JPS6344730Y2 - - Google Patents

Info

Publication number
JPS6344730Y2
JPS6344730Y2 JP1980122604U JP12260480U JPS6344730Y2 JP S6344730 Y2 JPS6344730 Y2 JP S6344730Y2 JP 1980122604 U JP1980122604 U JP 1980122604U JP 12260480 U JP12260480 U JP 12260480U JP S6344730 Y2 JPS6344730 Y2 JP S6344730Y2
Authority
JP
Japan
Prior art keywords
magnetoresistive element
magnetic field
magneto
magnetoresistive
effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1980122604U
Other languages
Japanese (ja)
Other versions
JPS5746814U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1980122604U priority Critical patent/JPS6344730Y2/ja
Publication of JPS5746814U publication Critical patent/JPS5746814U/ja
Application granted granted Critical
Publication of JPS6344730Y2 publication Critical patent/JPS6344730Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Description

【考案の詳細な説明】 本考案は、強磁性磁気抵抗効果を利用した磁気
抵抗素子により、微少変位等を磁気的に検出する
ようにした変位検出装置に関するものである。
[Detailed Description of the Invention] The present invention relates to a displacement detection device that magnetically detects minute displacements and the like using a magnetoresistive element that utilizes the ferromagnetic magnetoresistive effect.

磁場に感じて出力電圧が変化する磁電変換素子
は、磁気スケールや磁気的に設定された定点の読
取り装置、モータ等の回転制御用周波数発生器、
あるいは無接点スイツチや無接点ボリユームなど
計測機器や民生機器の分野に広く使用されてい
る。上述の如き磁電変換素子としては、強磁性金
属の強磁性磁気抵抗効果を利用した感磁原理に基
づいた強磁性磁気抵抗素子や、半導体の半導体磁
気抵抗効果を利用した半導体磁気抵抗素子、ある
いはホール素子等が従来より知られている。
Magnetoelectric transducers whose output voltage changes in response to a magnetic field are used in magnetic scales, magnetically set point reading devices, frequency generators for rotation control of motors, etc.
It is also widely used in the fields of measuring instruments and consumer equipment, such as non-contact switches and non-contact volumes. The above-mentioned magnetoelectric transducer includes a ferromagnetic magnetoresistive element based on a magnetic sensing principle that uses the ferromagnetic magnetoresistive effect of a ferromagnetic metal, a semiconductor magnetoresistive element that uses the semiconductor magnetoresistive effect of a semiconductor, or a hole-based magnetoresistive element that uses the semiconductor magnetoresistive effect of a semiconductor. Elements and the like have been known in the past.

