JP2002231236A - Hydrogen storage alloy electrode, method of manufacturing the same, and alkaline battery with hydrogen storage alloy electrode - Google Patents

Hydrogen storage alloy electrode, method of manufacturing the same, and alkaline battery with hydrogen storage alloy electrode

Info

Publication number
JP2002231236A
JP2002231236A JP2001024151A JP2001024151A JP2002231236A JP 2002231236 A JP2002231236 A JP 2002231236A JP 2001024151 A JP2001024151 A JP 2001024151A JP 2001024151 A JP2001024151 A JP 2001024151A JP 2002231236 A JP2002231236 A JP 2002231236A
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
electrode
binder
alloy powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001024151A
Other languages
Japanese (ja)
Inventor
Makoto Ochi
誠 越智
Masao Takee
正夫 武江
Teruhito Nagae
輝人 長江
Kousuke Satoguchi
功祐 里口
Seiji Wada
聖司 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2001024151A priority Critical patent/JP2002231236A/en
Priority to CNB011242388A priority patent/CN1275346C/en
Priority to TW090120191A priority patent/TW518783B/en
Priority to EP01119917A priority patent/EP1180808A3/en
Priority to US09/931,051 priority patent/US6824571B2/en
Priority to HK02105188.9A priority patent/HK1043442B/en
Publication of JP2002231236A publication Critical patent/JP2002231236A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a hydrogen storage alloy electrode capable of inhibiting the impairing of the strength of a negative plate even when the hydrogen storage alloy powder of small average particle size is used to increase the filling density of an active material, whereby the dropping of the hydrogen storage alloy powder from a conductive core body can be prevented, and the alkaline battery of high quality can be provided. SOLUTION: This method comprises a coating process for coating the conductive core body with the active material slurry composed of the hydrogen storage alloy powder of average particle size <=60 μm, a binding agent and a solvent of the binding agent to obtain a coated pole plate, a drying process for drying the coated pole plate to obtain the dried pole plate, a pressing process for pressing the dried pole plate to obtain the pressed pole plate, and a solvent attaching process for attaching the solvent of the binding agent onto a surface of the pressed pole plate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、導電性芯体に少な
くとも水素吸蔵合金粉末と結着剤とを含有する合剤が付
着された水素吸蔵合金電極およびその製造方法、ならび
に水素吸蔵合金粉末が付着された負極と正極とをセパレ
ータを介して積層した電極群を金属製外装缶内に備えた
アルカリ蓄電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy electrode in which a mixture containing at least a hydrogen storage alloy powder and a binder is adhered to a conductive core, a method for producing the same, and a method for manufacturing the hydrogen storage alloy powder. The present invention relates to an alkaline storage battery provided with an electrode group in which an attached negative electrode and positive electrode are laminated via a separator, in a metal outer can.

【0002】[0002]

【従来の技術】近年、小型携帯機器の増加に伴い、充放
電が可能な二次電池(蓄電池)の需要が高まっており、
特に、機器の小型化、薄型化、スペース効率化に伴い、
大容量が得られるニッケル−水素蓄電池の需要が急速に
高まった。この種のニッケル−水素蓄電池は、活物質に
水酸化ニッケルを使用する正極と、水素吸蔵合金を使用
する負極とをセパレータを介して積層して電極群とし、
この電極群をアルカリ電解液とともに金属製外装缶(電
池ケース)内に収納し、金属製外装缶を密封することに
より製造される。
2. Description of the Related Art In recent years, demand for secondary batteries (storage batteries) that can be charged and discharged has increased with the increase in small portable devices.
In particular, as devices become smaller, thinner, and more space efficient,
The demand for nickel-hydrogen storage batteries that can provide a large capacity has rapidly increased. This type of nickel-hydrogen storage battery is configured such that a positive electrode using nickel hydroxide as an active material and a negative electrode using a hydrogen storage alloy are stacked via a separator to form an electrode group,
The electrode group is housed in a metal outer can (battery case) together with an alkaline electrolyte and the metal outer can is sealed.

【0003】ところで、この種のニッケル−水素蓄電池
は更なる高容量化、高出力化が要望されており、正・負
極の高エネルギー密度の確保が必要不可欠となってい
る。これらの正・負極の高エネルギー密度を確保するた
めには、活物質充填密度をできる限り高くする必要があ
り、特に、負極にあっては4.85g/cm3以上の充
填密度にするのが望ましい。ところが、このような高充
填密度の負極を作製する場合、平均粒径が大きい水素吸
蔵合金粉末を使用すると、得られた負極に波打ちが発生
したり、しわが発生して、得られた負極の品質が低下す
るという問題を生じた。
[0003] By the way, this type of nickel-hydrogen storage battery is required to have higher capacity and higher output, and it is indispensable to ensure a high energy density of the positive and negative electrodes. In order to ensure a high energy density of these positive and negative electrodes, it is necessary to make the active material filling density as high as possible. In particular, in the case of the negative electrode, it is necessary to make the filling density of 4.85 g / cm 3 or more. desirable. However, when producing a negative electrode having such a high packing density, if a hydrogen-absorbing alloy powder having a large average particle size is used, the obtained negative electrode may be wavy or wrinkled, and the obtained negative electrode There was a problem that the quality deteriorated.

