e1とe2の大きさが等しく、位相が18
0度違うため0になる。被検出移動体14を軟磁性磁芯
13の長手方向中心に近接配置すると、軟磁性磁芯13
の一部に直流バイアス磁界が加わり透磁率が低下する
が、二次コイル2a、2b部分の軟磁性磁芯13の透磁
率は実質的に差がなく差動出力電圧eは0である。◆次
に、変位検出が必要な物体により被検出移動体14を軟
磁性磁芯13の何れか一方の端部方向に変位させると、
近づいた場所では直流バイアス磁界が増加し透磁率が減
少する。一方、遠ざかった場所ではバイアス磁界は減少
し透磁率が増加する。この結果、二次コイル2a、2b
の誘起電圧e1、e2の大きさに差が生じ、差動出力電圧
が生ずる。
By applying an AC voltage to the primary coil 1, an alternating magnetic field is generated in the soft magnetic core 13, and induced voltages e1 and e2 are obtained from the secondary coils 2a and 2b by electromagnetic coupling. At this time, when the connection parts of the two secondary coils 2a and 2b are arranged symmetrically with respect to the center of the soft magnetic core 13 with high accuracy, the differential output voltage e obtained between the secondary coils 2a and 2b becomes the induced voltage. The magnitudes of e1 and e2 are equal and the phase is 18
It is 0 because it is 0 degrees different. When the moving body to be detected 14 is disposed close to the center of the soft magnetic core 13 in the longitudinal direction, the soft magnetic core 13 is placed.
Although a DC bias magnetic field is applied to a part of the magnetic field to reduce the magnetic permeability, the magnetic permeability of the soft magnetic cores 13 in the secondary coils 2a and 2b is substantially the same and the differential output voltage e is zero. Next, when the detected moving body 14 is displaced toward one of the ends of the soft magnetic core 13 by an object that requires displacement detection,
The DC bias magnetic field increases and the permeability decreases in the approaching place. On the other hand, in the distant place, the bias magnetic field decreases and the magnetic permeability increases. As a result, the secondary coils 2a, 2b
There is a difference in the magnitudes of the induced voltages e1 and e2 of the two, and a differential output voltage is generated.

【0023】被検出移動体14の変位Xに対する、二次
コイル2a、2bの誘起電圧e1、e2、及び差動出力電
圧eの関係を図2に示す。被検出移動体14の位置が長
手方向中心(X=0)を境にして、出力の絶対値は対称
にあらわれるが、位相は互いに180度異なっているの
で、位相を加味した場合の差動出力電圧eは図3のよう
になる。◆上記技術手段によって、広範囲な回転角度あ
るいは、広範囲な直線変位を高精度に検出できる非接触
ポテンショメータが得られる。
FIG. 2 shows the relationship between the displacement X of the moving body 14 to be detected and the induced voltages e1 and e2 of the secondary coils 2a and 2b and the differential output voltage e. The absolute values of the outputs appear symmetrically with respect to the longitudinal center (X = 0) of the position of the moving body 14 to be detected, but the phases are different from each other by 180 degrees, so the differential output when the phase is added. The voltage e is as shown in FIG. -By the above technical means, a non-contact potentiometer capable of detecting a wide range of rotation angles or a wide range of linear displacement with high accuracy can be obtained.

【0024】軟磁性磁芯は、一次コイルに交流電圧を印
加するので、ヒステリシス損や渦電流損の小さいことが
要求され、このため保磁力が小さく、比抵抗の大きい、
更に高周波で透磁率の高い軟磁性材料、例えばアモルフ
ァスやパーマロイ、珪素鋼などを使用することが好まし
い。
Since the soft magnetic core applies an AC voltage to the primary coil, it is required that hysteresis loss and eddy current loss be small. Therefore, coercive force is small and specific resistance is large.
Further, it is preferable to use a soft magnetic material having a high magnetic permeability at a high frequency, such as amorphous, permalloy or silicon steel.

