JPS5841448Y2 - magnetically sensitive element - Google Patents

magnetically sensitive element

Info

Publication number
JPS5841448Y2
JPS5841448Y2 JP8357378U JP8357378U JPS5841448Y2 JP S5841448 Y2 JPS5841448 Y2 JP S5841448Y2 JP 8357378 U JP8357378 U JP 8357378U JP 8357378 U JP8357378 U JP 8357378U JP S5841448 Y2 JPS5841448 Y2 JP S5841448Y2
Authority
JP
Japan
Prior art keywords
magnetic field
ferromagnetic
current paths
resistance
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8357378U
Other languages
Japanese (ja)
Other versions
JPS551749U (en
Inventor
浩之 大久保
Original Assignee
ソニ−マグネスケ−ル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニ−マグネスケ−ル株式会社 filed Critical ソニ−マグネスケ−ル株式会社
Priority to JP8357378U priority Critical patent/JPS5841448Y2/en
Priority to CA324,051A priority patent/CA1126818A/en
Priority to US06/023,270 priority patent/US4296377A/en
Priority to DE19792911733 priority patent/DE2911733A1/en
Priority to FR7907686A priority patent/FR2421391A1/en
Priority to CH285179A priority patent/CH628993A5/en
Priority to NL7902389A priority patent/NL7902389A/en
Priority to AT0227879A priority patent/AT367915B/en
Priority to GB7910693A priority patent/GB2022257B/en
Publication of JPS551749U publication Critical patent/JPS551749U/ja
Application granted granted Critical
Publication of JPS5841448Y2 publication Critical patent/JPS5841448Y2/en
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は位置検出装置等として使用可能な感磁性素子、
特に強磁性金属磁気抵抗素子を用いて磁場の大きさに感
応するようにした感磁性素子の改良に関する。
[Detailed description of the invention] This invention is a magnetically sensitive element that can be used as a position detection device, etc.
In particular, the present invention relates to improvements in magnetically sensitive elements that are sensitive to the magnitude of magnetic fields using ferromagnetic metal magnetoresistive elements.

第1図に示す如く磁気抵抗力異方性効果を有する強磁性
体部材から戊る第1及び第2の電流通路1.2を2個、
互いに直交するように配置し、その中点端子b(電圧端
子)で直列に接続して端子a、c(電流端子)に給電す
るように構成した強磁性金属磁気抵抗素子に、磁化を飽
和させるのに充分な磁場が該素子の面内に印加され、そ
の磁場の方向が変化すると、前記中点端子すの電圧が変
化することは公知である。
As shown in FIG. 1, two first and second current paths 1.2 are formed from a ferromagnetic material having a magnetoresistance anisotropy effect,
Magnetization is saturated in ferromagnetic metal magnetoresistive elements arranged so as to be orthogonal to each other, connected in series at their midpoint terminal b (voltage terminal), and configured to supply power to terminals a and c (current terminals). It is known that if a sufficient magnetic field is applied in the plane of the element and the direction of the field changes, the voltage across the midpoint terminal will change.

この原理を利用した従来の位置検出装置、例えば磁気ス
ケール用原点検出器は前記両部材に互いに同方向のバイ
アス磁場を附与する構成をとっており、原点磁場内で磁
気抵抗素子が回転した場合には、前述した感磁原理に基
づいて前記出力電圧が変動し、零ドリフトを生ずる難点
がある。
Conventional position detection devices that utilize this principle, such as origin detectors for magnetic scales, are configured to apply a bias magnetic field in the same direction to both members, and when the magnetoresistive element rotates within the origin magnetic field. However, there is a drawback that the output voltage fluctuates based on the above-mentioned magnetism principle, resulting in zero drift.

本考案者は先にかかる従来装置の欠点を解消すべく零出
力近傍での磁場角度の変化に伴なう出力ドリフトを少な
くシ、更には新たなアナログ型センサを提供するため、
同方位に配置された強磁性体部材の夫々に互いに逆方向
のバイアス磁場を印加するようにして、磁場の強さに感
応し磁束応答形の特性を示す構成とした磁気センサ(特
願昭53−34096号)を提案した。
In order to eliminate the drawbacks of the conventional device mentioned above, the inventor of the present invention aims to reduce the output drift caused by changes in the magnetic field angle near zero output, and also to provide a new analog type sensor.
A magnetic sensor (Patent Application No. 53, 1983) constructed in such a way that a bias magnetic field in opposite directions is applied to each of the ferromagnetic members arranged in the same direction, so that it is sensitive to the strength of the magnetic field and exhibits magnetic flux responsive characteristics. -34096).