【0004】これは、平均粒径が大きい水素吸蔵合金粉
末を使用した活物質ペーストを導電性芯体に塗着した
後、高充填密度の負極とするために、所定の加圧力を加
えて負極を加圧すると、水素吸蔵合金粉末自体は圧縮さ
れることなく、水素吸蔵合金粉末以外の容積が大きいこ
とで加圧力が偏在するようになるためと考えられる。そ
こで、このような問題点を解消するために、平均粒径が
小さい水素吸蔵合金粉末を使用して高充填密度の負極を
作製する方法を種々検討した結果、平均粒径が60μm
以下の水素吸蔵合金粉末を使用すると、得られた負極に
波打ちの発生やしわの発生が抑制できることが分かっ
た。
In this method, after applying an active material paste using a hydrogen storage alloy powder having a large average particle size to a conductive core, a predetermined pressure is applied to the negative electrode to form a negative electrode having a high packing density. It is considered that when pressure is applied, the pressure is unevenly distributed due to the fact that the hydrogen storage alloy powder itself is not compressed and the volume other than the hydrogen storage alloy powder is large. In order to solve such a problem, various studies were made on a method for producing a negative electrode having a high packing density using a hydrogen storage alloy powder having a small average particle diameter.
It was found that the use of the following hydrogen storage alloy powder can suppress generation of waviness and wrinkles in the obtained negative electrode.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、平均粒
径が60μm以下の水素吸蔵合金粉末を使用して、これ
を高密度充填した場合、得られた負極に波打ちの発生や
しわの発生が抑制できるという反面、負極の機械的強度
が低下して水素吸蔵合金粉末が負極から脱落するという
問題を生じた。これは、水素吸蔵合金粉末の平均粒径が
小さくなるに伴って水素吸蔵合金粉末の粒子数が増大
し、かつ高密度充填化により負極への加圧力が増大し
て、水素吸蔵合金粉末の粒子同士あるいは水素吸蔵合金
粉末と導電性芯体の間を固着している結着剤にひび割れ
が発生して、これに固着されている水素吸蔵合金粉末の
粒子同士、あるいは水素吸蔵合金粉末と導電性芯体の間
にズレが生じたためと考えられる。
However, when a hydrogen-absorbing alloy powder having an average particle diameter of 60 μm or less is used and packed at a high density, it is possible to suppress the occurrence of waving and wrinkles in the obtained negative electrode. On the other hand, there has been a problem that the mechanical strength of the negative electrode is reduced and the hydrogen storage alloy powder falls off the negative electrode. This is because the number of particles of the hydrogen storage alloy powder increases as the average particle diameter of the hydrogen storage alloy powder decreases, and the pressure applied to the negative electrode increases due to high density packing, and the particles of the hydrogen storage alloy powder increase. Cracks occur in the binder that is fixed between each other or between the hydrogen storage alloy powder and the conductive core body, and the particles of the hydrogen storage alloy powder fixed to this or between the hydrogen storage alloy powder and the conductive It is considered that a deviation occurred between the cores.

【0006】ここで、水素吸蔵合金粉末の粒子同士、あ
るいは水素吸蔵合金粉末と導電性芯体の間にズレ(結着
剤のひび割れ)が生じると、このような負極を用いてセ
パレータを介して正極を積層し、これを電極群にする際
や、このような電極群を金属製外装缶内に挿入する際
に、水素吸蔵合金粉末が負極より脱落しやすくなるとい
う問題を生じた。特に、金属製外装缶内のスペースを有
効利用して高容量の電池とするために、電極群の最外側
に配置される負極の外周部にセパレータを被覆せずに負
極を露出させて、この露出した負極を金属製外装缶に直
接接触させるようにした電池にあって、電極群を金属製
外装缶内に挿入する際に、さらに、水素吸蔵合金粉末が
負極より脱落しやすくなるという問題を生じた。
Here, if a deviation (crack of the binder) occurs between the particles of the hydrogen storage alloy powder or between the hydrogen storage alloy powder and the conductive core, the negative electrode is used to pass through a separator. When a positive electrode is laminated and formed into an electrode group, or when such an electrode group is inserted into a metal outer can, there has been a problem that the hydrogen storage alloy powder tends to fall off the negative electrode. In particular, in order to effectively use the space in the metal outer can to obtain a high-capacity battery, the negative electrode is exposed without coating the separator on the outer peripheral portion of the negative electrode arranged on the outermost side of the electrode group. In the battery in which the exposed negative electrode is brought into direct contact with the metal outer can, when the electrode group is inserted into the metal outer can, there is a problem that the hydrogen storage alloy powder is more likely to fall off from the negative electrode. occured.

【0007】そこで、本発明は上記問題点を解消するた
めになされたものであって、活物質の充填密度を高める
ために平均粒径が小さい水素吸蔵合金粉末を用いても、
負極の機械的強度の低下を抑制できる製造方法を提供し
て、水素吸蔵合金粉末が負極から脱落することが防止で
き、長寿命で高品質なアルカリ蓄電池が得られるように
することを目的とする。
Therefore, the present invention has been made to solve the above problems, and even if a hydrogen storage alloy powder having a small average particle diameter is used to increase the packing density of an active material,
It is an object of the present invention to provide a manufacturing method capable of suppressing a decrease in mechanical strength of a negative electrode, to prevent the hydrogen storage alloy powder from falling off the negative electrode, and to obtain a long-life, high-quality alkaline storage battery. .

【0008】[0008]

【課題を解決するための手段およびその作用・効果】上
記目的を達成するため、本発明は導電性芯体に少なくと
も水素吸蔵合金粉末と再溶解が可能な結着剤とを含有す
る合剤が付着された水素吸蔵合金電極であって、水素吸
蔵合金粉末の平均粒径は60μm以下で、該水素吸蔵合
金の充填密度が4.85g/cm3以上であるととも
に、水素吸蔵合金粉末同士および該水素吸蔵合金粉末と
導電性芯体とが再溶解が可能な結着剤により固着されて
いることを特徴とする。
Means for Solving the Problems and Actions / Effects of the Invention In order to achieve the above object, the present invention provides a mixture comprising a conductive core containing at least a hydrogen storage alloy powder and a re-dissolvable binder. The hydrogen storage alloy electrode to which the hydrogen storage alloy powder has an average particle diameter of 60 μm or less, a packing density of the hydrogen storage alloy of 4.85 g / cm 3 or more, The hydrogen storage alloy powder and the conductive core are fixed by a binder that can be re-dissolved.