【0025】また、磁界発生手段からなる被検出移動体
は、応答性と高精度を得るため、Sm1Co5系、Sm2Co1
7系、フェライト、アルニコ、NdFeB系などの最大エ
ネルギー積が高い永久磁石を使用することが好ましい。
In addition, the moving body to be detected which is composed of the magnetic field generating means has Sm1Co5 system and Sm2Co1 system in order to obtain responsiveness and high accuracy.
It is preferable to use a permanent magnet having a high maximum energy product such as 7 series, ferrite, alnico, NdFeB series.

【0026】図4は、本発明の一実施例で、非接触ポテ
ンショメータを回転軸方向に拡大した斜視図である。図
5は、図4に示す実施例の動作を説明するため、主要構
成部品の位置関係を示す図である。◆図4に示す固定ト
ランス部28は、開磁路を構成している軟磁性磁芯に、
一次コイルと、図5に例示するように軟磁性磁芯の中心
からイ方向及びロ方向に差動的かつ粗密のないよう同一
巻き数の2つの二次コイルが、それぞれ巻装されてい
る。これらの一次、二次コイルはどちらが上層に巻かれ
ていてもよい。ただし、図4ではこの構成は図示してい
ない。
FIG. 4 is an enlarged perspective view of the non-contact potentiometer in the rotation axis direction according to the embodiment of the present invention. FIG. 5 is a diagram showing a positional relationship of main components for explaining the operation of the embodiment shown in FIG. ◆ The fixed transformer section 28 shown in FIG. 4 is a soft magnetic core that constitutes an open magnetic path.
As shown in FIG. 5, a primary coil and two secondary coils having the same number of turns are wound in the directions a and b from the center of the soft magnetic core so as to be differential and not dense. Either of these primary and secondary coils may be wound in the upper layer. However, this configuration is not shown in FIG.

【0027】図4に示す固定トランス部28は、非磁性
の固定トランス部支持部材5に固定されている。Sm2C
o17系永久磁石からなる被検出移動体24は、長手方向
端部で回転軸を通る面とほぼ平行な面に、磁極N、Sを
持っており、非磁性の磁石支持部材26で変位検出が必
要な物体の移動に連動する部材7に係着され、ベアリン
グ9によって回転自在になっている。
The fixed transformer section 28 shown in FIG. 4 is fixed to the non-magnetic fixed transformer section supporting member 5. Sm2C
The moving body 24 to be detected, which comprises an o17-based permanent magnet, has magnetic poles N and S on a surface that is substantially parallel to the surface passing through the rotation axis at the end in the longitudinal direction, and the nonmagnetic magnet support member 26 can detect displacement. It is attached to a member 7 that interlocks with the required movement of an object, and is rotatable by a bearing 9.

【0028】図5に示すように、軟磁性磁芯23の形状
は、開磁路を有する環状である。図6は被検出移動体2
4の磁極N、S付近を示す拡大図である。前記開磁路
は、破線で示した磁路Bの磁束を、実線で示した磁路A
の磁束に比べ無視できる程度に小さくするのに効果的で
ある。
As shown in FIG. 5, the soft magnetic core 23 has an annular shape having an open magnetic path. FIG. 6 shows the moving body 2 to be detected.
4 is an enlarged view showing the vicinity of magnetic poles N and S of FIG. In the open magnetic path, the magnetic flux of the magnetic path B shown by the broken line is changed to the magnetic path A shown by the solid line.
It is effective in reducing the magnetic flux to a negligible level.

【0029】図7は図4の実施例において、一次コイル
に50Hzの交流電圧を印加したときの磁極N、Sの回
転角度と2つの二次コイルの誘起電圧e1、e2の差動出
力電圧eの絶対値|e|の関係を示す。出力の絶対値は
±45度までほぼ直線とみなせる。また差動的に結線さ
れた二次コイルの中心位置を境にして、出力は対称にあ
らわれるが、位相は互いに180度異なっているので、
位相を加味すると図3とほぼ同様の傾向を示す。
FIG. 7 shows, in the embodiment of FIG. 4, the rotation angles of the magnetic poles N and S and the differential output voltage e of the induced voltages e1 and e2 of the two secondary coils when an AC voltage of 50 Hz is applied to the primary coil. The absolute value of | e | The absolute value of the output can be regarded as a straight line up to ± 45 degrees. Further, the outputs appear symmetrically with respect to the center position of the secondary coil differentially connected, but the phases are different from each other by 180 degrees,
When the phase is taken into consideration, the same tendency as in FIG. 3 is shown.

