JPH0487154A - Hydrogen storage electrode and manufacture thereof - Google Patents

Hydrogen storage electrode and manufacture thereof

Info

Publication number
JPH0487154A
JPH0487154A JP2198754A JP19875490A JPH0487154A JP H0487154 A JPH0487154 A JP H0487154A JP 2198754 A JP2198754 A JP 2198754A JP 19875490 A JP19875490 A JP 19875490A JP H0487154 A JPH0487154 A JP H0487154A
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage electrode
coating layer
electrode
storage alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2198754A
Other languages
Japanese (ja)
Inventor
Toshiaki Konuki
利明 小貫
Yoichi Nomura
洋一 野村
Takeshi Tsuda
武 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2198754A priority Critical patent/JPH0487154A/en
Publication of JPH0487154A publication Critical patent/JPH0487154A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To prevent production of cracks in the surface of a hydrogen storage electrode in a winding process or the like by providing a porous resin coating layer capable of moving ions on the surface of a main body of the hydrogen storage electrode. CONSTITUTION:Powders of hydrogen storage alloy consisting of LaNi5 are mechanically crushed and filled in a three-dimensional mesh structural body 2 consisting of foam nickel to form a main body 3 of a hydrogen storage electrode. This hydrogen storage electrode main body 3 is coated with porous polyethylene film to form a porous resin coating layer 4, and emission and storage of hydrogen is repeated so as to obtain a hydrogen storage electrode 5 in which the grain size of the hydrogen storage alloy powders 1 is set small. By thus providing the porous resin coating layer 4 in which ions are movable on the surface of the hydrogen storage electrode main body 3, removal of the hydrogen storage alloy powders 1 from the electrode by charge and discharge or increase of a contact resistance of the hydrogen storage alloy powders 1 to the three-dimensional mesh structural body 2 at the deeper part of the electrode can be prevented, and because the coating layer 4 is formed of resin of a larger softness than metal, cracks in the coating layer 4 by an external force in winding or the like can be prevented.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、水素吸蔵合金を主要構成材料とする水素吸蔵
合金電極及びその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a hydrogen storage alloy electrode whose main constituent material is a hydrogen storage alloy, and a method for manufacturing the same.

[従来の技術] 例えば、水素吸蔵電極を負極とし、ニッケルを正極とす
るニッケルー水素電池では、充放電(水素吸蔵合金の水
素の吸蔵、放出)の際に水素吸蔵電極中の水素吸蔵合金
が膨張、圧縮し、電極から水素吸蔵合金が脱落して容量
低下が生じる問題点があった。この問題点を解決するた
めに従来は、例えば特開昭60−77357号で示され
ているように、発泡金属よりなる三次元網目構造体に水
素吸蔵合金粉末を充填した水素吸蔵電極本体の表面を蒸
着金属薄膜で被覆して、水素吸蔵電極の機械的強度を強
化するという方策がとられていた。
[Prior art] For example, in a nickel-hydrogen battery in which a hydrogen storage electrode is used as a negative electrode and nickel is used as a positive electrode, the hydrogen storage alloy in the hydrogen storage electrode expands during charging and discharging (occlusion and release of hydrogen from the hydrogen storage alloy). However, there was a problem in that the hydrogen storage alloy fell off from the electrode due to compression, resulting in a decrease in capacity. In order to solve this problem, conventionally, as shown in Japanese Patent Application Laid-open No. 60-77357, the surface of the hydrogen storage electrode body is made by filling a three-dimensional network structure made of foamed metal with hydrogen storage alloy powder. Measures have been taken to strengthen the mechanical strength of hydrogen storage electrodes by coating them with a thin vapor-deposited metal film.