【0009】平均粒径が60μm以下の水素吸蔵合金粉
末が4.85g/cm3以上の充填密度で塗着されてい
ると、高容量の水素吸蔵合金電極となるため、このよう
な高容量の負極を用いてアルカリ蓄電池を構成すると、
負極の容量比が増大してリザーブ量が増加するため、充
放電サイクル特性に優れ、長寿命のアルカリ蓄電池を提
供することが可能となる。この場合、水素吸蔵合金粉末
同士あるいは水素吸蔵合金粉末と導電性芯体とが再溶解
が可能な結着剤により固着されていると、再溶解が可能
な結着剤にひび割れが生じても、この結着剤は結着剤の
溶媒(例えば、水溶性結着剤の場合は純水または水)に
より再溶解するため、水素吸蔵合金粉末は剥がれにくく
なって、水素吸蔵合金粉末の脱落が防止できるようにな
る。なお、水素吸蔵合金粉末の平均粒径が小さくなりす
ぎると、充放電による合金の割れが生じにくくなって活
性面が生じにくくなるとともに、接触抵抗に起因する内
部抵抗も上昇するようになるため、水素吸蔵合金粉末の
平均粒径の下限値は20μmとするのが望ましい。
If a hydrogen storage alloy powder having an average particle size of 60 μm or less is applied at a packing density of 4.85 g / cm 3 or more, a high capacity hydrogen storage alloy electrode is obtained. When configuring an alkaline storage battery using the negative electrode,
Since the capacity ratio of the negative electrode increases and the reserve increases, it is possible to provide an alkaline storage battery having excellent charge-discharge cycle characteristics and a long life. In this case, if the hydrogen-absorbing alloy powders or the hydrogen-absorbing alloy powder and the conductive core are fixed by a remeltable binder, even if the remeltable binder has cracks, Since the binder is re-dissolved in the solvent of the binder (for example, pure water or water in the case of a water-soluble binder), the hydrogen-absorbing alloy powder is hardly peeled off and the hydrogen-absorbing alloy powder is prevented from falling off. become able to. If the average particle size of the hydrogen-absorbing alloy powder is too small, cracking of the alloy due to charge / discharge is less likely to occur and an active surface is less likely to occur, and the internal resistance due to contact resistance also increases. It is desirable that the lower limit of the average particle size of the hydrogen storage alloy powder is 20 μm.

【0010】そして、導電性芯体に平均粒径が60μm
以下の水素吸蔵合金粉末が4.85g/cm3以上の充
填密度で付着させても水素吸蔵合金電極の機械的強度を
向上させるために、本発明の水素吸蔵合金電極の製造方
法は、導電性芯体に平均粒径が60μm以下の水素吸蔵
合金粉末と再溶解が可能な結着剤と該結着剤の溶媒とか
らなる活物質スラリーを塗着してスラリー塗着電極とす
る塗着工程と、スラリー塗着電極を乾燥させて乾燥電極
とする乾燥工程と、乾燥電極を加圧して加圧電極とする
加圧工程と、加圧電極の表面に結着剤の溶媒を付着させ
る溶媒付着工程とを備えるようにしている。
The conductive core has an average particle size of 60 μm.
In order to improve the mechanical strength of the hydrogen storage alloy electrode even when the following hydrogen storage alloy powder is adhered at a packing density of 4.85 g / cm 3 or more, the method for producing a hydrogen storage alloy electrode according to the present invention comprises: An application step of applying an active material slurry composed of a hydrogen storage alloy powder having an average particle diameter of 60 μm or less, a binder capable of being re-dissolved, and a solvent of the binder to a core body to form a slurry application electrode A drying step of drying the slurry-coated electrode to form a dry electrode, a pressing step of pressing the dry electrode to form a pressing electrode, and a solvent attaching step of attaching a binder solvent to the surface of the pressing electrode. Process.

【0011】本発明のように、乾燥電極の表面に再溶解
が可能な結着剤の溶媒(例えば、水溶性結着剤の場合は
純水または水)を付着させるようにすると、結着剤の溶
媒が水素吸蔵合金層中に浸透して結着剤が再溶解するよ
うになるため、圧延時に結着剤に生じたひび割れが再度
溶解した後、溶解した結着剤が固結して、水素吸蔵合金
粉末の粒子同士および導電性芯体と水素吸蔵合金粉末と
が強固に固着されるようになる。これにより、水素吸蔵
合金層は剥がれにくくなって、水素吸蔵合金粉末の脱落
が防止できるようになる。なお、溶媒が付着した電極を
乾燥させる場合は、溶媒が付着した電極を乾燥工程での
乾燥温度よりも低温(40℃以下)で乾燥させるように
するのが望ましい。
As in the present invention, when a solvent of a binder (for example, pure water or water in the case of a water-soluble binder) is allowed to adhere to the surface of the dry electrode, the binder Since the solvent permeates into the hydrogen storage alloy layer and the binder is re-dissolved, after the cracks generated in the binder during rolling are dissolved again, the dissolved binder solidifies, The particles of the hydrogen storage alloy powder and the conductive core and the hydrogen storage alloy powder are firmly fixed. This makes it difficult for the hydrogen storage alloy layer to peel off, thereby preventing the hydrogen storage alloy powder from falling off. When the electrode to which the solvent is attached is dried, the electrode to which the solvent is attached is desirably dried at a lower temperature (40 ° C. or lower) than the drying temperature in the drying step.

【0012】また、導電性芯体に再溶解が可能な結着剤
と該結着剤の溶媒とからなる結着剤溶液を塗布する結着
剤塗布工程と、結着剤が塗布された導電性芯体に平均粒
径が60μm以下の水素吸蔵合金粉末を含有する活物質
スラリーを塗着してスラリー塗着電極とする塗着工程
と、スラリー塗着電極を乾燥させて乾燥電極とする乾燥
工程と、乾燥電極を加圧して加圧電極とする加圧工程
と、加圧電極の表面に結着剤の溶媒を付着させる溶媒付
着工程とを備えるようにしても、水素吸蔵合金粉末の脱
落が防止できるようになる。これは、再溶解が可能な結
着剤が塗布された導電性芯体に活物質スラリーを塗着す
ると、再溶解が可能な結着剤が活物質スラリー中に拡散
して、水素吸蔵合金粉末の粒子同士および導電性芯体と
水素吸蔵合金粉末とを固着するからである。
A binder application step of applying a binder solution comprising a binder which can be re-dissolved in the conductive core and a solvent of the binder; Coating an active material slurry containing a hydrogen-absorbing alloy powder having an average particle size of 60 μm or less on a conductive core to form a slurry-coated electrode, and drying the slurry-coated electrode to form a dry electrode Process, a pressurizing step of pressing the dry electrode into a pressurizing electrode, and a solvent adhering step of adhering a solvent of the binder onto the surface of the pressurizing electrode, Can be prevented. This is because when the active material slurry is applied to the conductive core coated with the re-dissolvable binder, the re-dissolvable binder diffuses into the active material slurry, and the hydrogen storage alloy powder This is because the particles and the conductive core and the hydrogen storage alloy powder are fixed to each other.