強磁性金属の強磁性磁気抵抗効果は2種類の効
果に大別することができ、その第1の効果は、外
磁界による自発磁化の変化を通じて生ずる抵抗変
化であり、Mottの理論にて説明することができ
る。一般に、この第1の効果は、磁場が大きくな
ると抵抗が直線的に減少する負性磁気抵抗効果
で、磁場の方向に対して等方的である。上記第1
の効果は、自発磁化の激しいキユーリ温度近傍で
大きくなるが、大きな磁場を作用させない限り、
通常は無視することができる。また、第2の効果
は、比較的に小さな磁場で観測されるもので、そ
の磁化方向と電流方向のなす角度によつて抵抗が
異方向に変化するものであ。この第2の効果は、
自発磁化の温度変化が小さい温度領域で大きく、
キユリー温度に向つて小さくなる。一般の強磁性
金属、例えば、NiCo合金、NiFe合金、NiAl合
金、NiMn合金あるいはNiZn合金等にあつては、
第1図に示すような電流通路部1を形成した場合
に、その抵抗値ρ(θ)が、電流と磁化方向が平
行になつた時が抵抗最大で、直交した時が最少に
なり、 ρ(θ)=ρ⊥・sin2θ+ρ・cos2θ …第1式 なるViogt−Thomsonの式にて上記第2の効果
を示すことができる。ここで、第1式において、
θは電流Iと飽和磁化Mのなす角度であり、ρ⊥
は電流Iと飽和磁化Mが直交したときの抵抗であ
り、ρは電流と飽和磁化が平行のときの抵抗で
ある。従つて、上記第2の効果を利用して高感度
の磁気抵抗素子を作ることができる。
The ferromagnetic magnetoresistive effect of ferromagnetic metals can be roughly divided into two types of effects, the first of which is a resistance change that occurs through a change in spontaneous magnetization due to an external magnetic field, and is explained by Mott's theory. be able to. Generally, this first effect is a negative magnetoresistive effect in which the resistance decreases linearly as the magnetic field increases, and is isotropic with respect to the direction of the magnetic field. 1st above
The effect becomes large near the Curie temperature, where spontaneous magnetization is intense, but unless a large magnetic field is applied,
Usually can be ignored. The second effect is observed in a relatively small magnetic field, and the resistance changes in different directions depending on the angle formed between the magnetization direction and the current direction. This second effect is
The temperature change in spontaneous magnetization is large in the temperature range where it is small;
It becomes smaller towards the Curie temperature. For general ferromagnetic metals, such as NiCo alloy, NiFe alloy, NiAl alloy, NiMn alloy, or NiZn alloy,
When the current path section 1 is formed as shown in Fig. 1, its resistance value ρ (θ) is maximum when the current and magnetization direction are parallel, and minimum when the direction of magnetization is perpendicular to ρ. (θ)=ρ⊥·sin 2 θ+ρ·cos 2 θ The second effect can be expressed by the Viogt-Thomson equation, which is the first equation. Here, in the first equation,
θ is the angle between the current I and the saturation magnetization M, and ρ⊥
is the resistance when the current I and the saturation magnetization M are orthogonal, and ρ is the resistance when the current and the saturation magnetization are parallel. Therefore, a highly sensitive magnetoresistive element can be manufactured by utilizing the second effect.

例えば、第1図に示すように強磁性体金属にて
形成した平面帯状の電流通路部1の両端子2a,
2b間に定電流源3からバイアス電流IBを流し、
該電流通路部1を横切る境界線4をもつて方向の
異なる磁界H1,H2を上記電流通路部1に印加す
ると、次のような変換特性が得られる。
For example, as shown in FIG. 1, both terminals 2a,
A bias current I B is applied from a constant current source 3 between 2b,
When magnetic fields H 1 and H 2 having different directions are applied to the current path portion 1 with a boundary line 4 crossing the current path portion 1, the following conversion characteristics are obtained.

すなわち、バイアス電流IBの方向に対してθ1
る角度の磁界H1が印加されている長さをxとし
て、同じくθ2なる角度の方向の磁界H2が印加さ
れている領域の長さをyとすると、上記電流通路
部1の両端子2a,2bの抵抗値Rは、 R=x(ρ⊥sin2θ1+ρcos2θ2) +y(ρ⊥sin2θ2+ρcos2θ2) にて示すことができ、上記境界線4が電流通路部
1を横切る位置に応じて変化することになる。
In other words, if x is the length to which the magnetic field H 1 is applied at an angle of θ 1 with respect to the direction of the bias current I B , then the length of the region to which the magnetic field H 2 is applied, also at an angle of θ 2 When y is the resistance value R of both terminals 2a and 2b of the current path section 1, R=x(ρ⊥sin 2 θ 1 +ρcos 2 θ 2 ) +y(ρ⊥sin 2 θ 2 +ρcos 2 θ 2 ) The boundary line 4 changes depending on the position where the boundary line 4 crosses the current path section 1.

