JPS6151245B2 - - Google Patents

Info

Publication number
JPS6151245B2
JPS6151245B2 JP11853777A JP11853777A JPS6151245B2 JP S6151245 B2 JPS6151245 B2 JP S6151245B2 JP 11853777 A JP11853777 A JP 11853777A JP 11853777 A JP11853777 A JP 11853777A JP S6151245 B2 JPS6151245 B2 JP S6151245B2
Authority
JP
Japan
Prior art keywords
magnetic field
magnetic
magnetic sensor
parallel
bias
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11853777A
Other languages
Japanese (ja)
Other versions
JPS5452567A (en
Inventor
Hiroyuki Ookubo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Magnescale Inc
Original Assignee
Sony Magnescale Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Magnescale Inc filed Critical Sony Magnescale Inc
Priority to JP11853777A priority Critical patent/JPS5452567A/en
Publication of JPS5452567A publication Critical patent/JPS5452567A/en
Publication of JPS6151245B2 publication Critical patent/JPS6151245B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Description

【発明の詳細な説明】 本発明は位置検出装置、特に強磁性金属薄膜磁
気抵抗素子を用いてなる原点位置検出装置の改良
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a position detection device, and particularly to an improvement of an origin position detection device using a ferromagnetic metal thin film magnetoresistive element.

周知の如く、デイジタル位置表示装置に内蔵さ
せる絶対原点はその検出位置の不偏性が強く要求
される。しかるに位置検出装置として磁気センサ
(磁気ヘツド)を用いた場合、原点を示す位置信
号源となる発磁体と磁気センサとの間隔(クリア
ランス)変動は直ちに原点位置の偏倚となつて現
われてしまう。
As is well known, the absolute origin built into a digital position display device is strongly required to have an unbiased detection position. However, when a magnetic sensor (magnetic head) is used as a position detection device, a change in the distance (clearance) between the magnetizing body, which is a source of a position signal indicating the origin, and the magnetic sensor immediately appears as a deviation in the origin position.

すなわち、強磁性磁気抵抗素子から成る磁気セ
ンサーは素子面内磁場の方向変動に感応する性質
を有し、その出力電圧ΔVは次のような式で示さ
れることは周知である。
That is, it is well known that a magnetic sensor made of a ferromagnetic magnetoresistive element has a property of being sensitive to directional fluctuations of a magnetic field in the plane of the element, and that its output voltage ΔV is expressed by the following equation.

ΔV=Vo/2−KVo cos2θ ここで、Kは常数、Voは電源電圧、θは素子
面内磁場方向である。
ΔV=Vo/2−KVo cos2θ Here, K is a constant, Vo is the power supply voltage, and θ is the in-plane magnetic field direction of the element.

上記素子面内磁場方向θはバイアス磁場と信号
源(発磁体)磁場との合成により決定される。
The element in-plane magnetic field direction θ is determined by combining the bias magnetic field and the signal source (magnetic generator) magnetic field.

一般の位置検出装置において磁気センサーを用
いて位置検出を行う場合、磁気センサー(のヘツ
ド)と発磁体とのクリアランスを正確に定めるの
は非常に困難である。
When detecting a position using a magnetic sensor in a general position detecting device, it is very difficult to accurately determine the clearance between the magnetic sensor (the head of the magnetic sensor) and the magnetic body.

ところで従来においては上記バイアス磁場は一
定でありその方向も不変であるが、発磁体磁場は
検出位置において磁気センサーと発磁体とのクリ
アランスが上記のように定まりにくいと、その磁
場方向が変つて(偏倚)くるようになる。そのた
め合成磁場としての上記素子面内磁場方向θは、
検出位置でクリアランスの変動が伴う場合に磁気
センサー出力が変動して正確な位置検出が困難と
なる。
By the way, in the past, the bias magnetic field is constant and its direction does not change, but if the clearance between the magnetic sensor and the magnetizing body is difficult to determine at the detection position, the direction of the magnetic field changes ( bias). Therefore, the above element in-plane magnetic field direction θ as the composite magnetic field is
If the clearance changes at the detection position, the magnetic sensor output will fluctuate, making accurate position detection difficult.