【0013】なお、スラリー塗着電極を乾燥して圧延し
た後、結着剤の溶媒を乾燥電極の表面に塗布して付着さ
せた後に乾燥させると、水素吸蔵合金電極の表面がざら
つくという現象を生じた。このため、例えば、水素吸蔵
合金電極が最外周に位置するように渦巻状に巻回し、こ
の最外周に巻き取りテープを貼着する際に巻き取りテー
プが最外周の水素吸蔵合金電極に貼着し難いという問題
を生じた。そこで、本発明においては、結着剤の溶媒を
乾燥電極の表面に塗布し、低温乾燥後に再加圧を行うよ
うにしている。これにより、結着剤の溶媒を電極表面に
付着させた際に生じたざらつき現象の発生を抑制できる
ようになる。
[0013] When the slurry-coated electrode is dried and rolled, a binder solvent is applied to the surface of the dried electrode and adhered to the dried electrode, and then dried, the surface of the hydrogen-absorbing alloy electrode becomes rough. occured. For this reason, for example, the hydrogen storage alloy electrode is spirally wound so as to be located at the outermost periphery, and when the winding tape is attached to the outermost periphery, the winding tape is attached to the outermost hydrogen storage alloy electrode. The problem that it was difficult to do it occurred. Therefore, in the present invention, the solvent of the binder is applied to the surface of the dry electrode, and repressurization is performed after drying at a low temperature. This makes it possible to suppress the occurrence of the roughness phenomenon that occurs when the solvent of the binder is attached to the electrode surface.

【0014】この場合、再加圧により水素吸蔵合金粉末
の粒子同士および導電性芯体と水素吸蔵合金粉末との間
にズレが生じないようにする必要があるが、所定の厚み
の10%以内の加圧力であれば、結着剤の溶媒を電極表
面に付着させた効果を維持させることが可能となるの
で、再加圧時の加圧力は所定の厚みの10%以内とする
のが望ましい。なお、本発明の水素吸蔵合金電極はどの
ような形式のアルカリ蓄電池にも適用できるが、特に、
水素吸蔵合金粉末が塗着された負極と正極とをセパレー
タを介して積層した電極群を金属製外装缶内に備えたア
ルカリ蓄電池に適用すると効果的である。
In this case, it is necessary to prevent a deviation between the particles of the hydrogen-absorbing alloy powder and between the conductive core and the hydrogen-absorbing alloy powder due to the re-pressurization. With a pressure of, it is possible to maintain the effect of causing the solvent of the binder to adhere to the electrode surface, so that the pressure at the time of re-pressing is preferably within 10% of the predetermined thickness. . In addition, the hydrogen storage alloy electrode of the present invention can be applied to any type of alkaline storage battery.
It is effective to apply an electrode group in which a negative electrode coated with a hydrogen storage alloy powder and a positive electrode are laminated via a separator to an alkaline storage battery provided in a metal outer can.

【0015】[0015]

【発明の実施の形態】以下に、本発明の一実施の形態を
説明する。 1.水素吸蔵合金粉末の作製 MmNi3.4Co0.8Al0.2Mn0.6(なお、Mmはミッ
シュメタルである)となるように市販の各金属元素(M
m,Ni,Co,Al,Mn)を秤量して混合した。こ
のものを高周波溶解炉に投入して溶解させた後、鋳型に
流し込み、冷却してMmNi3.4Co0.8Al0.2Mn0.6
からなる水素吸蔵合金の塊(インゴット)を作製した。
この水素吸蔵合金の塊を粗粉砕した後、不活性ガス雰囲
気中で機械的に粉砕して、水素吸蔵合金粉末を作製し
た。なお、平均粒径が30μm(この平均粒径はレーザ
回折法により測定した値である)になるまで機械的に粉
砕した水素吸蔵合金粉末を水素吸蔵合金αとした。同様
に、平均粒径が50μmになるまで粉砕した水素吸蔵合
金粉末を水素吸蔵合金βとし、平均粒径が70μmにな
るまで粉砕した水素吸蔵合金粉末を水素吸蔵合金γと
し、平均粒径が90μmになるまで粉砕した水素吸蔵合
金粉末を水素吸蔵合金δとした。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below. 1. Preparation of hydrogen storage alloy powder Commercially available metal elements (Mm Ni 3.4 Co 0.8 Al 0.2 Mn 0.6 (Mm is a misch metal))
m, Ni, Co, Al, Mn) were weighed and mixed. This was put into a high-frequency melting furnace to be melted, poured into a mold, cooled, and cooled to MmNi 3.4 Co 0.8 Al 0.2 Mn 0.6.
(Ingot) of a hydrogen storage alloy composed of
The lump of the hydrogen storage alloy was roughly pulverized and then mechanically pulverized in an inert gas atmosphere to produce a hydrogen storage alloy powder. The hydrogen storage alloy powder mechanically pulverized until the average particle diameter became 30 μm (this average particle diameter is a value measured by a laser diffraction method) was used as the hydrogen storage alloy α. Similarly, the hydrogen storage alloy powder pulverized to an average particle size of 50 μm is referred to as a hydrogen storage alloy β, and the hydrogen storage alloy powder pulverized to an average particle size of 70 μm is referred to as a hydrogen storage alloy γ, and the average particle size is 90 μm The hydrogen storage alloy powder pulverized until the powder became a hydrogen storage alloy δ.