【0030】透磁率の変化量は被検出移動体24の大き
さ、すなわち磁極N、Sの回転軸に対する角度によりそ
の比例範囲は変化していくが、幾何学的に回転軸に対す
る角度90度の被検出移動体の場合、右方向にほぼ45
度、左方向にほぼ45度ずつの全部でほぼ90度の変化
が可能である。
The amount of change in permeability changes proportionally depending on the size of the moving body 24 to be detected, that is, the angle of the magnetic poles N and S with respect to the rotation axis. In the case of a moving object to be detected, it is almost 45
It is possible to change the angle by about 45 degrees to the left and about 90 degrees in total.

【0031】図4の実施例において、被検出移動体24
は、後述する図8に示す被検出移動体に比較して小形化
が容易で、形状も単純なので製造もコストも安価となり
量産性に優れている。
In the embodiment of FIG. 4, the moving body to be detected 24 is detected.
Is easier to miniaturize and has a simple shape compared to the moving body to be detected shown in FIG.

【0032】図8は、本発明の他の実施例で、非接触ポ
テンショメータを回転軸方向に拡大した斜視図である。
欠落部を含む環状の両端部にそれぞれ異なる磁極が配置
されており、例えばSm2Co17系永久磁石からなる被検
出移動体34は、磁極N、Sが回転軸に対して90度開
いた構成である。◆この被検出移動体34の場合、図4
に示す被検出移動体24に比較して、該被検出移動体の
回転角が等しくても二次コイル間から得られる差動出力
は、被検出移動体34を用いたもののほうが大きくと
れ、高精度な位置検出が行える。これは、相対的に反磁
界が弱いので実効的なバイアス磁界が高くなるうえ、被
検出移動体34からの発生磁束が略環状の場合は効率よ
く軟磁性磁芯を通過するのに対し、被検出移動体24の
場合は軟磁性磁芯を通過しない漏洩磁束が多いことに起
因する。
FIG. 8 is a perspective view showing another embodiment of the present invention in which a non-contact potentiometer is enlarged in the rotation axis direction.
Different magnetic poles are arranged at both ends of the ring including the cutout portion, and the detected moving body 34 made of, for example, a Sm2Co17 system permanent magnet has a configuration in which the magnetic poles N and S are opened 90 degrees with respect to the rotation axis. ◆ In the case of this detected moving body 34, FIG.
In comparison with the detected moving body 24 shown in FIG. 3, even if the detected moving body has the same rotation angle, the differential output obtained between the secondary coils is larger when the detected moving body 34 is used. Accurate position detection is possible. This is because the demagnetizing field is relatively weak, so that the effective bias magnetic field is high, and when the generated magnetic flux from the moving body to be detected 34 is substantially annular, it efficiently passes through the soft magnetic core. In the case of the detection moving body 24, this is due to the large amount of leakage magnetic flux that does not pass through the soft magnetic core.

【0033】図9は、本発明のさらに他の実施例で、非
接触ポテンショメータを回転軸方向に拡大した斜視図
で、固定トランス部48を磁極N、Sの回転軸に対する
角度が60度である2つの永久磁石からなる被検出移動
体44a、44bで挟み込むように軟磁性磁芯の長手方
向側面にそれぞれ近接配置し、前記軟磁性磁芯の長手方
向に所要の磁気回路が併設されている非接触ポテンショ
メータである。
FIG. 9 is still another embodiment of the present invention, and is a perspective view of a non-contact potentiometer which is enlarged in the direction of the rotation axis. Non-movable magnetic bodies 44a and 44b, which are composed of two permanent magnets, are arranged close to each other in the longitudinal direction of the soft magnetic core so as to be sandwiched therebetween, and a required magnetic circuit is provided in the longitudinal direction of the soft magnetic core. It is a contact potentiometer.

【0034】この構造により得られる差動出力は、右方
向にほぼ60度、左方向にほぼ60度の合わせてほぼ1
20度の変化が可能になる。
The differential output obtained by this structure is about 60 degrees in the right direction and about 60 degrees in the left direction, and the differential output is about 1 in total.
A 20 degree change is possible.