本発明はかかる事由に鑑みて、原点検出用の磁
気センサとして、特に強磁性金属薄膜磁気抵抗素
子を用いる場合、該磁気抵抗素子と発磁体との間
隔が実用上の許容範囲内で変動しても原点検出位
置の偏倚が現れないか、或いはたとえ偏倚があつ
ても実用上無視できる程度に安定した位置検出装
置を提供するものである。
In view of such circumstances, the present invention provides a magnetic sensor for detecting the origin, in particular when a ferromagnetic metal thin film magnetoresistive element is used, in which the distance between the magnetoresistive element and the magnetizing body varies within a practical allowable range. The present invention also provides a stable position detection device in which no deviation of the origin detection position occurs, or even if deviation occurs, it is practically negligible.

以下図面に示す実施例を参照して本発明を説明
すると、第1図において、1はバイアス磁石、2
及び3は強磁性金属薄膜磁気抵抗素子から成る磁
気センサ、4は1対の磁石から成る発磁体であ
る。発磁体4はデイジタル位置表示装置の絶対原
点を示す位置信号源として使用されており、空間
5に平行磁場を発生するようになつている。
The present invention will be described below with reference to embodiments shown in the drawings. In FIG. 1, 1 is a bias magnet;
3 is a magnetic sensor made of a ferromagnetic metal thin film magnetoresistive element, and 4 is a magnetizing body made of a pair of magnets. The magnet generator 4 is used as a position signal source indicating the absolute origin of the digital position display device, and is designed to generate a parallel magnetic field in the space 5.

一方、バイアス磁石1は磁気センサ2,3に対
して面磁場を与えるためのもので、バイアス磁場
の方向は空間5における発磁体4による平行磁場
と略直交するように印加される。
On the other hand, the bias magnet 1 is used to apply a planar magnetic field to the magnetic sensors 2 and 3, and the direction of the bias magnetic field is applied so as to be substantially orthogonal to the parallel magnetic field generated by the magnetizing body 4 in the space 5.

また、磁気センサを形成する前記磁気抵抗素子
は公知のもので、図示の如く2個又は1個の素子
を使用する。
Further, the magnetoresistive element forming the magnetic sensor is a known one, and as shown in the figure, two or one element is used.

今、図示のX方向を検出方向として上記磁気セ
ンサを駆動する場合、発磁体4からの磁場が作用
しない位置では、第2図に示す如くバイアス磁石
1からバイアス磁場HB(通常磁気抵抗素子の飽
和磁場である150〜200エルステツド程度に設計し
て該素子の磁気ヒステリシスを回避するように設
計するのがよい)だけが磁気センサ2,3に対し
て作用している。
Now, when the magnetic sensor is driven with the X direction shown as the detection direction, at a position where the magnetic field from the magnetizing body 4 does not act, the bias magnetic field H B (normally of the magnetoresistive element) from the bias magnet 1 as shown in FIG. It is preferable to design the magnetic field to a saturation magnetic field of about 150 to 200 oersteds to avoid magnetic hysteresis of the element) acting on the magnetic sensors 2 and 3.

これに対し磁気センサ2,3が空間5に形成さ
れている発磁体4の作る平行磁場HSに入ると、
バイアス磁場HBと平行磁場HSとの合成磁場Hが
磁気センサに印加されることになり、第2図に示
す如くバイアス磁場HBに対する平行磁場HSの大
きさによつて平行磁場Hの大きさとその角度θが
決まるので、この角度θに応じて磁気センサの検
出信号出力が決定することになる。
On the other hand, when the magnetic sensors 2 and 3 enter the parallel magnetic field H S created by the magnetizing body 4 formed in the space 5,
A composite magnetic field H of the bias magnetic field H B and the parallel magnetic field H S is applied to the magnetic sensor, and as shown in FIG. Since the size and its angle θ are determined, the detection signal output of the magnetic sensor is determined according to this angle θ.

このように平行磁場を絶対原点等を示す位置信
号源として利用することにより、下記の効果が得
られる。
By using the parallel magnetic field as a position signal source indicating the absolute origin, etc. in this way, the following effects can be obtained.