【0016】2.水素吸蔵合金極板の作製 (1)実施例1 上述のようにして作製した水素吸蔵合金α(平均粒径が
30μmの水素吸蔵合金粉末)を用い、この水素吸蔵合
金αが99質量%と、水溶性結着剤としてのポリエチレ
ンオキサイド(PEO)粉末を水素吸蔵合金粉末質量に
対して1質量%と、水溶性結着剤の溶媒としての適量の
水(あるいは純水)とを加えて混練して、水素吸蔵合金
スラリーを作製した。ついで、表面にニッケルメッキが
施されて開孔が設けられたパンチングメタルからなる導
電性芯体の両面に水素吸蔵合金スラリーを塗着してスラ
リー塗着極板を形成した。
2. Production of Hydrogen Storage Alloy Electrode (1) Example 1 Hydrogen storage alloy α (hydrogen storage alloy powder having an average particle diameter of 30 μm) produced as described above was used. A polyethylene oxide (PEO) powder as a water-soluble binder is added and kneaded with 1% by mass based on the mass of the hydrogen-absorbing alloy powder and an appropriate amount of water (or pure water) as a solvent for the water-soluble binder. Thus, a hydrogen storage alloy slurry was prepared. Then, a hydrogen-absorbing alloy slurry was applied to both surfaces of a conductive core made of punched metal having a surface provided with nickel plating and having openings, thereby forming a slurry-coated electrode plate.

【0017】この後、約60℃で20分間乾燥させて乾
燥極板とした後、この乾燥極板を所定の厚みになるまで
加圧して乾燥加圧極板を作製した。ついで、得られた乾
燥加圧極板の全表面に水あるいは純水(水溶性結着剤
(PEO)の溶媒)を塗布(純水処理)して、乾燥加圧
極板の全表面が湿る程度に水あるいは純水を付着させ
た。この後、室温(約25℃)で約2時間放置して自然
乾燥させた後、乾燥加圧極板の厚みを5%圧縮するよう
な加圧力で再加圧して再加圧極板を作製した。なお、水
素吸蔵合金スラリーの塗着量は再加圧後の水素吸蔵合金
密度が5.10g/cm3で、厚みが約0.5mmにな
るように調整した。この再加圧極板を所定寸法に切断し
て、実施例1の水素吸蔵合金電極aを作製した。
Thereafter, the electrode was dried at about 60 ° C. for 20 minutes to obtain a dried electrode plate, and the dried electrode plate was pressed to a predetermined thickness to prepare a dry-pressed electrode plate. Next, water or pure water (solvent of a water-soluble binder (PEO)) is applied (pure water treatment) to the entire surface of the obtained dry pressing electrode plate, so that the entire surface of the dry pressing electrode plate becomes wet. Water or pure water was adhered to some extent. After that, it is allowed to stand at room temperature (about 25 ° C.) for about 2 hours to be naturally dried, and then re-pressed with a pressing force to compress the thickness of the dry-pressed electrode plate by 5% to produce a re-pressed electrode plate. did. The amount of the hydrogen storage alloy slurry applied was adjusted so that the density of the hydrogen storage alloy after re-pressing was 5.10 g / cm 3 and the thickness was about 0.5 mm. This re-pressed electrode plate was cut into a predetermined size to produce a hydrogen storage alloy electrode a of Example 1.

【0018】(2)実施例2 表面にニッケルメッキが施されて開孔が設けられたパン
チングメタルからなる導電性芯体を水溶性結着剤の溶媒
(純水あるいは水)にポリエチレンオキサイド(PE
O)粉末を溶解した結着剤溶液中に浸漬して、導電性芯
体の両面にポリエチレンオキサイド(PEO)を塗着し
た。この後、水素吸蔵合金α(平均粒径が30μmの水
素吸蔵合金粉末)が99質量%と、増粘剤としてカルボ
キシルメチルセルロース(CMC)を水素吸蔵合金粉末
質量に対して1質量%と、増粘剤の溶媒として適量の水
(あるいは純水)を加えて混練して、水素吸蔵合金スラ
リーを作製した。ついで、PEOを塗着した導電性芯体
の両面に水素吸蔵合金スラリーを塗着して塗着極板を形
成した。
(2) Example 2 A conductive core made of a punching metal having a surface plated with nickel and having openings is prepared by adding polyethylene oxide (PE) to a solvent (pure water or water) of a water-soluble binder.
O) The powder was immersed in a binder solution in which the powder was dissolved, and polyethylene oxide (PEO) was applied to both surfaces of the conductive core. Thereafter, the hydrogen storage alloy α (hydrogen storage alloy powder having an average particle diameter of 30 μm) was 99% by mass, and carboxymethyl cellulose (CMC) as a thickener was 1% by mass relative to the mass of the hydrogen storage alloy powder. An appropriate amount of water (or pure water) was added and kneaded as a solvent for the agent to prepare a hydrogen storage alloy slurry. Then, a hydrogen storage alloy slurry was applied to both sides of the conductive core coated with PEO to form a coated electrode plate.

【0019】この後、約60℃で20分間乾燥させて乾
燥極板とした後、この乾燥極板を所定の厚みになるまで
加圧して乾燥加圧極板を作製した。ついで、得られた乾
燥加圧極板の全表面に水あるいは純水(水溶性結着剤
(PEO)の溶媒)を塗布(純水処理)して、乾燥加圧
極板の全表面が湿る程度に水あるいは純水を付着させ
た。この後、室温(約25℃)で約2時間放置して自然
乾燥させた後、乾燥加圧極板の厚みを5%圧縮するよう
な加圧力で再加圧して再加圧極板を作製した。なお、水
素吸蔵合金スラリーの塗着量は再加圧後の水素吸蔵合金
密度が5.10g/cm3で厚みが約0.5mmになる
ように調整した。この再加圧極板を所定寸法に切断し
て、実施例2の水素吸蔵合金電極bを作製した。
Thereafter, the electrode was dried at about 60 ° C. for 20 minutes to obtain a dried electrode plate, and the dried electrode plate was pressed to a predetermined thickness to produce a dry pressed electrode plate. Next, water or pure water (solvent of a water-soluble binder (PEO)) is applied (pure water treatment) to the entire surface of the obtained dry pressing electrode plate, so that the entire surface of the dry pressing electrode plate becomes wet. Water or pure water was adhered to some extent. After that, it is allowed to stand at room temperature (about 25 ° C.) for about 2 hours to be naturally dried, and then re-pressed with a pressing force to compress the thickness of the dry-pressed electrode plate by 5% to produce a re-pressed electrode plate. did. The amount of the hydrogen storage alloy slurry applied was adjusted so that the density of the hydrogen storage alloy after re-pressurization was 5.10 g / cm 3 and the thickness was about 0.5 mm. This re-pressed electrode plate was cut into a predetermined size to produce a hydrogen storage alloy electrode b of Example 2.

