JP3670800B2 - Method for producing hydrogen storage alloy electrode - Google Patents

Method for producing hydrogen storage alloy electrode Download PDF

Info

Publication number
JP3670800B2
JP3670800B2 JP14927497A JP14927497A JP3670800B2 JP 3670800 B2 JP3670800 B2 JP 3670800B2 JP 14927497 A JP14927497 A JP 14927497A JP 14927497 A JP14927497 A JP 14927497A JP 3670800 B2 JP3670800 B2 JP 3670800B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
electrode
alloy electrode
high rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14927497A
Other languages
Japanese (ja)
Other versions
JPH10340720A (en
Inventor
幹朗 田所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP14927497A priority Critical patent/JP3670800B2/en
Publication of JPH10340720A publication Critical patent/JPH10340720A/en
Application granted granted Critical
Publication of JP3670800B2 publication Critical patent/JP3670800B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、電気化学的に水素を吸蔵・放出する水素吸蔵合金電極の導電性の改良に関する。
【0002】
【従来の技術】
近年、ワープロ、携帯電話、パソコン、ビデオカメラなどに代表されるポータブル電子機器は、益々小型化、軽量化される傾向がある。そして、これら電子機器に使用される電池についても、その利便性を更に向上させるために、一層高容量なものが要請されている。
【0003】
電池の高容量化を行うためには、電池反応に直接関与しない部材を減じることが必要である。このためには、電池を構成する電極枚数を減じることによって、セパレータや芯体等を減らす必要があるが、これに伴い各電極の厚みが大きくなる。厚みが厚くなると電極の集電性が低下し、高率放電特性が低下するという問題があった。特に水素吸蔵合金の反応性向上のために比表面積の大きい微粉末を用いた場合には、その表面が酸化されているために水素吸蔵合金間の接触が不十分となり、充放電サイクル初期において、より高率放電特性が低下するという問題点があった。これに対し、特公平7−63006号公報に記載されているように、水素吸蔵合金粉末、結着剤および粘度調整剤を予め混練してパンチングメタル、エキスパンドメタル、金属ネットなどの金属2次元多孔体に塗着し、乾燥して得た極板の表面に、さらに多孔性の導電性層を形成することにより高率放電特性が改良されることが開示されている。しかし、この方法では導電性層が極板表面にのみ配設されているため、厚みが大きい極板では導電性の向上効果が不十分であった。また、導電性層は電気メッキ、あるいは無電解メッキにより形成されるが、湿式工程であるため、金属2次元多孔体から合金粉末が脱落する、工程が繁雑になるなどの問題があり、生産性が低いという問題点があった。また、前記公報の明細書中に乾式工程である蒸着法、スパッター法についても適用可能であることが示唆されている。しかし、これらの方法の場合において、メッキ法よりは極板厚み方向内部側まで形成されやすいと考えられるが、依然、導電性層は表面近傍にのみ形成されるために厚みが大きい極板では、高率放電特性の改良は不十分であった。
【0004】
【発明が解決しようとする課題】
本発明は前記問題点に鑑みてなされたものであり、水素吸蔵合金間に導電ネットワークを3次元的に形成することにより、厚みの大きい極板であっても電極の集電性を向上させ、高率放電特性の向上効果を十分に発揮させようとすることを本発明の課題とする。
【0005】
【課題を解決するための手段】
本発明の製造方法は、レーザー法による平均粒径が50μm以下の水素吸蔵合金を金属2次元多孔体に担持し、電極の厚みが0.60mm以上の水素吸蔵合金電極の製造方法であって、水素吸蔵合金を含むスラリーを金属2次元多孔体に担持、乾燥させて水素吸蔵合金電極とする工程、水素吸蔵合金電極の内部空隙にカルボニルニッケルガスを導入するとともに、水素吸蔵合金電極の温度を上昇させてカルボニルニッケルガスを熱分解し、水素吸蔵合金間にニッケルからなる3次元導電ネットワークを形成する工程、3次元導電ネットワークを形成した水素吸蔵合金電極を圧延する工程を含むことを特徴とする。
【0006】
【発明の実施の形態】
本発明では、水素吸蔵合金を、パンチングメタル、エキスパンドメタルまたは金属ネット等の金属2次元多孔体に、水素吸蔵合金を結着剤または粘結剤を使用して担持させた後、3次元導電ネットワークを形成させたものである。このような3次元導電ネットワークとしては、導電性の良好な金属であれば何を使用してもよいが、耐アルカリ性及び価格の観点からニッケルからなるものが好ましい。
【0007】
そして、本発明のようにニッケルからなる導電ネットワークを水素吸蔵合金間に3次元的に形成することにより、電極の厚みが大きい極板であっても集電性が向上し、高率放電特性が向上することを見いだした。このような効果は、水素吸蔵合金電極の厚みが0.60mm以上で、水素吸蔵合金の平均粒径が50μm以下の微粉末で顕著である。
【0008】
また、本発明のように3次元導電ネットワークをカルボニルニッケルガス法等の乾式法で形成することによって、集電体からの水素吸蔵合金脱落等の不具合が解消される。そして、カルボニルニッケルガスによって処理することによって、より均一に3次元導電ネットワークを水素吸蔵合金間に形成することが可能である。
【0009】
さらに、3次元導電ネットワーク形成工程を極板の最終圧延前とすることで、処理時の極板内部空隙率が大きいために電極の厚み方向により均一にニッケルからなる3次元導電ネットワークを形成することが可能となる。
【0010】
【実施例】
(実施例1)
[標準負極板の作製]
市販の金属元素をMmNi3.4Co0.8Al0.2Mn0.6となるように秤量し、高周波溶解炉にて溶解した後、この溶湯を鋳型に流し込み、水素吸蔵合金インゴットを作製した。次にこのインゴットをあらかじめ粗粉砕した後、不活性ガス雰囲気中でレーザー法による平均粒径が100μm程度になるまで機械的に粉砕を行った。一部実施例では70、50、30μmまで粉砕を行った。
【0011】
この合金粉末に結着剤としてのポリエチレンオキサイド及び適量の水を加えて混合してスラリーとした。このスラリーをパンチングメタルからなる集電体の両面に塗着した。塗着量は圧延後の活物質密度が5g/ccとなるように調整した。その後、乾燥、圧延を行った後、所定寸法にて切断を行い、標準負極板とした。
[負極の作製]
水素吸蔵合金を金属2次元多孔体に塗着、乾燥までは上記標準負極板と同様に行い、導電性層(下記電極A〜C)または3次元導電ネットワーク(下記電極D及びE)を形成する工程を下記表1に示す方法にて負極板を作製した。ここで、導電ネットワークとしてはニッケルを使用した。
【0012】
【表1】