【0035】図10は本発明のさらに他の実施例で、非
接触ポテンショメータを回転軸方向に拡大した斜視図
で、固定トランス部58を回転軸に対して角度が60度
開いた2つの永久磁石54a、54bの欠落部が軟磁性
磁芯の長手方向側面に挟み込むようにそれぞれ近接配置
され、前記軟磁性磁芯の長手方向に所要の磁気回路が併
設されている非接触ポテンショメータである。
FIG. 10 is still another embodiment of the present invention, which is a perspective view of a non-contact potentiometer enlarged in the direction of the rotation axis, in which two fixed magnets with the fixed transformer portion 58 opened at an angle of 60 degrees with respect to the rotation axis. In the non-contact potentiometer, the missing portions of 54a and 54b are arranged close to each other so as to be sandwiched by the longitudinal side surfaces of the soft magnetic core, and a required magnetic circuit is provided side by side in the longitudinal direction of the soft magnetic core.

【0036】この構造は、図8の説明で述べたように被
検出移動体からの発生磁束が、効率よく軟磁性磁芯を通
過し、更に図9と同様に120度の変位検出が可能であ
る。
With this structure, the magnetic flux generated from the moving body to be detected efficiently passes through the soft magnetic core as described in the description of FIG. 8, and further, the displacement detection of 120 degrees can be performed as in FIG. is there.

【0037】図11は移動体の変位センサとして、非接
触ポテンショメータとともに使用される電気回路の例を
示すブロック図である。
FIG. 11 is a block diagram showing an example of an electric circuit used together with a non-contact potentiometer as a displacement sensor for a moving body.

【0038】まず、発振器により一次コイルに交流電圧
を印加する。変位検出が必要な物体の移動により、磁界
発生手段からなる被検出移動体が軟磁性磁芯の長手方向
の何れかの方向に連動すると、この部分のバイアス磁界
による透磁率の変化を2つの二次コイルから差動出力電
圧として検出し、この信号を、ACアンプ、同期検波、
平滑を含む整流回路を経由して被検出移動体の位置を表
す電気信号として出力される。
First, an AC voltage is applied to the primary coil by the oscillator. When the moving body to be detected, which is the magnetic field generating means, is interlocked with any of the longitudinal directions of the soft magnetic core due to the movement of the object whose displacement is required to be detected, the change in the magnetic permeability due to the bias magnetic field in this portion is changed into two. It is detected as a differential output voltage from the next coil, and this signal is detected by the AC amplifier, synchronous detection,
It is output as an electric signal indicating the position of the moving object to be detected via a rectifying circuit including smoothing.

【0039】一次コイルに印加する交流電圧は、応答性
と高精度を得るため、高い周波数を使用することが好ま
しい。
The AC voltage applied to the primary coil preferably has a high frequency in order to obtain responsiveness and high accuracy.

【0040】印加した交流の波形と、二次コイルから出
力される波形とを比べ、同期検波により正方向のみ、負
方向のみの波形にする。あらかじめ磁束発生手段からな
る被検出移動体が右にあった場合は正方向の波形、左に
あった場合は負方向の波形と決めておくことにより、回
転方向を知ることができる。正のみ負のみを取った波形
により、平滑回路で回転角度による差動電圧を出力させ
ることができる。
The waveform of the applied alternating current and the waveform output from the secondary coil are compared, and the waveforms of only the positive direction and only the negative direction are obtained by the synchronous detection. The direction of rotation can be known by predetermining the waveform in the positive direction when the moving body to be detected, which is the magnetic flux generating means, is on the right and the waveform in the negative direction when it is on the left. The smoothing circuit can output the differential voltage depending on the rotation angle by the waveform in which only the positive and the negative are taken.