【0020】(3)実施例3 上述の実施例1と同様にして乾燥加圧極板を作製した
後、得られた乾燥加圧極板の全表面に水あるいは純水
(水溶性結着剤(PEO)の溶媒)を塗布(純水処理)
して、乾燥加圧極板の全表面が湿る程度に水あるいは純
水を付着させた。この後、室温(約25℃)で約2時間
放置して自然乾燥させた後、乾燥加圧極板の厚みを10
%圧縮するような加圧力で再加圧して再加圧極板を作製
した。なお、水素吸蔵合金スラリーの塗着量は再圧延後
の水素吸蔵合金密度が5.10g/cm3で厚みが約
0.5mmになるように調整した。この再加圧極板を所
定寸法に切断して、実施例3の水素吸蔵合金電極cを作
製した。
(3) Example 3 A dry pressurized electrode plate was prepared in the same manner as in Example 1 described above, and water or pure water (water-soluble binder) was applied to the entire surface of the obtained dry pressurized electrode plate. (PEO) solvent) (pure water treatment)
Then, water or pure water was adhered to such an extent that the entire surface of the dry pressure electrode plate became wet. Then, after allowing to dry naturally at room temperature (about 25 ° C.) for about 2 hours, the thickness of the dry pressing electrode
% To obtain a re-pressed electrode plate. The amount of the hydrogen storage alloy slurry applied was adjusted so that the density of the hydrogen storage alloy after re-rolling was 5.10 g / cm 3 and the thickness was about 0.5 mm. This re-pressed electrode plate was cut into a predetermined size to produce a hydrogen storage alloy electrode c of Example 3.

【0021】なお、上述した各実施例においては、純水
処理するに際しては生産性等を考慮して、刷毛による塗
布方法、噴霧による塗布方法、あるいはロールによる塗
布方法などの適宜の方法を採用して、水あるいは純水を
乾燥加圧極板の全表面に付着させるようにすればよい。
In each of the above-described embodiments, an appropriate method such as a coating method using a brush, a coating method using a spray, or a coating method using a roll is adopted in consideration of productivity and the like when performing pure water treatment. Then, water or pure water may be allowed to adhere to the entire surface of the dry pressure electrode plate.

【0022】(4)比較例1 上述の実施例1と同様にして、乾燥加圧極板を作製した
後、得られた乾燥加圧極板に水あるいは純水(水溶性結
着剤(PEO)の溶媒)を塗布することなく、所定寸法
に切断して、比較例1の水素吸蔵合金電極rを作製し
た。なお、水素吸蔵合金スラリーの塗着量は加圧後の水
素吸蔵合金密度が5.10g/cm3で厚みが約0.5
mmになるように調整した。
(4) Comparative Example 1 A dry pressurized electrode plate was prepared in the same manner as in Example 1 described above, and water or pure water (water-soluble binder (PEO ) Was cut to a predetermined size without applying the solvent) to produce a hydrogen storage alloy electrode r of Comparative Example 1. The coating amount of the hydrogen storage alloy slurry was such that the density of the hydrogen storage alloy after pressurization was 5.10 g / cm 3 and the thickness was about 0.5.
mm.

【0023】(5)比較例2 上述の実施例2と同様にして、乾燥加圧極板を作製した
後、得られた乾燥加圧極板に水あるいは純水(水溶性結
着剤(PEO)の溶媒)を塗布することなく、所定寸法
に切断して、比較例2の水素吸蔵合金電極sを作製し
た。なお、水素吸蔵合金スラリーの塗着量は加圧後の水
素吸蔵合金密度が5.10g/cm3で厚みが約0.5
mmになるように調整した。
(5) Comparative Example 2 A dry pressurized electrode plate was prepared in the same manner as in Example 2 described above, and water or pure water (water-soluble binder (PEO ) Was cut into a predetermined size without applying the solvent) to produce a hydrogen storage alloy electrode s of Comparative Example 2. The coating amount of the hydrogen storage alloy slurry was such that the density of the hydrogen storage alloy after pressurization was 5.10 g / cm 3 and the thickness was about 0.5.
mm.

【0024】(6)比較例3 上述の実施例1と同様にして、乾燥加圧極板を作製した
後、得られた乾燥加圧極板に水あるいは純水(水溶性結
着剤(PEO)の溶媒)を塗布することなく、所定寸法
に切断して、比較例3の水素吸蔵合金電極tを作製し
た。なお、水素吸蔵合金スラリーの塗着量は加圧後の水
素吸蔵合金密度が4.85g/cm3で厚みが約0.5
mmになるように調整した。
(6) Comparative Example 3 A dry pressurized electrode plate was prepared in the same manner as in Example 1 described above, and water or pure water (water-soluble binder (PEO ) Was cut to a predetermined size without applying the solvent) to produce a hydrogen storage alloy electrode t of Comparative Example 3. The coating amount of the hydrogen storage alloy slurry was such that the density of the hydrogen storage alloy after pressurization was 4.85 g / cm 3 and the thickness was about 0.5.
mm.