Figure 0003670800
【0013】
ここで、負極板D及びEのカルボニルニッケル法とは、水素吸蔵合金粉末を塗着した極板をカルボニルニッケルガス雰囲気下に放置し、極板に通電することによって極板温度を上昇させ、カルボニルニッケルガスをニッケルと一酸化炭素に分解して、3次元導電ネットワークであるニッケルネットワークを水素吸蔵合金間に形成させた。
【0014】
[電極群の作製]
前記のように作製した負極を所定寸法に切断した後、集電用リードを取り付けた。次にこの負極を、厚み約0.2mmのポリプロピレン製不織布からなるセパレータで包んだ公知の焼結式ニッケル正極2枚で挟んで電極群を作製した。
【0015】
次に、前記電極群をアクリル板2枚で挟んで、ニッケルメッキを施したボルトで締めて両極間に一定圧をかけた。
【0016】
図1に、上記電極群1の模式図を示す。図中2は負極であり、3は正極であり、負極2を挟むように配置されている。4はセパレータで、正極3を包み込んでいる。5は負極2に取り付けられた負極リード板であり、6は正極3に取り付けられた正極リード板である。7は上記電極群を固定するためのアクリル板、8はボルトである。
【0017】
尚、各電極の電気容量は負極支配(負極容量が正極容量よりも小さい)となるように調整した。
【0018】
[簡易セルの作製]
前記の様に作製した電極群をポリプロピレン製絶縁性密閉容器内に配置し、各電極リードを容器の蓋に配設された正・負極端子に各々接続した。
【0019】
次に、電解液リッチ状態となるように十分な量の電解液(LiOH、NaOHを含有した7〜8.5NのKOH水溶液)を注入した後、蓋を閉めて密閉状態とした。尚、この簡易セルには5気圧で開放になる安全弁が配置されており、初充電前に窒素ガスにより5気圧の圧力をかけた。
【0020】
前記の様にして作製した簡易セルの模式図を図2に示す。
【0021】
ここで、図中9は圧力計、10はリリーフ管、11はリリーフバルブ、12は負極端子、13は正極端子、14はポリプロピレン製絶縁性密閉容器を示している。
【0022】
[実験1]
▲1▼活性化
前記簡易セルを用いて、まず、50mA/gの電流値で8時間充電し、1時間の休止の後、50mA/gの電流値で電池電圧が1.0Vに達するまで放電し、その後1時間の休止をするというサイクルを6サイクル繰り返し、電池を活性化した。6サイクル目の放電容量を各簡易セルの基準容量とした。
【0023】
尚、50mA/gとは、負極の水素吸蔵合金1gあたり50mAという意味である。
【0024】
▲2▼高率放電特性
上記基準容量測定後の電池を50mA/gの電流値で8時間充電し、1時間の休止の後、200mA/gの電流値で電池電圧が1.0Vに達するまで放電し、このときの放電容量の各電池の基準容量に対する割合(放電容量/基準容量:%)を高率放電特性とした。
【0025】
下記表2に負極板の条件及び高率放電特性の実験結果を示す。
【0026】
尚、電池番号1の高率放電特性を100とした指数で表示する。
【0027】
【表2】
Figure 0003670800
【0028】
上記表2から、負極の厚みが薄い条件においては、公知の処理方法A〜Cであっても、処理無しよりも高率放電特性が向上するが、処理法D及び本発明処理法Eの方が向上率が大きい。
【0029】
また、負極の厚みが厚い条件においては、公知の方法A〜Cではほとんど高率放電特性の向上効果が認められないのに対して、処理法D及び本発明処理法Eにおいては、厚みの薄い条件とほぼ同等の高率放電特性を維持できる。また、圧延前に3次元導電ネットワークを形成する処理を施す(本発明E)ことにより、さらに効果が大きいことがわかる。
【0030】
[実験2]
この実験では、負極板厚みと高率放電特性の関係について実験を行った。
【0031】
水素吸蔵合金電極の厚みを0.4〜0.8mmと種々変化させ、上記実験1と同様にして高率放電特性を評価し、その結果を下記表3に示す。
【0032】
尚、電池番号1の高率放電特性を100とした指数で表示する。
【0033】
【表3】
Figure 0003670800
【0034】
この表3から明らかなように、処理無し及び公知の方法Aでは、電極の厚みが大きくなるにつれて、高率放電特性が低下する。一方、本発明処理方法Eによれば、厚みが大きくなってもほとんど高率放電特性の低下が認められないことがわかる。
【0035】
また、電池番号13〜15、16〜18、19〜21の比較から、特に電極の厚みが0.6mm以上で、本発明による導電性向上効果が大きいことがわかる。
【0036】
[実験3]
この実験では、水素吸蔵合金の粒径と高率放電特性の関係について実験を行った。
【0037】
水素吸蔵合金の平均粒径を30〜100μmと種々変化させ、上記実験1と同様にして高率放電特性を評価し、その結果を下記表4に示す。このとき負極の厚みを0.8mmに固定した。また、このときの平均粒径はレーザー法により測定したものである。
【0038】
尚、電池番号1の高率放電特性を100とした指数で表示する。
【0039】
【表4】
Figure 0003670800
【0040】
この表4から明らかなように、処理無し及び公知の方法Aでは、水素吸蔵合金の粒径が小さくなるにつれて、高率放電特性が低下する。一方、本発明処理方法Eによれば、水素吸蔵合金の粒径が小さくなってもほとんど高率放電特性の低下が認められないことがわかる。
【0041】
また、電池番号22〜24、25〜27、28〜30の比較から、特に水素吸蔵合金の粒径が50μm以下で、本発明による導電性向上効果が大きいことがわかる。
【0042】
【発明の効果】
以上の結果から明らかなように、水素吸蔵合金間に導電ネットワークを3次元的に形成することによって、厚みの大きい2次元多孔体を基板とする極板であっても電極の集電性が向上し、高率放電特性も向上するため、この工業的価値は極めて高い。
【図面の簡単な説明】
【図1】本発明の簡易セルに使用される電極群の断面を示す模式図である。
【図2】本発明の実験に使用する簡易セルを示す模式図である。
【符号の説明】
1 電極群
2 負極
3 正極
4 セパレータ
5 負極リード板
6 正極リード板
7 アクリル板
8 ボルト
9 圧力計
10 リリーフ管
11 リリーフバルブ
12 負極端子
13 正極端子
14 ポリプロピレン製密閉容器[0001]
[Industrial application fields]
The present invention relates to an improvement in conductivity of a hydrogen storage alloy electrode that electrochemically stores and releases hydrogen.
[0002]
[Prior art]
In recent years, portable electronic devices represented by word processors, mobile phones, personal computers, video cameras, and the like tend to be increasingly smaller and lighter. Further, as for the batteries used in these electronic devices, in order to further improve the convenience, those having a higher capacity are required.
[0003]