【0041】[0041]

【発明の効果】以上述べたように本発明によれば、次の
様な効果を得ることが出来る。◆ (a)長手方向両端が開磁路の軟磁性磁芯に、一次コイ
ルと同一巻き数で差動的な2つの二次コイルをそれぞれ
巻装し、変位検出が必要な物体の移動により磁界発生手
段からなる被検出移動体を軟磁性磁芯の長手方向両端部
間で作動するようにしたので、広角度な回転角度あるい
は、広範な直線変位を高精度に検出できる非接触ポテン
ショメータが得られる。
As described above, according to the present invention, the following effects can be obtained. ◆ (a) Two differential secondary coils with the same number of turns as the primary coil are wound around a soft magnetic core whose both ends in the longitudinal direction are open magnetic fields, and the magnetic field is generated by the movement of an object that requires displacement detection. Since the moving body to be detected composed of the generating means is operated between both longitudinal ends of the soft magnetic core, a non-contact potentiometer capable of detecting a wide angle of rotation or a wide range of linear displacement with high accuracy can be obtained. .

【0042】(b)従来の半導体磁気抵抗素子を使用し
たものに比較して、高価な半導体磁気抵抗素子を使用せ
ず、さらに、製造工程上、半導体磁気抵抗素子と磁石、
ヨーク間の磁気的ギャップの厳密な管理などが不必要な
ため、非接触ポテンショメータのコストダウンが可能に
なる。
(B) Compared with the conventional semiconductor magnetoresistive element, an expensive semiconductor magnetoresistive element is not used, and in the manufacturing process, the semiconductor magnetoresistive element and the magnet are used.
Since it is not necessary to strictly control the magnetic gap between the yokes, the cost of the non-contact potentiometer can be reduced.

【0043】(c)従来の半導体磁気抵抗素子を使用し
たものに比較して、保磁力が小さく、比抵抗が高い軟磁
性磁芯にコイルを巻装した構成を採用したので、検出感
度の温度変化が少なく、広範な温度条件下でも充分使用
できる広角度な回転角度あるいは、広範な直線変位を高
精度に検出できる非接触ポテンショメータが得られる。
(C) Since the coil is wound around a soft magnetic core having a small coercive force and a high specific resistance as compared with the conventional semiconductor magnetoresistive element, the temperature of the detection sensitivity is increased. It is possible to obtain a non-contact potentiometer capable of detecting a wide angle of rotation or a wide range of linear displacement with a high degree of accuracy, which changes little and can be sufficiently used even under a wide range of temperature conditions.

【0044】なお、検出感度の温度変化は半導体磁気抵
抗素子の数十分の一である約1℃当たり0.02%程度
であり、広範な温度条件内でも充分使用できる。
The temperature change of the detection sensitivity is about 0.02% per 1 ° C., which is one tenth of the semiconductor magnetoresistive element, and it can be sufficiently used in a wide range of temperature conditions.

【0045】(d)磁界発生手段からなる被検出移動体
が略棒状の両端部にそれぞれ異なる磁極が配設されてい
る場合は、小形で広角度な回転角度あるいは、広範な直
線変位を高精度に検出できる非接触ポテンショメータと
が得られる。
(D) In the case where the moving body to be detected, which is composed of the magnetic field generating means, is provided with different magnetic poles at both ends of the substantially rod-like shape, a small and wide rotation angle or a wide range of linear displacement can be obtained with high accuracy. And a non-contact potentiometer capable of detecting

【0046】(e)一方、磁界発生手段からなる被検出
移動体が、欠落部を含む略環状の両端部にそれぞれ異な
る磁極が配設されている場合は、実効的なバイアス磁界
が高くなり、かつ両磁極から軟磁性磁芯の一部をより効
率的に磁気飽和させることができ、広角度な回転角度を
より高精度に検出できる非接触ポテンショメータが得ら
れる。
(E) On the other hand, when the moving body to be detected which comprises the magnetic field generating means is provided with different magnetic poles at both ends of the substantially annular shape including the missing portion, the effective bias magnetic field becomes high, Moreover, a non-contact potentiometer capable of more efficiently magnetically saturating a part of the soft magnetic core from both magnetic poles and detecting a wide angle of rotation with higher accuracy can be obtained.