本考案は、上述の如き強磁性磁気抵抗効果を利
用した磁気抵抗素子と発磁部との相対変位量に対
応した変換動作を行う磁電変換装置を提供するも
のであり、特に発磁部を一般的に入手可能な形状
の磁石にて簡単に実装し得るようにしたものであ
る。
The present invention provides a magnetoelectric conversion device that performs a conversion operation corresponding to the amount of relative displacement between a magnetoresistive element and a magnetizing part using the ferromagnetic magnetoresistive effect as described above. It can be easily implemented using magnets of commonly available shapes.

以下、本考案について一実施例を示す図面に従
い詳細に説明する。
Hereinafter, the present invention will be described in detail with reference to the drawings showing one embodiment.

第2図に示した実施例においては、強磁性金属
にて形成した電流通路部11を有する磁気抵抗素
子10が、それぞれ円筒形状の3個の磁石12
A,12B,12Cを連設して成る発磁部12の
円筒中空部13内に中心軸14を含む平面上に配
置され、該発磁部12に対して相対変位自在に設
けられている。上記発磁部12を構成している3
個の磁石12A,12B,12Cのうちの中央部
分に配置されている磁石12Bは、第3図に示す
ように、その外周面12b側がN極に着磁され、
その内周面12a側がS極に着磁されており、円
筒中空部13内に放射状の磁界HBを発生する。
また、他の2個の磁石12A,12Cは、第4図
に示すように、上記中央部分の磁石12Bとの各
接合端面12d,12e側がそれぞれS極に着磁
され、各他端面12f,12g側がそれぞれN極
に着磁されており、円筒中空部13内にその軸1
4方向に平行な磁界HA,HCを発生する。ここで
上記発磁部12の軸14方向の全長L)は、磁気抵
抗素子10の電流通路部11の全長l0に対して、
少なくとも2・l0以上の長さにしてあり、また、
中央部分の磁石の軸方向の長さL1はl0以下の長さ
にしてある。なお、この実施例では、L1=1/2l0 にしてある。そこで、上記各磁石12A,12
B,12Cにて構成した発磁部12の中空部13
内に配置された磁気抵抗素子10には、その電流
通路部11に対して直交する方向の磁界HBが中
央部分の磁石12Bによつて印加され、該電流通
路部11に対して平行な方向の磁界HA,HCが他
の2個の磁石12A,12Bによつて与えられる
ことになる。
In the embodiment shown in FIG. 2, a magnetoresistive element 10 having a current passage section 11 made of ferromagnetic metal is connected to three cylindrical magnets 12, respectively.
It is arranged on a plane including the central axis 14 in the cylindrical hollow part 13 of the magnetizing part 12 which is made up of the magnetizing part 12 arranged in series, and is provided so as to be freely displaceable relative to the magnetizing part 12. 3 constituting the magnetizing section 12
As shown in FIG. 3, the magnet 12B placed in the center of the magnets 12A, 12B, and 12C has its outer peripheral surface 12b side magnetized to the N pole.
The inner circumferential surface 12a side thereof is magnetized to the S pole, and a radial magnetic field H B is generated within the cylindrical hollow portion 13.
In addition, as shown in FIG. 4, the other two magnets 12A and 12C have their joint end surfaces 12d and 12e with the magnet 12B in the central portion magnetized to the S pole, respectively, and the other end surfaces 12f and 12g. The sides are each magnetized to the N pole, and the shaft 1 is located inside the cylindrical hollow part 13.
Generates parallel magnetic fields H A and H C in four directions. Here, the total length L ) of the magnetizing section 12 in the axis 14 direction is relative to the total length l 0 of the current path section 11 of the magnetoresistive element 10 .
It has a length of at least 2·l 0 or more, and
The axial length L 1 of the magnet in the central portion is set to be less than l 0 . In this embodiment, L 1 =1/2l 0 . Therefore, each of the magnets 12A, 12
Hollow part 13 of magnetizing part 12 composed of B and 12C
A magnetic field H B in a direction perpendicular to the current path portion 11 is applied to the magnetoresistive element 10 disposed within the magnetoresistive element 10 by the magnet 12B in the central portion, and a magnetic field H B in a direction parallel to the current path portion 11 is applied to the magnetoresistive element 10 disposed within The magnetic fields H A and H C are provided by the other two magnets 12A and 12B.