In order to increase the capacity of the battery, it is necessary to reduce the number of members that are not directly involved in the battery reaction. For this purpose, it is necessary to reduce the number of separators, cores, and the like by reducing the number of electrodes constituting the battery, but the thickness of each electrode increases accordingly. When the thickness is increased, there is a problem that the current collecting property of the electrode is lowered and the high rate discharge characteristic is lowered. In particular, when a fine powder with a large specific surface area is used to improve the reactivity of the hydrogen storage alloy, contact between the hydrogen storage alloys becomes insufficient because the surface is oxidized, and at the beginning of the charge / discharge cycle, There was a problem in that the high rate discharge characteristics deteriorated. On the other hand, as described in Japanese Patent Publication No. 7-63006, a metal two-dimensional porous material such as a punching metal, an expanded metal, or a metal net by kneading a hydrogen storage alloy powder, a binder and a viscosity modifier in advance. It is disclosed that the high rate discharge characteristics are improved by forming a porous conductive layer on the surface of the electrode plate obtained by applying to the body and drying. However, in this method, since the conductive layer is disposed only on the surface of the electrode plate, the effect of improving the conductivity is insufficient with the electrode plate having a large thickness. In addition, although the conductive layer is formed by electroplating or electroless plating, since it is a wet process, there is a problem that the alloy powder falls off from the metal two-dimensional porous body, and the process becomes complicated. There was a problem that was low. In addition, the specification of the above publication suggests that the present invention can also be applied to a vapor deposition method and a sputtering method, which are dry processes. However, in the case of these methods, it is considered that it is easier to form up to the inner side of the electrode plate thickness direction than the plating method, but since the conductive layer is still formed only in the vicinity of the surface, The improvement of the high rate discharge characteristics was insufficient.
[0004]
[Problems to be solved by the invention]
The present invention has been made in view of the above problems, and by forming a conductive network three-dimensionally between the hydrogen storage alloys, the current collecting performance of the electrode is improved even with a thick electrode plate, An object of the present invention is to fully exhibit the effect of improving the high rate discharge characteristics.
[0005]
[Means for Solving the Problems]
The production method of the present invention is a method for producing a hydrogen storage alloy electrode in which a hydrogen storage alloy having an average particle diameter of 50 μm or less by a laser method is supported on a metal two-dimensional porous body, and the electrode thickness is 0.60 mm or more, A slurry containing a hydrogen storage alloy is supported on a metal two-dimensional porous body and dried to form a hydrogen storage alloy electrode. A carbonyl nickel gas is introduced into the internal space of the hydrogen storage alloy electrode and the temperature of the hydrogen storage alloy electrode is increased. And a step of thermally decomposing carbonyl nickel gas to form a three-dimensional conductive network made of nickel between the hydrogen storage alloys, and a step of rolling the hydrogen storage alloy electrode formed with the three-dimensional conductive network.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, a hydrogen storage alloy is supported on a metal two-dimensional porous body such as a punching metal, an expanded metal, or a metal net by using a binder or a binder, and then a three-dimensional conductive network. Is formed. As such a three-dimensional conductive network, any metal having good conductivity may be used, but one made of nickel is preferable from the viewpoint of alkali resistance and cost.