【0047】(f)さらに、磁界発生手段からなる被検
出移動体が、複数の略棒状の被検出移動体、もしくは複
数の欠落部を含む略環状の被検出移動体で、軟磁性磁芯
の長手方向側面にそれぞれ近接配置され、軟磁性磁芯の
長手方向に所要の磁気回路が実質的に併設されている場
合は、バイアス磁界の範囲が広く取れるので、より広角
度な回転角度あるいは、より広範な直線変位を検出でき
る非接触ポテンショメータが得られる。
(F) Furthermore, the detected moving body composed of the magnetic field generating means is a plurality of substantially rod-shaped detected moving bodies, or a substantially annular detected moving body including a plurality of missing portions, and has a soft magnetic core. When the required magnetic circuits are arranged side by side in the longitudinal direction of the soft magnetic core, the bias magnetic field can be set in a wider range, so that a wider rotation angle or more A non-contact potentiometer capable of detecting a wide range of linear displacement is obtained.

【0048】(g)本発明に係わる前記非接触ポテンシ
テンショメータの一次コイルに交流電圧を印加し、変位
検出が必要な物材の移動により磁界発生手段からなる被
検出移動体が軟磁性磁芯の長手方向中心から何れか一方
の端部方向に移動すると、2つの二次コイルから差動出
力が検出され、この検出信号がACアンプ、同期検波、
平滑を含む整流回路を経由して出力され、前記効果を備
えた移動体の変位センサが得られる。
(G) An AC voltage is applied to the primary coil of the non-contact potentiometer according to the present invention, and a moving body to be detected, which is magnetic field generating means, is moved by movement of a material requiring displacement detection. When moving from the center of the longitudinal direction toward one of the ends, a differential output is detected from the two secondary coils, and this detection signal is detected by the AC amplifier, the synchronous detection,
The displacement sensor of the moving body, which is output via the rectifying circuit including smoothing and has the above effects, is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】非接触ポテンショメータの実施例の基本構造を
示す結線図である。
FIG. 1 is a connection diagram showing a basic structure of an embodiment of a non-contact potentiometer.

【図2】図1の実施例における被検出移動体の変位Xと
二次コイル2a、2bの誘起電圧e1、e2、及び差動電
圧eの関係を示す図である。
FIG. 2 is a diagram showing a relationship between displacement X of a moving body to be detected, induced voltages e1 and e2 of secondary coils 2a and 2b, and a differential voltage e in the embodiment of FIG.

【図3】図2に示した被検出移動体の変位Xと二次コイ
ル2a、2bの差動電圧Eの関係を位相を加味した場合
の図である。
FIG. 3 is a diagram in the case of considering the phase of the relationship between the displacement X of the moving body to be detected shown in FIG. 2 and the differential voltage E of the secondary coils 2a and 2b.

【図4】本発明による非接触ポテンショメータの一実施
例を回転軸方向に拡大した斜視図である。
FIG. 4 is a perspective view in which a non-contact potentiometer according to an embodiment of the present invention is enlarged in a rotation axis direction.

【図5】図4の実施例の主要構成部品の位置関係を示す
図である。
5 is a diagram showing a positional relationship of main components of the embodiment of FIG.

【図6】図5の永久磁石からなる被検出移動体24の磁
極N、S付近の拡大図である。
6 is an enlarged view around magnetic poles N and S of a moving body to be detected 24 made of a permanent magnet shown in FIG.

【図7】本発明による図4の実施例における回転角度と
差動電圧の関係を示す図である。
7 is a diagram showing a relationship between a rotation angle and a differential voltage in the embodiment of FIG. 4 according to the present invention.

【図8】本発明による非接触ポテンショメータの他の実
施例を回転軸方向に拡大した斜視図である。
FIG. 8 is a perspective view in which another embodiment of the non-contact potentiometer according to the present invention is enlarged in the rotation axis direction.

【図9】2つの棒状の永久磁石で上下から挟んだ非接触
ポテンショメータの実施例を示す斜視図である。
FIG. 9 is a perspective view showing an embodiment of a non-contact potentiometer sandwiched by two rod-shaped permanent magnets from above and below.

【図10】2つの略環状の永久磁石で上下から挟んだ非
接触ポテンショメータの実施例を示す斜視図である。
FIG. 10 is a perspective view showing an embodiment of a non-contact potentiometer sandwiched by two substantially annular permanent magnets from above and below.

【図11】本発明による移動体の変位センサとして、非
接触ポテンショメータとともに使用される同期整流によ
る処理回路の例を示す図である。
FIG. 11 is a diagram showing an example of a processing circuit by synchronous rectification used together with a non-contact potentiometer as a displacement sensor of a moving body according to the present invention.