【0025】(7)比較例4 上述のようにして作製した水素吸蔵合金β(平均粒径が
50μmの水素吸蔵合金粉末)を用い、上述の実施例1
と同様にして、乾燥加圧極板を作製した後、得られた乾
燥加圧極板に水あるいは純水(水溶性結着剤(PEO)
の溶媒)を塗布することなく、所定寸法に切断して、比
較例4の水素吸蔵合金電極tを作製した。なお、水素吸
蔵合金スラリーの塗着量は加圧後の水素吸蔵合金密度が
4.85g/cm3で厚みが約0.5mmになるように
調整した。
(7) Comparative Example 4 Using the hydrogen storage alloy β (hydrogen storage alloy powder having an average particle diameter of 50 μm) prepared as described above, the above-mentioned Example 1 was used.
In the same manner as described above, after preparing a dry pressing electrode plate, water or pure water (water-soluble binder (PEO)
Without applying the solvent), and cut into a predetermined size to produce a hydrogen storage alloy electrode t of Comparative Example 4. The coating amount of the hydrogen storage alloy slurry was adjusted so that the density of the hydrogen storage alloy after pressurization was 4.85 g / cm 3 and the thickness was about 0.5 mm.

【0026】(8)比較例5 上述のようにして作製した水素吸蔵合金γ(平均粒径が
70μmの水素吸蔵合金粉末)を用い、上述の実施例1
と同様にして、乾燥加圧極板を作製した後、得られた乾
燥加圧極板に水あるいは純水(水溶性結着剤(PEO)
の溶媒)を塗布することなく、所定寸法に切断して、比
較例5の水素吸蔵合金電極uを作製した。なお、水素吸
蔵合金スラリーの塗着量は加圧後の水素吸蔵合金密度が
4.85g/cm3で厚みが約0.5mmになるように
調整した。
(8) Comparative Example 5 Using the hydrogen storage alloy γ (hydrogen storage alloy powder having an average particle diameter of 70 μm) produced as described above, the above-mentioned Example 1 was used.
In the same manner as described above, after preparing a dry pressing electrode plate, water or pure water (water-soluble binder (PEO)
) Was cut into a predetermined size without applying the solvent, and a hydrogen storage alloy electrode u of Comparative Example 5 was produced. The coating amount of the hydrogen storage alloy slurry was adjusted so that the density of the hydrogen storage alloy after pressurization was 4.85 g / cm 3 and the thickness was about 0.5 mm.

【0027】(9)比較例6 上述のようにして作製した水素吸蔵合金δ(平均粒径が
90μmの水素吸蔵合金粉末)を用い、上述の実施例1
と同様にして、乾燥加圧極板を作製した後、得られた乾
燥加圧極板に水あるいは純水(水溶性結着剤(PEO)
の溶媒)を塗布することなく、所定寸法に切断して、比
較例6の水素吸蔵合金電極vを作製した。なお、水素吸
蔵合金スラリーの塗着量は加圧後の水素吸蔵合金密度が
4.85g/cm3で厚みが約0.5mmになるように
調整した。
(9) Comparative Example 6 Using the hydrogen storage alloy δ (hydrogen storage alloy powder having an average particle size of 90 μm) produced as described above, the above-mentioned Example 1 was used.
In the same manner as described above, after preparing a dry pressing electrode plate, water or pure water (water-soluble binder (PEO)
(Solvent) was applied and cut into a predetermined size to produce a hydrogen storage alloy electrode v of Comparative Example 6. The coating amount of the hydrogen storage alloy slurry was adjusted so that the density of the hydrogen storage alloy after pressurization was 4.85 g / cm 3 and the thickness was about 0.5 mm.

【0028】(10)比較例7 上述のようにして作製した水素吸蔵合金β(平均粒径が
50μmの水素吸蔵合金粉末)を用い、上述の実施例1
と同様にして、乾燥加圧極板を作製した後、得られた乾
燥加圧極板に水あるいは純水(水溶性結着剤(PEO)
の溶媒)を塗布することなく、所定寸法に切断して、比
較例7の水素吸蔵合金電極xを作製した。なお、水素吸
蔵合金スラリーの塗着量は加圧後の水素吸蔵合金密度が
5.10g/cm3で厚みが約0.5mmになるように
調整した。
(10) Comparative Example 7 Using the hydrogen storage alloy β (hydrogen storage alloy powder having an average particle size of 50 μm) prepared as described above, the above-mentioned Example 1 was used.
In the same manner as described above, after preparing a dry pressing electrode plate, water or pure water (water-soluble binder (PEO)
) Was cut to a predetermined size without applying the solvent, and a hydrogen storage alloy electrode x of Comparative Example 7 was produced. The coating amount of the hydrogen storage alloy slurry was adjusted so that the density of the hydrogen storage alloy after pressurization was 5.10 g / cm 3 and the thickness was about 0.5 mm.

【0029】(11)比較例8 上述のようにして作製した水素吸蔵合金γ(平均粒径が
70μmの水素吸蔵合金粉末)を用い、上述の実施例1
と同様にして、乾燥加圧極板を作製した後、得られた乾
燥加圧極板に水あるいは純水(水溶性結着剤(PEO)
の溶媒)を塗布することなく、所定寸法に切断して、比
較例8の水素吸蔵合金電極yを作製した。なお、水素吸
蔵合金スラリーの塗着量は加圧後の水素吸蔵合金密度が
5.10g/cm3で厚みが約0.5mmになるように
調整した。
(11) Comparative Example 8 Using the hydrogen storage alloy γ (hydrogen storage alloy powder having an average particle diameter of 70 μm) prepared as described above, the above-mentioned Example 1 was used.
In the same manner as described above, after preparing a dry pressing electrode plate, water or pure water (water-soluble binder (PEO)
Without coating), and cut into predetermined dimensions to produce a hydrogen storage alloy electrode y of Comparative Example 8. The coating amount of the hydrogen storage alloy slurry was adjusted so that the density of the hydrogen storage alloy after pressurization was 5.10 g / cm 3 and the thickness was about 0.5 mm.