[発明か解決しようとする課題] しかしながら、上述の方策では、電極表面の強度をある
程度強化することはできるか、電極深部の強度が弱く、
水素の吸蔵、放出により水素吸蔵合金粉末の微細化が進
み、電極基体である三次元網目構造体と水素吸蔵合金粉
末との間の接触抵抗が増大してしまう問題点があった。
[Problem to be solved by the invention] However, with the above-mentioned measures, it is not possible to strengthen the strength of the electrode surface to some extent, or the strength of the deep part of the electrode is weak.
There is a problem in that the hydrogen storage alloy powder becomes finer due to absorption and release of hydrogen, and the contact resistance between the three-dimensional network structure that is the electrode base and the hydrogen storage alloy powder increases.

また、円筒形電池等の製作の際には、巻回工程で水素吸
蔵電極表面の金属被膜に亀裂が生じるという問題点があ
った。
Further, when manufacturing cylindrical batteries, etc., there was a problem in that cracks were generated in the metal coating on the surface of the hydrogen storage electrode during the winding process.

本発明の1つの目的は、水素吸蔵合金粉末と三次元網目
構造体との接触抵抗の増大を防止できる水素吸蔵電極及
びその製造方法を提供することにある。
One object of the present invention is to provide a hydrogen storage electrode and a method for manufacturing the same that can prevent an increase in contact resistance between a hydrogen storage alloy powder and a three-dimensional network structure.

本発明の他の目的は、巻回工程等で水素吸蔵電極表面に
亀裂が生じるのを防止できる水素吸蔵電極及びその製造
方法を提供することにある。
Another object of the present invention is to provide a hydrogen storage electrode and a manufacturing method thereof that can prevent cracks from forming on the surface of the hydrogen storage electrode during the winding process or the like.

[課題を解決するための手段] 上記の目的を達成するための本発明の詳細な説明すると
、次の通りである。
[Means for Solving the Problems] A detailed explanation of the present invention for achieving the above object is as follows.

請求項(1)に記載の発明は、三次元網目構造体に水素
吸蔵合金粉末が充填されて水素吸蔵電極本体が形成され
ている水素吸蔵電極において、前記水素吸蔵電極本体の
表面にはイオンの移動が可能な微孔樹脂被覆層か設けら
れていることを特徴とする 請求項(2)に記載の発明は、請求項(1)において、
前記微孔樹脂被覆層がセパレータを兼ねていることを特
徴とする 請求項(3)に記載の発明は、三次元網目構造体に水素
吸蔵合金粉末か充填されて水素吸蔵電極本体が形成され
ている水素吸蔵電極の製造方法において、前記水素吸蔵
電極本体の表面にイオンの移動が可能な微孔樹脂被覆層
を設け、得られた水素吸蔵電極に水素化処理を施すこと
を特徴とする請求項(4)に記載の発明は、請求項(3
)に記載の製造方法で得られた前記水素吸蔵電極に外圧
を加えて圧縮することを特徴とする。
The invention according to claim (1) provides a hydrogen storage electrode in which a hydrogen storage electrode body is formed by filling a three-dimensional network structure with hydrogen storage alloy powder, and the surface of the hydrogen storage electrode body is provided with ions. The invention according to claim (2), characterized in that a movable microporous resin coating layer is provided, is characterized in that in claim (1),
The invention according to claim (3), characterized in that the microporous resin coating layer also serves as a separator, is characterized in that the three-dimensional network structure is filled with hydrogen-absorbing alloy powder to form a hydrogen-absorbing electrode body. A method of manufacturing a hydrogen storage electrode according to claim 1, wherein a microporous resin coating layer capable of ion movement is provided on the surface of the hydrogen storage electrode body, and the obtained hydrogen storage electrode is subjected to a hydrogenation treatment. The invention described in claim (4) is
) is characterized in that the hydrogen storage electrode obtained by the manufacturing method described in (a) is compressed by applying external pressure.