(i) 平行磁場位置と非平行磁場位置との境界領域
での磁気センサに作用する磁場の強さと方向の
変化が急峻であり、従つて磁気センサの検出感
度が大きくなる。
(i) Changes in the strength and direction of the magnetic field acting on the magnetic sensor in the boundary region between the parallel magnetic field position and the non-parallel magnetic field position are steep, and therefore the detection sensitivity of the magnetic sensor becomes large.

(ii) たとえ位置検出時に発磁体と磁気センサとの
相対的位置(第1図のY及びZ方向の非検出方
向での位置)が偏倚しても、平行磁場内では上
記方向の偏倚に対して平行磁場HSの大きさと
方向が略一定と見なさせるので、位置検出精度
は高く安定している。
(ii) Even if the relative position between the magnetizing body and the magnetic sensor (the position in the non-detection direction in the Y and Z directions in Figure 1) deviates during position detection, in a parallel magnetic field, the deviation in the above direction will Since the magnitude and direction of the parallel magnetic field H S are considered to be substantially constant, the position detection accuracy is high and stable.

(iii) 信号磁場HS(平行磁場)が大きくなるの
で、相対的に大きなバイアス磁場HBを磁気セ
ンサに印加できるようになり、その結果磁気セ
ンサの検出々力のヒステリシス電圧を著しく低
減することが可能になる。
(iii) Since the signal magnetic field H S (parallel magnetic field) becomes larger, it becomes possible to apply a relatively large bias magnetic field H B to the magnetic sensor, and as a result, the hysteresis voltage of the detection force of the magnetic sensor can be significantly reduced. becomes possible.

(iv) 位置検出装置を簡易かつ小型に構成でき、ま
たその取付も容易である。
(iv) The position detection device can be configured to be simple and compact, and its installation is also easy.

(v) 位置信号源に応じて位置検出数を任意に増減
できる。
(v) The number of position detections can be increased or decreased arbitrarily depending on the position signal source.

(vi) 磁気センサを構成する磁気抵抗素子を直流駆
動にすると、該素子に接続される出力ケーブル
長を大きくとることができる。
(vi) When the magnetoresistive element constituting the magnetic sensor is driven by direct current, the length of the output cable connected to the element can be increased.

なお、平行磁場を発生する発磁体としては種々
の構成のものがある。
Note that there are various configurations of magnet generating bodies that generate parallel magnetic fields.

第3図乃至第6図に発磁体の各種構成例を示
す。第3図において6及び7は磁気ヨーク、8は
磁石、第4図で9及び10は磁石、11は磁気ヨ
ークである。また第5図で12,13及び14は
磁気ヨーク、15及び16は磁石である。第6図
において、17は磁気コア、18はコイル、19
は励磁電源である。これらの発磁体を用いると、
特にセルフ・ガイド機構の磁気スケール装置に好
適である。
FIGS. 3 to 6 show examples of various configurations of the magnetizing body. In FIG. 3, 6 and 7 are magnetic yokes, 8 is a magnet, and in FIG. 4, 9 and 10 are magnets, and 11 is a magnetic yoke. Further, in FIG. 5, 12, 13 and 14 are magnetic yokes, and 15 and 16 are magnets. In FIG. 6, 17 is a magnetic core, 18 is a coil, and 19 is a magnetic core.
is the excitation power supply. Using these magnetizing bodies,
It is particularly suitable for magnetic scale devices with self-guide mechanisms.

以上述べて明らかなように本発明によれば、信
号源(発磁体)磁場として平行磁場を設けるよう
にしたものであるから、位置検出時に磁気センサ
ーが平行磁場内に入るときに平行磁場とバイアス
磁場の合成磁場方向およびその強さは非検出方向
(クリアランス)の変動があつても変動しない。
よつて安定した磁気センサー出力が得られるので
正確な位置検出を行うことができる。
As is clear from the above description, according to the present invention, since a parallel magnetic field is provided as the signal source (magnetizing body) magnetic field, when the magnetic sensor enters the parallel magnetic field during position detection, the parallel magnetic field and bias The direction and strength of the combined magnetic field do not change even if there is a change in the non-detection direction (clearance).
As a result, a stable magnetic sensor output can be obtained, making it possible to perform accurate position detection.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す概略図、第2
図はその動作説明用ベクトル図、第3図乃至第6
図は本発明の他の各実施例を示す概略図である。 1……バイアス磁石、2,3……磁気センサ、
4……発磁体。
FIG. 1 is a schematic diagram showing one embodiment of the present invention, and FIG.
The figures are vector diagrams for explaining the operation, figures 3 to 6.
The figures are schematic diagrams showing other embodiments of the present invention. 1... Bias magnet, 2, 3... Magnetic sensor,
4... Magnetizing body.