[0007]
Then, by forming a conductive network made of nickel three-dimensionally between the hydrogen storage alloys as in the present invention, the current collecting property is improved even with an electrode plate having a large electrode thickness, and high rate discharge characteristics are obtained. I found it to improve. Such an effect is remarkable when the hydrogen storage alloy electrode has a thickness of 0.60 mm or more and the hydrogen storage alloy has an average particle diameter of 50 μm or less.
[0008]
Further, by forming the three-dimensional conductive network by a dry method such as the carbonyl nickel gas method as in the present invention, problems such as dropping of the hydrogen storage alloy from the current collector are eliminated. And it is possible to form a three-dimensional conductive network more uniformly between hydrogen storage alloys by processing with carbonyl nickel gas.
[0009]
Further, by forming the three-dimensional conductive network before the final rolling of the electrode plate, the three-dimensional conductive network made of nickel is uniformly formed in the thickness direction of the electrode due to the large porosity inside the electrode plate during processing. Is possible.
[0010]
【Example】
(Example 1)
[Preparation of standard negative electrode plate]
A commercially available metal element was weighed so as to be MmNi 3.4 Co 0.8 Al 0.2 Mn 0.6 and dissolved in a high-frequency melting furnace, and then the molten metal was poured into a mold to prepare a hydrogen storage alloy ingot. Next, this ingot was coarsely pulverized in advance, and then mechanically pulverized in an inert gas atmosphere until the average particle diameter by a laser method became about 100 μm. In some examples, grinding was performed to 70, 50, and 30 μm.
[0011]
Polyethylene oxide as a binder and an appropriate amount of water were added to the alloy powder and mixed to form a slurry. This slurry was applied to both sides of a current collector made of punching metal. The coating amount was adjusted so that the active material density after rolling was 5 g / cc. Then, after drying and rolling, it cut | disconnected by the predetermined dimension, and was set as the standard negative electrode plate.
[Production of negative electrode]
A hydrogen storage alloy is applied to a metal two-dimensional porous body, and is dried in the same manner as the standard negative electrode plate to form a conductive layer (electrodes A to C below) or a three-dimensional conductive network (electrodes D and E below). A negative electrode plate was prepared by the method shown in Table 1 below. Here, nickel was used as the conductive network.
[0012]
[Table 1]
Figure 0003670800
[0013]
Here, the carbonyl nickel method of the negative electrodes D and E means that the electrode plate coated with the hydrogen storage alloy powder is left in a carbonyl nickel gas atmosphere, and the electrode plate temperature is increased by energizing the electrode plate. Nickel gas was decomposed into nickel and carbon monoxide to form a nickel network, which is a three-dimensional conductive network, between the hydrogen storage alloys.
[0014]
[Production of electrode group]
After the negative electrode produced as described above was cut to a predetermined size, a current collecting lead was attached. Next, this negative electrode was sandwiched between two known sintered nickel positive electrodes wrapped with a separator made of a polypropylene non-woven fabric having a thickness of about 0.2 mm to produce an electrode group.
[0015]