[作用] 請求項(1)に記載のように、水素吸蔵電極本体の表面
にイオンの移動か可能な微孔樹脂被覆層を設けると、充
放電による水素吸蔵合金粉末の電極からの脱落、及び電
極深部の水素吸蔵合金粉末と三次元網目構造体との接触
抵抗の増大を防止できる。また、被覆層が金属より柔軟
性が大きい樹脂にて形成されるため、巻回等の外力によ
る被覆層の亀裂を防止できる。
[Function] As described in claim (1), when a microporous resin coating layer that allows ion movement is provided on the surface of the hydrogen storage electrode body, the hydrogen storage alloy powder is prevented from falling off from the electrode due to charging and discharging, and It is possible to prevent an increase in contact resistance between the hydrogen storage alloy powder deep in the electrode and the three-dimensional network structure. Furthermore, since the covering layer is formed of resin which has greater flexibility than metal, cracking of the covering layer due to external forces such as winding can be prevented.

請求項(2)のように微孔樹脂被覆層がセパレータを兼
ねると、特別にセパレータを設ける必要がなくなり、電
池の構造が簡単になり、且つ組立て作業も容易となる。
When the microporous resin coating layer also serves as a separator as in claim (2), there is no need to provide a special separator, and the structure of the battery becomes simple and the assembly work becomes easy.

請求項(3)のように、水素吸蔵電極本体の表面にイオ
ンの移動が可能な微孔樹脂被覆層を設けると、被覆層が
あってもその中の水素吸蔵合金粉末に対して水素化処理
ができる。また、水素吸蔵電極本体の表面に微孔樹脂被
覆層が存在すると、水素化処理中に水素吸蔵合金粉末が
微細化しても、三次元網目構造体によって脱落を防止で
きる。
As claimed in claim (3), if a microporous resin coating layer that allows ions to move is provided on the surface of the hydrogen storage electrode body, even if there is a coating layer, the hydrogen storage alloy powder therein can be hydrogenated. I can do it. Further, when the microporous resin coating layer is present on the surface of the hydrogen storage electrode body, even if the hydrogen storage alloy powder becomes fine during hydrogenation treatment, the three-dimensional network structure can prevent it from falling off.

請求項(4)のように、水素吸蔵電極に外圧を加えて圧
縮しても、被覆層は金属より柔軟性の大きい樹脂で形成
されているので、圧縮時に割れたりするのを防止できる
As in claim (4), even if the hydrogen storage electrode is compressed by applying external pressure, the covering layer is made of a resin that is more flexible than metal, so it can be prevented from cracking during compression.

[実施例コ 以下、本発明の実施例を第1図(A)(B)(C)を参
照して詳細に説明する。本実施例は、L a N i 
5を水素吸蔵合金とした水素吸蔵電極を例にとってその
製造方法と共に説明する。
[Embodiments] Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS. 1(A), (B), and (C). In this example, L a N i
A hydrogen storage electrode using hydrogen storage alloy No. 5 will be described as an example along with its manufacturing method.