上述の如き構造の発磁部12の中空部13に配
着した磁気抵抗素子10は、その電流通路部11
の中点を出力端子11aとしたポテンシヨメータ
として動作し、該中空部13内における軸方向の
位置に応じた変換出力を上記出力端子10aから
出力する。なお、上記磁気抵抗素子10の両端子
11b,11c間には図示しない定電圧源からの
定電圧が印加されることにより一定のバイアス電
流IBが流される。
The magnetoresistive element 10 arranged in the hollow part 13 of the magnetizing part 12 having the above-described structure is connected to the current passage part 11 of the magnetoresistive element 10.
It operates as a potentiometer with the midpoint of the output terminal 11a as the output terminal 11a, and outputs a conversion output corresponding to the axial position within the hollow portion 13 from the output terminal 10a. Note that a constant voltage from a constant voltage source (not shown) is applied between both terminals 11b and 11c of the magnetoresistive element 10, thereby causing a constant bias current I B to flow.

本考案によれば、強磁性磁気抵抗効果を利用し
た磁気抵抗素子と、軸心に平行な磁界を発生する
円筒状磁石と放射状の磁界を発生する円筒状磁石
とを軸心方向に連設して成る発磁部とを備え、上
記磁気抵抗素子を上記発磁部の円筒中空部内に該
発磁部に対して軸心方向に相対変位自在に設けた
ことを特徴とすることによつて、上記発磁部の円
筒中空部内に各円筒状磁石による方向の異なる安
定した磁界を上記磁気抵抗素子に印加して直線性
の良好な磁電変換動作を行うことができ、しか
も、一般に入手容易な円筒状磁石を用いた簡単な
構成の発磁部と強磁性磁気抵抗効果による磁気抵
抗素子とにより磁電変換装置を提供することがで
きる。
According to the present invention, a magnetoresistive element that utilizes a ferromagnetic magnetoresistance effect, a cylindrical magnet that generates a magnetic field parallel to the axis, and a cylindrical magnet that generates a radial magnetic field are connected in the axial direction. and a magnetoresistive part, the magnetoresistive element being disposed in a cylindrical hollow part of the magnetizing part so as to be freely displaceable relative to the magnetizing part in the axial direction, Stable magnetic fields with different directions from the respective cylindrical magnets are applied to the magnetoresistive element within the cylindrical hollow part of the magnetization section to perform a magnetoelectric conversion operation with good linearity. A magnetoelectric transducer can be provided using a simple magnetizing section using a shaped magnet and a magnetoresistive element using a ferromagnetic magnetoresistive effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、強磁性磁気抵抗効果を利用した磁気
抵抗素子の動作原理を説明するための説明図であ
る。第2図は、本考案に係る磁電変換装置の一実
施例を示す外観斜視図である。第3図および第4
図は、この実施例における発磁部の縦断側面図お
よび横断平面図である。 10…磁気抵抗素子、11…電流通路部、1
2,22…発磁部、12A,12B,12C,2
2A,22A′,22B,22B′,22C,22
C′…磁石、13…中空部、14,24…軸心。
FIG. 1 is an explanatory diagram for explaining the operating principle of a magnetoresistive element using the ferromagnetic magnetoresistive effect. FIG. 2 is an external perspective view showing an embodiment of the magnetoelectric transducer according to the present invention. Figures 3 and 4
The figures are a longitudinal sectional side view and a lateral plan view of the magnetizing section in this embodiment. 10... Magnetoresistive element, 11... Current path section, 1
2, 22...Magnetizing part, 12A, 12B, 12C, 2
2A, 22A', 22B, 22B', 22C, 22
C′...Magnet, 13...Hollow part, 14, 24...Axis center.