Next, the electrode group was sandwiched between two acrylic plates and tightened with nickel-plated bolts to apply a constant pressure between the two electrodes.
[0016]
In FIG. 1, the schematic diagram of the said electrode group 1 is shown. In the figure, 2 is a negative electrode, 3 is a positive electrode, and are arranged so as to sandwich the negative electrode 2. Reference numeral 4 denotes a separator that encloses the positive electrode 3. Reference numeral 5 denotes a negative electrode lead plate attached to the negative electrode 2, and reference numeral 6 denotes a positive electrode lead plate attached to the positive electrode 3. 7 is an acrylic plate for fixing the electrode group, and 8 is a bolt.
[0017]
In addition, the electric capacity of each electrode was adjusted so as to be controlled by the negative electrode (the negative electrode capacity was smaller than the positive electrode capacity).
[0018]
[Production of simple cells]
The electrode group produced as described above was placed in a polypropylene insulating hermetically sealed container, and each electrode lead was connected to the positive and negative terminals arranged on the lid of the container.
[0019]
Next, after injecting a sufficient amount of electrolyte solution (7 to 8.5 N KOH aqueous solution containing LiOH and NaOH) so as to be in an electrolyte solution rich state, the lid was closed to form a sealed state. This simple cell is provided with a safety valve that opens at 5 atm. A pressure of 5 atm was applied with nitrogen gas before the first charge.
[0020]
A schematic view of the simple cell produced as described above is shown in FIG.
[0021]
Here, in the figure, 9 is a pressure gauge, 10 is a relief tube, 11 is a relief valve, 12 is a negative terminal, 13 is a positive terminal, and 14 is a polypropylene insulating sealed container.
[0022]
[Experiment 1]
(1) Activation Using the simple cell, first, the battery is charged for 8 hours at a current value of 50 mA / g, and discharged after a pause of 1 hour until the battery voltage reaches 1.0 V at a current value of 50 mA / g. Then, the cycle of resting for 1 hour was repeated 6 cycles to activate the battery. The discharge capacity at the sixth cycle was used as the reference capacity of each simple cell.
[0023]
50 mA / g means 50 mA per 1 g of the hydrogen storage alloy of the negative electrode.
[0024]
(2) High rate discharge characteristics The battery after measuring the above reference capacity is charged for 8 hours at a current value of 50 mA / g, and after a pause of 1 hour, the battery voltage reaches 1.0 V at a current value of 200 mA / g. The ratio of the discharge capacity to the reference capacity of each battery at this time (discharge capacity / reference capacity:%) was defined as the high rate discharge characteristic.
[0025]
Table 2 below shows the conditions of the negative electrode plate and the experimental results of the high rate discharge characteristics.
[0026]
In addition, the high rate discharge characteristic of battery number 1 is displayed as an index.
[0027]
[Table 2]
Figure 0003670800
[0028]
From Table 2, in the negative electrode thickness is thin condition even known treatment methods A through C, but the high rate discharge characteristics are improved than without treatment, who Disposal Law D and the invention treatment method E However, the improvement rate is large.
[0029]
In the thickness of the negative electrode is thicker conditions, whereas no observed improvement in most high-rate discharge characteristics in a known manner A through C, in the Disposal Law D and the invention treatment method E, thin thickness High rate discharge characteristics almost equal to the conditions can be maintained. Moreover, it turns out that a further effect is large by performing the process which forms a three-dimensional conductive network before rolling (invention E).