第1図(A)に示すように、市販のLaNi5よりなる
水素吸蔵合金粉末1を31m11〜200μmの粒径に
なるように機械的に粉砕して発泡ニッケルよりなる三次
元網目構造体2に充填し、水素吸蔵電極本体3を形成す
る。即ち、水素吸蔵合金粉末1を比較的低活性な粒径の
粗い状態で三次元網目構造体2に充填して、水素吸蔵電
極本体3を形成する。三次元網目構造体2としては、住
友電気工業株式会社製の発泡ニッケル(セルメット#7
)を用いた。この水素吸蔵電極本体3を孔径0,4μm
、厚み0.5mmの微孔ポリエチレンフィルムにて被覆
して微孔樹脂被服層4を形成し、得られた水素吸蔵電極
5を50 kg / c!でプレスし、三次元網目構造
体2と微孔樹脂被服層4を圧着する。この後、該水素吸
蔵電極5をステンレス容器に封入し、温度り0℃−水素
圧10kg/c!で水素吸蔵合金粉末1に水素を吸蔵さ
せ、温度20℃で減圧して水素を放出する熱サイクルに
よる水素化処理を、LaNi5よりなる水素吸蔵合金粉
末1の粒径が1μm程度になるまで繰返す。かくして、
第1図(B)に示すように水素吸蔵合金粉末1の粒径を
小さくした水素吸蔵電極5を得る。このような水素化処
理終了後、不活性ガス雰囲気のグローブボックス内で所
定の厚みになるようロールプレスして、第1図示すよう
な目的とする厚みを有する水素吸蔵電極5を得る。
As shown in FIG. 1(A), a commercially available hydrogen storage alloy powder 1 made of LaNi5 is mechanically crushed to a particle size of 31 ml to 200 μm and filled into a three-dimensional network structure 2 made of foamed nickel. Then, the hydrogen storage electrode body 3 is formed. That is, the hydrogen storage electrode body 3 is formed by filling the three-dimensional network structure 2 with the hydrogen storage alloy powder 1 in a relatively low activity and coarse particle size state. As the three-dimensional network structure 2, foamed nickel (Celmet #7 manufactured by Sumitomo Electric Industries, Ltd.) is used.
) was used. This hydrogen storage electrode body 3 has a pore diameter of 0.4 μm.
The microporous resin coating layer 4 was formed by covering with a microporous polyethylene film having a thickness of 0.5 mm, and the resulting hydrogen storage electrode 5 weighed 50 kg/c! The three-dimensional network structure 2 and the microporous resin coating layer 4 are pressed together. After that, the hydrogen storage electrode 5 is sealed in a stainless steel container, and the temperature is 0°C and the hydrogen pressure is 10kg/c! The hydrogen storage alloy powder 1 is made to store hydrogen, and the hydrogen storage process is repeated by a thermal cycle in which hydrogen is released by reducing the pressure at a temperature of 20° C. until the particle size of the hydrogen storage alloy powder 1 made of LaNi5 becomes about 1 μm. Thus,
As shown in FIG. 1(B), a hydrogen storage electrode 5 is obtained in which the particle size of the hydrogen storage alloy powder 1 is reduced. After completion of such hydrogenation treatment, the hydrogen storage electrode 5 having the desired thickness as shown in FIG. 1 is obtained by roll pressing to a predetermined thickness in a glove box under an inert gas atmosphere.

[発明の効果] 以上説明したように、本発明に係る水素吸蔵電極及びそ
の製造方法によれば、下記のような効果を得ることがで
きる。
[Effects of the Invention] As explained above, according to the hydrogen storage electrode and the manufacturing method thereof according to the present invention, the following effects can be obtained.

請求項(1)に記載の発明では、水素吸蔵電極本体の表
面にイオンの移動が可能な微孔樹脂被覆層を設けたので
、充放電による水素吸蔵合金粉末の電極からの脱落、及
び電極深部の水素吸蔵合金粉末と発泡金属との接触抵抗
の増大を防止することができる。また、被覆層が金属よ
り柔軟性か大きい樹脂にて形成されるため、巻回等の外
力による被覆層の亀裂を防止することができる。
In the invention described in claim (1), since the microporous resin coating layer that allows ion movement is provided on the surface of the hydrogen storage electrode main body, the hydrogen storage alloy powder does not fall off from the electrode due to charging and discharging, and the deep part of the electrode It is possible to prevent an increase in contact resistance between the hydrogen storage alloy powder and the foamed metal. Furthermore, since the covering layer is made of a resin that is more flexible than metal, it is possible to prevent the covering layer from cracking due to external forces such as winding.

請求項(2)に記載の発明では、微孔樹脂被覆層がセパ
レータを兼ねているので、特別にセパレータを設ける必
要がなくなり、電池の構造か簡単になり、且つ組立て作
業も容易となる利点がある。
In the invention described in claim (2), since the microporous resin coating layer also serves as a separator, there is no need to provide a special separator, which has the advantage of simplifying the structure of the battery and facilitating the assembly work. be.