第2図は上記磁気センサを示しており、同図において3
及び4は第1図に示す強磁性体部材と同様の強磁性合金
の磁気抵抗薄膜部材から戒る第1及び第2の電流通路で
あるが、両通路は互いに同方位となるように配設される
点が第1図とは異なる。
Figure 2 shows the above magnetic sensor, and in the figure 3
and 4 are first and second current paths which are connected to a magnetoresistive thin film member made of a ferromagnetic alloy similar to the ferromagnetic member shown in FIG. 1, and both paths are arranged in the same direction. It differs from FIG. 1 in that it is

そして夫々の部材に対して抵抗R1,R2が接続され、
かつ電圧V。
Then, resistors R1 and R2 are connected to each member,
and voltage V.

を印加して互いに逆向きのバイアス磁場Ha、Hsを印
加するようになっている。
is applied, and bias magnetic fields Ha and Hs in opposite directions are applied.

かかる構成とすることにより信号磁場の大きさに感応し
て、従来の差動変圧器等のアナログセンサと同様な出力
電圧を発生する磁気センサを得ることができる。
With this configuration, it is possible to obtain a magnetic sensor that responds to the magnitude of a signal magnetic field and generates an output voltage similar to that of a conventional analog sensor such as a differential transformer.

一方、第1図に示す磁気抵抗素子を第3図a、l)に示
す如く抵抗RA、R8に接続し、電圧■。
On the other hand, the magnetoresistive element shown in FIG. 1 is connected to resistors RA and R8 as shown in FIG.

を印加した状態で、その感磁方向と45°をなす方向に
バイアス磁場HBを印加した場合、H8と直交又は45
°方向の信号磁場H3に感応して第4図a、bのような
出力電圧■の特性を示す。
is applied and a bias magnetic field HB is applied in a direction that is 45 degrees to the magnetic sensing direction, it is perpendicular to H8 or 45
In response to the signal magnetic field H3 in the ° direction, the output voltage exhibits characteristics as shown in FIGS. 4a and 4b.

而して磁気抵抗素子に対する上述した45°方向のバイ
アス磁場印加の状態において各強磁性体部材1,2に関
するバイアス磁場HBを分解してみると第5図aで示す
ようになるが、何れか一方の強磁性体部材、例えば部材
2についてその電流方向とバイアス磁場方向とのなす角
度45°を一定にして部材1との配置関係を±90°回
転させた場合、即ち両部材が平行な配置関係にある第5
図す、C及び第8図Iの場合についてその感磁性特性は
下記のように磁場強度に感応し磁束応答形の特性を示す
When the bias magnetic field HB related to each ferromagnetic member 1 and 2 is decomposed in the above-mentioned state of applying a bias magnetic field in the 45° direction to the magnetoresistive element, it becomes as shown in FIG. 5a. When one ferromagnetic member, for example member 2, is rotated by ±90° with respect to member 1 while keeping the angle between its current direction and bias magnetic field direction constant at 45°, that is, both members are arranged in parallel. fifth in relationship
The magnetic sensitivity characteristics of the cases shown in FIG. 8C and FIG.

本考案はかかる点に着目してなされたもので、直列かつ
互いに同方位に配置された強磁性体部材から成る第1及
び第2の電流通路に、該通路の方向と略45°を或して
かつ互いに直交するバイアス磁場を印加するように構成
したことを特徴とするが、以下第6図及び第8図に示す
実施例を参照して更に説明する。
The present invention has been made with attention to this point, and the first and second current paths, which are made of ferromagnetic members arranged in series and in the same direction as each other, are arranged at an angle of about 45° with respect to the direction of the paths. The present invention is characterized in that it is configured to apply bias magnetic fields that are perpendicular to each other and that are perpendicular to each other, and will be further described below with reference to the embodiments shown in FIGS. 6 and 8.