[0030]
[Experiment 2]
In this experiment, an experiment was conducted on the relationship between the negative electrode plate thickness and the high rate discharge characteristics.
[0031]
The thickness of the hydrogen storage alloy electrode was variously changed to 0.4 to 0.8 mm, and the high rate discharge characteristics were evaluated in the same manner as in Experiment 1 above, and the results are shown in Table 3 below.
[0032]
In addition, the high rate discharge characteristic of battery number 1 is displayed as an index.
[0033]
[Table 3]
Figure 0003670800
[0034]
As is apparent from Table 3, in the case of no treatment and the known method A, the high rate discharge characteristics decrease as the electrode thickness increases. On the other hand, according to the processing method E of the present invention, it can be seen that even when the thickness is increased, the high rate discharge characteristics are hardly deteriorated.
[0035]
Further, from comparison of battery numbers 13 to 15, 16 to 18, and 19 to 21, it can be seen that the effect of improving the conductivity according to the present invention is large particularly when the thickness of the electrode is 0.6 mm or more.
[0036]
[Experiment 3]
In this experiment, the relationship between the particle size of the hydrogen storage alloy and the high rate discharge characteristics was tested.
[0037]
The average particle size of the hydrogen storage alloy was variously changed to 30 to 100 μm, and the high rate discharge characteristics were evaluated in the same manner as in Experiment 1 above, and the results are shown in Table 4 below. At this time, the thickness of the negative electrode was fixed to 0.8 mm. Moreover, the average particle diameter at this time is measured by a laser method.
[0038]
In addition, the high rate discharge characteristic of battery number 1 is displayed as an index.
[0039]
[Table 4]
Figure 0003670800
[0040]
As is apparent from Table 4, in the case of no treatment and the known method A, the high rate discharge characteristics are lowered as the particle size of the hydrogen storage alloy is reduced. On the other hand, according to the processing method E of the present invention, it is understood that even if the particle size of the hydrogen storage alloy is reduced, the high rate discharge characteristics are hardly deteriorated.
[0041]
Moreover, from the comparison of battery numbers 22 to 24, 25 to 27, and 28 to 30, it can be seen that the particle size of the hydrogen storage alloy is particularly 50 μm or less, and the conductivity improving effect according to the present invention is large.
[0042]
【The invention's effect】
As is clear from the above results, the current collection performance of the electrode is improved by forming a conductive network between the hydrogen storage alloys in a three-dimensional manner, even in an electrode plate having a thick two-dimensional porous body as a substrate. However, since the high rate discharge characteristics are also improved, this industrial value is extremely high.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a cross section of an electrode group used in a simple cell of the present invention.
FIG. 2 is a schematic diagram showing a simple cell used in the experiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Electrode group 2 Negative electrode 3 Positive electrode 4 Separator 5 Negative electrode lead board 6 Positive electrode lead board 7 Acrylic board 8 Bolt 9 Pressure gauge
10 Relief tube
11 Relief valve
12 Negative terminal
13 Positive terminal
14 Polypropylene sealed container