請求項(3)に記載の発明では、水素吸蔵電極本体の表
面にイオンの移動が可能な微孔樹脂被覆層を設け、その
後に水素化処理を行うので、被覆層があってもその中の
水素吸蔵合金粉末に対して該被覆層の微孔を利用して容
易に水素化処理を行うことができる。また、表面に微孔
樹脂被覆層が存在すると、水素化処理中に水素吸蔵合金
粉末か微細化しても、三次元網目構造体からの脱落を防
止することができる。
In the invention described in claim (3), a microporous resin coating layer that allows ion movement is provided on the surface of the hydrogen storage electrode body, and then hydrogenation treatment is performed, so even if there is a coating layer, the inside of the coating layer is The hydrogen storage alloy powder can be easily hydrogenated by utilizing the micropores of the coating layer. Moreover, when the microporous resin coating layer is present on the surface, even if the hydrogen storage alloy powder is made finer during the hydrogenation treatment, it can be prevented from falling off from the three-dimensional network structure.

請求項(4)に記載の発明では、水素吸蔵電極に外圧を
加えて圧縮しても、被覆層は金属より柔軟性の大きい樹
脂で形成されているので、圧縮時に割れたりするのを防
止しつつ必要な厚みに容易に形成することができる。
In the invention described in claim (4), even if the hydrogen storage electrode is compressed by applying external pressure, the covering layer is made of a resin that is more flexible than metal, so it is prevented from cracking during compression. It can be easily formed to the required thickness.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)〜(C)は本発明に係る水素吸蔵電極の各
製造工程毎の横断面図である。 1・・・水素吸蔵合金粉末、2・・・三次元網目構造体
、3・・・水素吸蔵電極本体、4・・・微孔樹脂被服層
、5・・・水素吸蔵電極。 第1図 (△) (B) (C)
FIGS. 1A to 1C are cross-sectional views of each manufacturing process of the hydrogen storage electrode according to the present invention. DESCRIPTION OF SYMBOLS 1... Hydrogen storage alloy powder, 2... Three-dimensional network structure, 3... Hydrogen storage electrode body, 4... Microporous resin coating layer, 5... Hydrogen storage electrode. Figure 1 (△) (B) (C)

Claims (4)

【特許請求の範囲】[Claims] (1)三次元網目構造体に水素吸蔵合金粉末が充填され
て水素吸蔵電極本体が形成されている水素吸蔵電極にお
いて、前記水素吸蔵電極本体の表面にはイオンの移動が
可能な微孔樹脂被覆層が設けられていることを特徴とす
る水素吸蔵電極。
(1) In a hydrogen storage electrode in which a hydrogen storage electrode body is formed by filling a three-dimensional network structure with hydrogen storage alloy powder, the surface of the hydrogen storage electrode body is coated with a microporous resin that allows the movement of ions. A hydrogen storage electrode characterized by being provided with a layer.
(2)前記微孔樹脂被覆層がセパレータを兼ねているこ
とを特徴とする請求項(1)に記載の水素吸蔵電極。
(2) The hydrogen storage electrode according to claim 1, wherein the microporous resin coating layer also serves as a separator.
(3)三次元網目構造体に水素吸蔵合金粉末が充填され
て水素吸蔵電極本体が形成されている水素吸蔵電極の製
造方法において、前記水素吸蔵電極本体の表面にイオン
の移動が可能な微孔樹脂被覆層を設け、得られた水素吸
蔵電極に水素化処理を施すことを特徴とする水素吸蔵電
極の製造方法。
(3) In a method for manufacturing a hydrogen storage electrode in which a hydrogen storage electrode body is formed by filling a three-dimensional network structure with hydrogen storage alloy powder, the surface of the hydrogen storage electrode body has micropores that allow movement of ions. A method for producing a hydrogen storage electrode, comprising providing a resin coating layer and subjecting the obtained hydrogen storage electrode to hydrogenation treatment.
(4)請求項(3)に記載の製造方法にて得られた前記
水素吸蔵電極に外圧を加えて圧縮することを特徴とする
水素吸蔵電極の製造方法。
(4) A method for manufacturing a hydrogen storage electrode, which comprises compressing the hydrogen storage electrode obtained by the manufacturing method according to claim (3) by applying external pressure.
JP2198754A 1990-07-26 1990-07-26 Hydrogen storage electrode and manufacture thereof Pending JPH0487154A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2198754A JPH0487154A (en) 1990-07-26 1990-07-26 Hydrogen storage electrode and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2198754A JPH0487154A (en) 1990-07-26 1990-07-26 Hydrogen storage electrode and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0487154A true JPH0487154A (en) 1992-03-19