Claims (1)

【特許請求の範囲】[Claims] 1 強磁性磁気抵抗素子から成る磁気センサと、
該磁気センサに印加されるバイアス磁場発生手段
と、位置信号源として平行磁場を発生する手段と
を備え、上記磁気センサが平行磁場内に入ること
により該平行磁場とバイアス磁場との合成磁場を
検出して位置信号を発生するように構成したこと
を特徴とする位置検出装置。
1 A magnetic sensor consisting of a ferromagnetic magnetoresistive element,
A bias magnetic field generating means applied to the magnetic sensor and a means generating a parallel magnetic field as a position signal source are provided, and when the magnetic sensor enters the parallel magnetic field, a composite magnetic field of the parallel magnetic field and the bias magnetic field is detected. A position detection device characterized in that it is configured to generate a position signal by
JP11853777A 1977-10-04 1977-10-04 Position detector Granted JPS5452567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11853777A JPS5452567A (en) 1977-10-04 1977-10-04 Position detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11853777A JPS5452567A (en) 1977-10-04 1977-10-04 Position detector

Publications (2)

Publication Number Publication Date
JPS5452567A JPS5452567A (en) 1979-04-25
JPS6151245B2 true JPS6151245B2 (en) 1986-11-07

Family

ID=14739037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11853777A Granted JPS5452567A (en) 1977-10-04 1977-10-04 Position detector

Country Status (1)

Country Link
JP (1) JPS5452567A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0632431Y2 (en) * 1988-11-10 1994-08-24 日産車体株式会社 Hatch roof weather strip mounting structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58189501A (en) * 1982-04-28 1983-11-05 Sony Magnescale Inc Magnetic head device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0632431Y2 (en) * 1988-11-10 1994-08-24 日産車体株式会社 Hatch roof weather strip mounting structure

Also Published As

Publication number Publication date
JPS5452567A (en) 1979-04-25

Similar Documents

Publication Publication Date Title
US5831431A (en) Miniaturized coil arrangement made by planar technology, for the detection of ferromagnetic materials
CA1308551C (en) Electronic digital compass
US5757184A (en) Magnetic field detection apparatus with bilateral electrical switch for inverting magnetic sensor current
EP3531074A2 (en) Angular sensor system and method of stray field cancellation
JP3352366B2 (en) Pulse signal generator
US5280239A (en) Position sensor utilizing primary and secondary coils wound on a toroidal core with flux concentrators
JP3487452B2 (en) Magnetic detector
US3340467A (en) Magnetic metal detector utilizing a magnetic bridge formed with permanent magnets and a hall effect sensor
CN108469594B (en) High-precision closed-loop gradient magnetic resistance sensor
JPS6151245B2 (en)
US7450353B2 (en) Zig-zag shape biased anisotropic magnetoresistive sensor
US4866384A (en) Relative phase magnetic field direction indicating devices useful as compasses
JPS6344730Y2 (en)
JPH07105809A (en) Linear displacement sensor
US3258687A (en) Wide range linear fluxgate magnetometer
JPS54158960A (en) Position detector
GB875710A (en) Magnetic susceptibility measuring instrument
JPH0739922B2 (en) Position detector for hydraulic or pneumatic cylinders
JPH0211022B2 (en)
SU394654A1 (en) DEVICE FOR MEASURING THE THICKNESS OF LARGE-SIZED PRODUCTS
JPS62148813A (en) Magnetic sensor
JPH0211023B2 (en)
JP2002040043A (en) Acceleration sensor
JPH02280007A (en) Position sensor
JPS61175504A (en) Positioning sensor