【符号の説明】[Explanation of symbols]

1 一次コイル 2a 二次コイルa 2b 二次コイルb 13、23 軟磁性磁芯 14、24、34、44a、44b、54a、54b
被検出移動体 5 固定差動トランス部支持部材 26、36 磁石支持部材 7 変位検出が必要な物体の移動に連動する部材 8、28、38、48、58 固定差動トランス部 9 ベアリング
1 Primary coil 2a Secondary coil a 2b Secondary coil b 13,23 Soft magnetic core 14, 24, 34, 44a, 44b, 54a, 54b
Detected moving body 5 Fixed differential transformer section supporting member 26, 36 Magnet supporting member 7 Member interlocking with movement of object requiring displacement detection 8, 28, 38, 48, 58 Fixed differential transformer section 9 Bearing

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 長手方向両端部外縁が開磁路である軟磁
性磁芯と、前記軟磁性磁芯に巻装された一次コイルと、
前記軟磁性磁芯に巻装され同一巻き数で差動的な2つの
二次コイルと、前記軟磁性磁芯の長手方向に磁気回路を
形成するように近接配置された磁界発生手段からなる被
検出移動体とを含む非接触ポテンショメータであって、
前記被検出移動体が前記軟磁性磁芯の長手方向で作動す
ることを特徴とする非接触ポテンショメータ。
1. A soft magnetic core whose outer edges at both ends in the longitudinal direction are open magnetic paths, and a primary coil wound around the soft magnetic core.
Two secondary coils that are wound around the soft magnetic core and are differential in number with the same number of turns, and magnetic field generating means that are closely arranged to form a magnetic circuit in the longitudinal direction of the soft magnetic core. A non-contact potentiometer including a detection moving body,
A non-contact potentiometer, wherein the moving body to be detected operates in a longitudinal direction of the soft magnetic core.
【請求項2】 請求項1に記載した非接触ポテンショメ
ータであって、前記軟磁性磁芯は、好ましくは透磁率が
高く、保磁力が小さく、比抵抗が高い強磁性体で、前記
被検出移動体は、好ましくは最大エネルギー積が高い永
久磁石であることを特徴とする非接触ポテンショメー
タ。
2. The non-contact potentiometer according to claim 1, wherein the soft magnetic core is preferably a ferromagnetic material having a high magnetic permeability, a low coercive force, and a high specific resistance, Non-contact potentiometer, characterized in that the body is preferably a permanent magnet with a high maximum energy product.
【請求項3】 請求項1ないし2に記載した非接触ポテ
ンショメータであって、前記軟磁性磁芯は開磁路を構成
する欠落部を含む略環状であり、前記被検出移動体は、
長手方向両端部にそれぞれ異なる磁極が配設された略棒
状であることを特徴とする非接触ポテンショメータ。
3. The non-contact potentiometer according to claim 1, wherein the soft magnetic core has a substantially annular shape including a cutout portion forming an open magnetic path, and the detected moving body comprises:
A non-contact potentiometer having a substantially rod shape in which different magnetic poles are arranged at both ends in the longitudinal direction.
【請求項4】 請求項1ないし2に記載した非接触ポテ
ンショメータであって、前記軟磁性磁芯は開磁路を構成
する欠落部を含む略環状であり、前記被検出移動体は、
欠落部を含む略環状の両端部にそれぞれ異なる磁極が配
設されていることを特徴とする非接触ポテンショメー
タ。
4. The non-contact potentiometer according to claim 1, wherein the soft magnetic core has a substantially annular shape including a cutout portion forming an open magnetic path, and the moving body to be detected includes:
A non-contact potentiometer in which different magnetic poles are provided at both ends of a substantially annular shape including a cutout portion.
【請求項5】 請求項1ないし4に記載した非接触ポテ
ンショメータであって、前記被検出移動体は、複数の該
被検出移動体が軟磁性磁芯の長手方向側面にそれぞれ近
接配置され、前記軟磁性磁芯の長手方向に所要の磁気回
路を併設したことを特徴とする非接触ポテンショメー
タ。
5. The non-contact potentiometer according to any one of claims 1 to 4, wherein the plurality of moving bodies to be detected are arranged in proximity to side surfaces in a longitudinal direction of a soft magnetic core. A non-contact potentiometer having a required magnetic circuit provided along the longitudinal direction of a soft magnetic core.
【請求項6】 請求項1ないし5に記載した非接触ポテ
ンショメータと、前記一次コイルに交流電圧を印加する
手段と、前記2つの二次コイル間の差動出力を前記被検
出移動体の変位を表す電気信号に処理する手段とを含む
移動体の変位センサであって、前記被検出移動体が前記
軟磁性磁芯の長手方向で作動することを特徴とする移動
体の変位センサ。
6. The non-contact potentiometer according to any one of claims 1 to 5, means for applying an AC voltage to the primary coil, and a differential output between the two secondary coils for displacement of the detected moving body. A displacement sensor for a moving body, comprising: a means for processing into an electric signal represented by the moving body, wherein the detected moving body operates in a longitudinal direction of the soft magnetic core.
JP6123803A 1994-06-06 1994-06-06 Non-contact potentiometer and displacement sensor of moving body Withdrawn JPH07332912A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6123803A JPH07332912A (en) 1994-06-06 1994-06-06 Non-contact potentiometer and displacement sensor of moving body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6123803A JPH07332912A (en) 1994-06-06 1994-06-06 Non-contact potentiometer and displacement sensor of moving body