Claims (1)

【実用新案登録請求の範囲】 強磁性磁気抵抗効果を利用した磁気抵抗素子
と、軸心に平行な磁界を発生する円筒状磁石と放
射状の磁界を発生する円筒状磁石とを軸心方向に
連設して成る発磁部とを備え、 上記磁気抵抗素子を上記発磁部の円筒中空部内
に該発磁部に対して軸心方向に相対変位自在に設
けたことを特徴とする磁電変換装置。
[Scope of Claim for Utility Model Registration] A magnetoresistive element that uses ferromagnetic magnetoresistive effect, a cylindrical magnet that generates a magnetic field parallel to the axis, and a cylindrical magnet that generates a radial magnetic field are connected in the axial direction. a magneto-electric transducer comprising a magneto-generating section, the magnetoresistive element being disposed in a cylindrical hollow part of the magneto-generating section so as to be freely displaceable relative to the magneto-generating section in the axial direction. .
JP1980122604U 1980-08-29 1980-08-29 Expired JPS6344730Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1980122604U JPS6344730Y2 (en) 1980-08-29 1980-08-29

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1980122604U JPS6344730Y2 (en) 1980-08-29 1980-08-29

Publications (2)

Publication Number Publication Date
JPS5746814U JPS5746814U (en) 1982-03-16
JPS6344730Y2 true JPS6344730Y2 (en) 1988-11-21

Family

ID=29483210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1980122604U Expired JPS6344730Y2 (en) 1980-08-29 1980-08-29

Country Status (1)

Country Link
JP (1) JPS6344730Y2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2265010B (en) * 1992-03-13 1995-08-09 British Gas Plc Motion transducer
US6411081B1 (en) * 2000-02-10 2002-06-25 Siemens Ag Linear position sensor using magnetic fields
US7521922B2 (en) * 2006-11-07 2009-04-21 Key Safety Systems, Inc. Linear position sensor
JP5116576B2 (en) * 2007-06-29 2013-01-09 メレクシス テッセンデルロ エヌヴィ Magnetic structure for detecting relative motion between a magnetic structure and a magnetic field sensor
JP5969561B2 (en) * 2014-09-09 2016-08-17 本田技研工業株式会社 Throttle opening detection device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54141950U (en) * 1978-03-27 1979-10-02
JPS54178569U (en) * 1978-06-06 1979-12-17

Also Published As

Publication number Publication date
JPS5746814U (en) 1982-03-16

Similar Documents

Publication Publication Date Title
JP3189464B2 (en) Rotational position detector
US20070227268A1 (en) Magnetostrictive torque sensor
JPH0769130B2 (en) Magnetic displacement sensor
JP2000516716A (en) Measuring device for non-contact detection of rotation angle or linear motion
GB2089514A (en) Magnetic sensor switch device
JP4947250B2 (en) Angle detector
US7521923B2 (en) Magnetic displacement transducer
JP3619156B2 (en) Magnetic detector
JPS6344730Y2 (en)
JP2000284028A (en) Thin-film magnetic-substance mi element
JPS599528A (en) Torque sensor
JPS5856408B2 (en) magnetic sensor
JP3264151B2 (en) Angle sensor
JPH0211022B2 (en)
JPH02189484A (en) Magnetic sensor
Sandra et al. A novel variable reluctance-hall effect transduction technique based displacement sensor
JPH0211023B2 (en)
JPH0739922B2 (en) Position detector for hydraulic or pneumatic cylinders
JPS63158477A (en) Measuring element for three-dimensional magnetic field vector
JPH06147816A (en) Angle sensor
JPH03252577A (en) Magnetic field detecting method and magnetic field sensor
JPH03226625A (en) Rotation positioner
JPH07332912A (en) Non-contact potentiometer and displacement sensor of moving body
JPS6151245B2 (en)
JPS5841448Y2 (en) magnetically sensitive element