Claims (1)

レーザー法による平均粒径が50μm以下の水素吸蔵合金を金属2次元多孔体に担持し、電極の厚みが0.60mm以上の水素吸蔵合金電極の製造方法であって、A method for producing a hydrogen storage alloy electrode in which a hydrogen storage alloy having an average particle size of 50 μm or less by a laser method is supported on a metal two-dimensional porous body, and the electrode thickness is 0.60 mm or more,
水素吸蔵合金を含むスラリーを金属2次元多孔体に担持、乾燥させて水素吸蔵合金電極とする工程、A step of supporting a slurry containing a hydrogen storage alloy on a metal two-dimensional porous body and drying to form a hydrogen storage alloy electrode;
水素吸蔵合金電極の内部空隙にカルボニルニッケルガスを導入するとともに、水素吸蔵合金電極の温度を上昇させてカルボニルニッケルガスを熱分解し、水素吸蔵合金間にニッケルからなる3次元導電ネットワークを形成する工程、A step of introducing a carbonyl nickel gas into the internal space of the hydrogen storage alloy electrode and increasing the temperature of the hydrogen storage alloy electrode to thermally decompose the carbonyl nickel gas to form a three-dimensional conductive network made of nickel between the hydrogen storage alloys. ,
3次元導電ネットワークを形成した水素吸蔵合金電極を圧延する工程Rolling a hydrogen storage alloy electrode formed with a three-dimensional conductive network
を含むことを特徴とする水素吸蔵合金電極の製造方法。A method for producing a hydrogen storage alloy electrode comprising:
JP14927497A 1997-06-06 1997-06-06 Method for producing hydrogen storage alloy electrode Expired - Fee Related JP3670800B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14927497A JP3670800B2 (en) 1997-06-06 1997-06-06 Method for producing hydrogen storage alloy electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14927497A JP3670800B2 (en) 1997-06-06 1997-06-06 Method for producing hydrogen storage alloy electrode