Publications (1)

Publication Number Publication Date
JPH07332912A true JPH07332912A (en) 1995-12-22

Family

ID=14869710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6123803A Withdrawn JPH07332912A (en) 1994-06-06 1994-06-06 Non-contact potentiometer and displacement sensor of moving body

Country Status (1)

Country Link
JP (1) JPH07332912A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000058330A (en) * 1998-08-12 2000-02-25 Ricoh Co Ltd Device for inspecting differential transformer
US7521921B2 (en) 2004-10-26 2009-04-21 Georgia Tech Research Corporation Displacement sensor
JP2010107378A (en) * 2008-10-30 2010-05-13 Denso Corp Rotation angle detection device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000058330A (en) * 1998-08-12 2000-02-25 Ricoh Co Ltd Device for inspecting differential transformer
US7521921B2 (en) 2004-10-26 2009-04-21 Georgia Tech Research Corporation Displacement sensor
JP2010107378A (en) * 2008-10-30 2010-05-13 Denso Corp Rotation angle detection device

Similar Documents

Publication Publication Date Title
US6160395A (en) Non-contact position sensor
US6850053B2 (en) Device for measuring the motion of a conducting body through magnetic induction
US6118271A (en) Position encoder using saturable reactor interacting with magnetic fields varying with time and with position
JP5108176B2 (en) Magnetic sensitive probe position sensor
JP3457102B2 (en) Magnetic position sensor
JPH09508466A (en) Micro coil device made by flattening technology to detect ferromagnetic material
JPH0769130B2 (en) Magnetic displacement sensor
US5404101A (en) Rotary sensing device utilizing a rotating magnetic field within a hollow toroid core
US20050062573A1 (en) Non-contact magnetically variable differential transformer
US6549003B2 (en) Position detector utilizing two magnetic field sensors and a scale
EP0435232B1 (en) Inductance-type displacement sensor having resistance to external magnetic fields
US4030085A (en) Nonferromagnetic linear variable differential transformer
JPH112647A (en) Direct current sensor and method for preventing flowing-out of direct current
JPH07332912A (en) Non-contact potentiometer and displacement sensor of moving body
US5541503A (en) Alternating current sensor based on concentric-pipe geometry and having a transformer for providing separate self-powering
JP4385340B2 (en) Displacement sensor using Helmholtz coil
JPS6344730Y2 (en)
ATE415634T1 (en) FERRARIS SENSOR
JP3626341B2 (en) Magnetic metal sensor and magnetic metal detection system
JPH0624732Y2 (en) Differential transformer
Corda et al. Enhanced performance variable-reluctance transducer for linear-position sensing
JP3093532B2 (en) DC current sensor
JPH06180204A (en) Position detection sensor
JPH0477268B2 (en)
JPS61230030A (en) Liquid level detector

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010904