まず第6図a−1〜a−3,b−1〜b−3及びC1〜
c−3は夫々同図a、l)及びCに示す実施例において
バイアス磁場HBに対して略90°方向に信号磁場Hs
を与える時の強磁性体部材3,4の電流方向と合成磁場
H”HB+H3の方位を表わしている。
First, Figure 6 a-1 to a-3, b-1 to b-3 and C1 to
c-3 is a signal magnetic field Hs in a direction of approximately 90° with respect to the bias magnetic field HB in the embodiments shown in a, l) and C of the same figure, respectively.
It shows the current direction of the ferromagnetic members 3 and 4 and the direction of the composite magnetic field H''HB+H3 when applying .

公知のようにバイアス磁場HBだけが強磁性磁気抵抗素
子の各強磁性体部材に45°方向に印加されている時、
或いはバイアス磁場HBと信号磁場H8の合成磁場Hが
両部材に対して45°の方向に印加される時、各部材3
,4の抵抗r1.r2はr1=r2で゛出力電圧■は■
=Oとなる。
As is well known, when only the bias magnetic field HB is applied to each ferromagnetic member of the ferromagnetic magnetoresistive element in the 45° direction,
Alternatively, when the composite magnetic field H of the bias magnetic field HB and the signal magnetic field H8 is applied to both members in a 45° direction, each member 3
, 4 resistance r1. r2 is r1=r2 and the output voltage is ■
=O.

今、第6図a−1〜a−3に示す如く、信号磁場H8を
印加し、その大きさを変えていくと、その合成磁場HB
+H5=Hは図示のようにその大きさ及び方向を変える
Now, as shown in Figure 6 a-1 to a-3, when the signal magnetic field H8 is applied and its magnitude is changed, the resultant magnetic field HB
+H5=H changes its magnitude and direction as shown.

即ち第6図a−1では強磁性体部材3の抵抗r1は増大
し、強磁性体部材4の抵抗r2は不変である。
That is, in FIG. 6a-1, the resistance r1 of the ferromagnetic member 3 increases, and the resistance r2 of the ferromagnetic member 4 remains unchanged.

従って出力電圧Vは負方向に漸増していることが分る。Therefore, it can be seen that the output voltage V gradually increases in the negative direction.

第6図a−2では強磁性体部材3の抵抗r1は最大とな
り、強磁性体部材4の抵抗r2は不変であるから、出力
電圧■は負の極値に達する。
In FIG. 6a-2, the resistance r1 of the ferromagnetic member 3 is the maximum, and the resistance r2 of the ferromagnetic member 4 remains unchanged, so the output voltage ■ reaches a negative extreme value.

更に第6図a−3に示すように信号磁場H8を増大させ
ると、抵抗r1は減少に転じ、抵抗r2は不変であるの
で、出力電圧■は零に向って漸増して行く。
Further, as shown in FIG. 6a-3, when the signal magnetic field H8 is increased, the resistance r1 starts to decrease and the resistance r2 remains unchanged, so the output voltage (2) gradually increases toward zero.

信号磁場H5が無限大では各強磁性体部材とも合成磁場
Hに関して45°の方向を威し、従って出力電圧■は零
に漸近する。
When the signal magnetic field H5 is infinite, each ferromagnetic member exhibits a direction of 45° with respect to the composite magnetic field H, and therefore the output voltage (2) approaches zero.

次に信号磁場H8を図示の例とは逆向きに与えると、出
力電圧■は正方向に増減し、HB−H5で正の極値に達
することは明らがである。
Next, when the signal magnetic field H8 is applied in a direction opposite to that in the illustrated example, it is clear that the output voltage (2) increases and decreases in the positive direction and reaches a positive extreme value at HB-H5.

第6図すの場合の感磁特性は同図aの場合に対比して対
称を威し、また同図Cの場合の感磁特性は同図aとほぼ
同じ傾向を示すことは第6図C1〜c−3及びC−1〜
c−2の各図を参照すれば容易に推定できる。
Figure 6 shows that the magnetic sensitivity characteristics in the case of Figure 6A are symmetrical compared to the case in Figure 6A, and the magnetic sensitivity characteristics in the case of Figure C show almost the same tendency as Figure 6A. C1~c-3 and C-1~
It can be easily estimated by referring to each figure of c-2.

かくして第6図a−Cの各強磁性体部材の感磁特性は第
7図のように表示される。
Thus, the magnetic sensitivity characteristics of each of the ferromagnetic members shown in FIGS. 6a to 6C are displayed as shown in FIG. 7.