Family

ID=16396407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2198754A Pending JPH0487154A (en) 1990-07-26 1990-07-26 Hydrogen storage electrode and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0487154A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1168470A1 (en) * 2000-06-30 2002-01-02 SANYO ELECTRIC Co., Ltd. Hydrogen absorbing alloy electrode, method of fabricating the same and alkaline storage battery
WO2018032972A1 (en) * 2016-08-15 2018-02-22 福建新峰二维材料科技有限公司 Manufacturing method of electrode material of nickel-hydrogen battery having long service-life

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1168470A1 (en) * 2000-06-30 2002-01-02 SANYO ELECTRIC Co., Ltd. Hydrogen absorbing alloy electrode, method of fabricating the same and alkaline storage battery
WO2018032972A1 (en) * 2016-08-15 2018-02-22 福建新峰二维材料科技有限公司 Manufacturing method of electrode material of nickel-hydrogen battery having long service-life
CN107768605A (en) * 2016-08-15 2018-03-06 福建新峰二维材料科技有限公司 A kind of preparation method of extra long life electrode material for nickel-hydrogen cell
CN107768605B (en) * 2016-08-15 2020-10-16 福建新峰二维材料科技有限公司 Preparation method of electrode material of nickel-metal hydride battery with ultra-long service life

Similar Documents

Publication Publication Date Title
JPH0487154A (en) Hydrogen storage electrode and manufacture thereof
EP1215741B1 (en) Method for manufacturing a positive electrode plate
US20020045097A1 (en) Hydrogen absorbing alloy electrode, manufacturing method thereof, and alkaline storage battery equipped with the hydrogen absorbing alloy electrode
JPH056762A (en) Manufacture of spongy metal porous body for electrode plate
JP2001503911A (en) Metal foam for secondary battery electrode
US5348823A (en) Process of preparing an electrode for an electrochemical cell with a porous support and an electrode obtained by said process
JP2733231B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2629258B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPH0241864B2 (en)
JP2537128B2 (en) Method for producing hydrogen storage alloy powder for negative electrode of nickel-hydrogen secondary battery and method for producing negative electrode for nickel-hydrogen secondary battery
JP3670800B2 (en) Method for producing hydrogen storage alloy electrode
JP3171401B2 (en) Hydride rechargeable battery
JPS5931829B2 (en) Manufacturing method of hydrogen storage electrode
JPH02183964A (en) Manufacture of hydrogen storage electrode
JPS6164068A (en) Manufacture of hydrogen-absorbing electrode
JP2002231235A (en) Molding for carbon powder-containing nickel-hydrogen battery and method of manufacturing the same
JP2981537B2 (en) Negative electrode for alkaline batteries
JPH053031A (en) Manufacture of alkaline storage battery and its negative electrode
JP3182225B2 (en) Method for producing cadmium negative electrode for alkaline storage battery
JP3013412B2 (en) Negative electrode for metal hydride battery and method for producing the same
JPH05258750A (en) Manufacture of hydrogen storage alloy electrode
JPH0218549B2 (en)
JPS60140657A (en) Production of hydrogen-occluding electrode
JP2002231236A (en) Hydrogen storage alloy electrode, method of manufacturing the same, and alkaline battery with hydrogen storage alloy electrode
US2964582A (en) Sintered plate for alkaline storage batteries