Publications (2)

Publication Number Publication Date
JPH10340720A JPH10340720A (en) 1998-12-22
JP3670800B2 true JP3670800B2 (en) 2005-07-13

Family

ID=15471642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14927497A Expired - Fee Related JP3670800B2 (en) 1997-06-06 1997-06-06 Method for producing hydrogen storage alloy electrode

Country Status (1)

Country Link
JP (1) JP3670800B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60238499D1 (en) * 2001-09-19 2011-01-13 Kawasaki Heavy Ind Ltd HYBRID CELL
US20040241540A1 (en) * 2001-09-19 2004-12-02 Kazuo Tsutsumi Three-dimensional cell and its electrode structure and method for manufacturing electrode material of three-dimensional cell

Also Published As

Publication number Publication date
JPH10340720A (en) 1998-12-22

Similar Documents

Publication Publication Date Title
US5529857A (en) Hydrogen-absorbing alloy electrode and process for producing the same
EP0386305A1 (en) Alkaline storage battery and method of producing negative electrode thereof
JP3670800B2 (en) Method for producing hydrogen storage alloy electrode
JP4815738B2 (en) Method for producing hydrogen storage alloy powder
JP5278411B2 (en) Hydrogen storage alloy powder and nickel metal hydride storage battery using the same.
JP3136738B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2733231B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2002343349A (en) Hydrogen storage alloy electrode
JPH05101821A (en) Manufacture of hydrogen storage alloy electrode
JPH0212765A (en) Manufacture of hydrogen storage electrode
JPH10265875A (en) Hydrogen storage alloy, its production and nickel-hydrogen secondary battery
JPH0729569A (en) Manufacture of hydrogen storage alloy electrode
KR100284901B1 (en) Method for manufacturing negative electrode for NI / MH secondary battery using CU
JP3519836B2 (en) Hydrogen storage alloy electrode
JP2558624B2 (en) Nickel-hydrogen alkaline storage battery
JP2929716B2 (en) Hydrogen storage alloy electrode
JP3317099B2 (en) Hydrogen storage alloy powder for alkaline storage battery, method for producing the same, and method for producing hydrogen storage electrode
JP3092262B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPH0513077A (en) Manufacture of hydrogen storage alloy electrode
JPH103940A (en) Nickel-metal hydride storage battery and its manufacture
JPH10102174A (en) Hydrogen storage alloy, its production, and nickel-hydrogen secondary battery
JPH10265888A (en) Hydrogen storage alloy, its production and nickel-hydrogen secondary battery
JPH10162821A (en) Hydrogen storage alloy electrode and manufacture thereof
JPH11339813A (en) Electrode substrate for battery
JPH03201364A (en) Hydrogen storage electrode and nickel-hydrogen battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050415

LAPS Cancellation because of no payment of annual fees