また第8図II〜■に示すように信号磁場H5を強磁性
体部材の電流方向に与える場合、その感磁特性は下記の
ようになる。
Further, when the signal magnetic field H5 is applied in the current direction of the ferromagnetic member as shown in FIGS.

まず第8図IIでは強磁性体部材3の抵抗r工は増大し
、強磁性体部材4の抵抗r2は減少する。
First, in FIG. 8 II, the resistance r of the ferromagnetic member 3 increases, and the resistance r2 of the ferromagnetic member 4 decreases.

更に第8図IIIでは信号磁場Hsの増大に伴なって抵
抗r1がさらに増大し、抵抗r2は最小となる。
Furthermore, in FIG. 8 III, as the signal magnetic field Hs increases, the resistance r1 further increases, and the resistance r2 becomes minimum.

第8図IVになると、抵抗r1はさらに増大しているが
、抵抗r2も増大に転じ、同図■のように信号磁場H5
がなお増大して無限大になるとrl−=r2(最大値)
に達することがわかる。
In Fig. 8 IV, the resistance r1 has further increased, but the resistance r2 has also started to increase, and the signal magnetic field H5 is shown in Fig. 8 IV.
continues to increase and reaches infinity, rl-=r2 (maximum value)
It can be seen that it reaches .

従って出力電圧Vは第9図に示すようになる。Therefore, the output voltage V becomes as shown in FIG.

以上説明した所から明らかな如く本考案の感磁性素子は
従来の感電変換素子と同様に印加磁場強度に感応し磁束
応答形の特性を示すもので上述した信号磁場を発生する
発磁体を設ければ容易に所望の位置検出器等を得ること
ができ、その場合、回転による出力変動が比較的少なく
、アナログ計測センサとして広く一般の使用に供し得る
As is clear from the above explanation, the magnetically sensitive element of the present invention is sensitive to the strength of an applied magnetic field and exhibits magnetic flux responsive characteristics in the same way as the conventional electric shock transducer element, and is equipped with a magnet generating body that generates the above-mentioned signal magnetic field. In this case, a desired position detector or the like can be easily obtained, and in that case, the output fluctuation due to rotation is relatively small, and it can be widely used as an analog measurement sensor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の強磁性磁気抵抗素子の概略構成図、第2
図1及び1iは従来の他の強磁性磁気抵抗素子の概略構
成図及びそのブリッジ回路図、第3図a、l)は夫々第
1図の素子のブリッジ回路図、第4図a、l)はその出
力特性図、第5図a−cは本考案の基本的原理の説明図
、第6図a、l)、c及び第8図Iは夫々本考案の各実
施例を示す路線図、第6図a−1〜a−3、第6図C−
1〜b−3、第6図C−1〜c−3及び第8図II〜■
は夫々上記実施例の動作説明用ベクトル図、第7図は第
6図の各実施例の出力特性図、第9図は第8図の実施例
の出力特性図である。 1〜4:強磁性体部材、3:強磁性磁気抵抗素子、RA
、RB:抵抗、HB:バイアス磁場、H5:信号磁場。
Figure 1 is a schematic configuration diagram of a conventional ferromagnetic magnetoresistive element, Figure 2
Figures 1 and 1i are schematic diagrams of other conventional ferromagnetic magnetoresistive elements and their bridge circuit diagrams, Figures 3a and l) are bridge circuit diagrams of the element in Figure 1, and Figures 4a and l) respectively. 5 is an output characteristic diagram, FIGS. 5 a to 5 c are explanatory diagrams of the basic principle of the present invention, FIGS. 6 a, 1), c, and 8 I are route maps showing each embodiment of the present invention, respectively. Figure 6 a-1 to a-3, Figure 6 C-
1 to b-3, Figure 6 C-1 to c-3, and Figure 8 II to ■
are vector diagrams for explaining the operation of the above embodiments, FIG. 7 is an output characteristic diagram of each embodiment of FIG. 6, and FIG. 9 is an output characteristic diagram of the embodiment of FIG. 8. 1 to 4: ferromagnetic member, 3: ferromagnetic magnetoresistive element, RA
, RB: resistance, HB: bias magnetic field, H5: signal magnetic field.

Claims (1)

【実用新案登録請求の範囲】 夫々磁気抵抗の異方性効果を有する強磁性体から成る第
1及び第2の電流通路を直列に接続したこと、 前記第1及び第2電流通路を夫々同方位に配設したこと
、 前記第1及び第2の電流通路の接続点に出力端子を設け
たこと、 前記第1及び第2の電流通路の他端側には電流供給端子
を設けたこと、及び 前記第1及び第2の電流通路方向と略45°の方向を威
し、かつ互いに直交するバイアス磁場を夫々第1及び第
2の電流通路に印加するように構成したことを特徴とす
る感磁性素子。
[Claims for Utility Model Registration] First and second current paths each made of a ferromagnetic material having an anisotropic magnetoresistance effect are connected in series, and the first and second current paths are connected in the same direction, respectively. an output terminal is provided at the connection point of the first and second current paths, a current supply terminal is provided at the other end of the first and second current paths, and A magnetically sensitive device characterized in that a bias magnetic field is applied to the first and second current paths, respectively, in a direction approximately 45 degrees from the first and second current path directions and perpendicular to each other. element.
JP8357378U 1978-03-27 1978-06-20 magnetically sensitive element Expired JPS5841448Y2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP8357378U JPS5841448Y2 (en) 1978-06-20 1978-06-20 magnetically sensitive element
CA324,051A CA1126818A (en) 1978-03-27 1979-03-23 Apparatus for sensing an external magnetic field
US06/023,270 US4296377A (en) 1978-03-27 1979-03-23 Magnetic signal field sensor that is substantially immune to angular displacement relative to the signal field
DE19792911733 DE2911733A1 (en) 1978-03-27 1979-03-26 PROBE FOR MEASURING AN EXTERNAL MAGNETIC FIELD
FR7907686A FR2421391A1 (en) 1978-03-27 1979-03-27 EXTERNAL MAGNETIC FIELD DETECTION DEVICE
CH285179A CH628993A5 (en) 1978-03-27 1979-03-27 APPARATUS FOR DETECTING AN EXTERNAL MAGNETIC FIELD.
NL7902389A NL7902389A (en) 1978-03-27 1979-03-27 DEVICE FOR DETECTION OF AN EXTERNAL MAGNETIC FIELD.
AT0227879A AT367915B (en) 1978-03-27 1979-03-27 MEASURING PROBE FOR MEASURING AN EXTERNAL MAGNETIC FIELD
GB7910693A GB2022257B (en) 1978-03-27 1979-03-27 Apparatus for sensing an external magnetic field

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8357378U JPS5841448Y2 (en) 1978-06-20 1978-06-20 magnetically sensitive element

Publications (2)

Publication Number Publication Date
JPS551749U JPS551749U (en) 1980-01-08
JPS5841448Y2 true JPS5841448Y2 (en) 1983-09-19

Family

ID=29005486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8357378U Expired JPS5841448Y2 (en) 1978-03-27 1978-06-20 magnetically sensitive element

Country Status (1)

Country Link
JP (1) JPS5841448Y2 (en)

Also Published As

Publication number Publication date
JPS551749U (en) 1980-01-08

Similar Documents

Publication Publication Date Title
JP3368964B2 (en) Switchable magnetization closed-loop magnetometer
US4361805A (en) Magnetoresistive displacement sensor arrangement
US4851775A (en) Digital compass and magnetometer having a sensor coil wound on a high permeability isotropic core
EP2801834A1 (en) Current sensor
US8519703B2 (en) Magnetic sensor device and method of determining resistance values
US5757184A (en) Magnetic field detection apparatus with bilateral electrical switch for inverting magnetic sensor current
EP0380562B1 (en) Magnetometer employing a saturable core inductor
JPS5856408B2 (en) magnetic sensor
JPS5841448Y2 (en) magnetically sensitive element
JPS6344730Y2 (en)
JPH0211022B2 (en)
JPH06147816A (en) Angle sensor
JPH069306Y2 (en) Position detector
JPH0141226B2 (en)
JP2002006016A (en) Magnetic sensor
CN219285384U (en) Vector magnetometer
JPH0211023B2 (en)
WO2023157264A1 (en) Magnetic sensor and magnetic detection method
JPS62148813A (en) Magnetic sensor
JPH0414735B2 (en)
JP3318761B2 (en) Electronic compass
JPH0914908A (en) Magnetic type angle sensor
JPH03226625A (en) Rotation positioner
JPH0438420A (en) Azimuth sensor
JPH1164473A (en) Magnetic sensor and magnetic orientation sensor