【0030】(12)比較例9 上述のようにして作製した水素吸蔵合金δ(平均粒径が
90μmの水素吸蔵合金粉末)を用い、上述の実施例1
と同様にして、乾燥加圧極板を作製した後、得られた乾
燥加圧極板に水あるいは純水(水溶性結着剤(PEO)
の溶媒)を塗布することなく、所定寸法に切断して、比
較例9の水素吸蔵合金電極zを作製した。なお、水素吸
蔵合金スラリーの塗着量は加圧後の水素吸蔵合金密度が
5.10g/cm3で厚みが約0.5mmになるように
調整した。
(12) Comparative Example 9 Using the hydrogen storage alloy δ (hydrogen storage alloy powder having an average particle size of 90 μm) prepared as described above, the above-mentioned Example 1 was used.
In the same manner as described above, after preparing a dry pressing electrode plate, water or pure water (water-soluble binder (PEO)
Without applying the solvent), and cut into a predetermined size to produce a hydrogen storage alloy electrode z of Comparative Example 9. The coating amount of the hydrogen storage alloy slurry was adjusted so that the density of the hydrogen storage alloy after pressurization was 5.10 g / cm 3 and the thickness was about 0.5 mm.

【0031】3.ニッケル−水素蓄電池の作製 ついで、上述のように作製した実施例1〜3の各水素吸
蔵合金電極a〜cおよび比較例1〜9の各水素吸蔵合金
電極r〜zをそれぞれ用い、これらの各水素吸蔵合金電
極と周知の非焼結式ニッケル正極とを耐アルカリ性のナ
イロン製不織布からなるセパレータを介して捲回した。
このとき、水素吸蔵合金電極が外側になるようにして渦
巻状に捲回して渦巻状電極群をそれぞれ作製した。この
ように作製した各渦巻状電極群をそれぞれ有底円筒状の
金属製外装缶に挿入した後、各金属製外装缶内にそれぞ
れ水酸化カリウム(KOH)、水酸化リチウム(LiO
H)および水酸化ナトリウム(NaOH)からなる3成
分電解液を注液し、密閉することにより公称容量が17
00mAhの4/5Aサイズのニッケル−水素蓄電池
A,B,C,R,S,T,U,V,W,X,Y,Zをそ
れぞれ作製した。
3. Production of Nickel-Hydrogen Storage Battery Next, using the respective hydrogen storage alloy electrodes a to c of Examples 1 to 3 and the respective hydrogen storage alloy electrodes r to z of Comparative Examples 1 to 9 prepared as described above, The hydrogen storage alloy electrode and a well-known non-sintered nickel positive electrode were wound via a separator made of an alkali-resistant nylon nonwoven fabric.
At this time, the spirally wound electrode group was produced by spirally winding the hydrogen storage alloy electrode so that the electrode was on the outside. After each of the spirally wound electrode groups thus manufactured is inserted into a bottomed cylindrical metal outer can, potassium hydroxide (KOH) and lithium hydroxide (LiO2) are respectively inserted into each metal outer can.
H) and sodium hydroxide (NaOH), and a three-component electrolyte solution is injected thereinto and sealed to obtain a nominal capacity of 17%.
Nickel-metal hydride batteries A, B, C, R, S, T, U, V, W, X, Y, and Z having a size of 4/5 A of 00 mAh were produced, respectively.

【0032】ここで、水素吸蔵合金電極aを用いたもの
を電池Aとし、水素吸蔵合金電極bを用いたものを電池
Bとし、水素吸蔵合金電極cを用いたものを電池Cと
し、水素吸蔵合金電極rを用いたものを電池Rとし、水
素吸蔵合金電極sを用いたものを電池Sとし、水素吸蔵
合金電極tを用いたものを電池Tとし、水素吸蔵合金電
極uを用いたものを電池Uとし、水素吸蔵合金電極vを
用いたものを電池Vとし、水素吸蔵合金電極wを用いた
ものを電池Wとし、水素吸蔵合金電極xを用いたものを
電池Xとし、水素吸蔵合金電極yを用いたものを電池Y
とし、水素吸蔵合金電極zを用いたものを電池Zとし
た。
Here, a battery using the hydrogen storage alloy electrode a is referred to as a battery A, a battery using the hydrogen storage alloy electrode b is referred to as a battery B, and a battery using the hydrogen storage alloy electrode c is referred to as a battery C. The battery R using the alloy electrode r was used as the battery R, the battery using the hydrogen storage alloy electrode s was used as the battery S, the battery using the hydrogen storage alloy electrode t was used as the battery T, and the battery using the hydrogen storage alloy electrode u was used. A battery U, a battery V using the hydrogen storage alloy electrode v, a battery W using the hydrogen storage alloy electrode w, a battery X using a hydrogen storage alloy electrode x, and a hydrogen storage alloy electrode battery using battery y
A battery using the hydrogen storage alloy electrode z was designated as a battery Z.

【0033】4.活物質の脱落数および巻きズレ数の測
定 上述のように各ニッケル−水素蓄電池A〜CおよびR〜
Zをそれぞれ100個ずつ作製する際に、渦巻状電極群
の作製時に各電極a,b,c,r,s,t,u,v,
w,x,y,zから水素吸蔵合金粉末が脱落した電極群
の個数、および渦巻状電極群に巻きズレが生じた個数を
測定すると、下記の表1〜表4に示すような結果となっ
た。
4. Measurement of number of active material falling off and number of winding deviations As described above, each of the nickel-hydrogen storage batteries A to C and R to
When manufacturing 100 pieces of Z each, when manufacturing the spiral electrode group, each electrode a, b, c, r, s, t, u, v,
When the number of electrode groups in which the hydrogen storage alloy powder was dropped from w, x, y, and z and the number of spirally displaced spiral electrode groups were measured, the results shown in Tables 1 to 4 below were obtained. Was.

【0034】(1)水素吸蔵合金粉末の平均粒径と活物
質の脱落数および巻きズレ数の関係 ここで、活物質の充填密度を4.85g/cm3と等し
くし、水素吸蔵合金粉末の平均粒径を30μm(水素吸
蔵合金電極t)、50μm(水素吸蔵合金電極u)、7
0μm(水素吸蔵合金電極v)、90μm(水素吸蔵合
金電極w)と変化させた場合の活物質の脱落および巻き
ズレを発生した個数を求めると下記の表1に示すような
結果となった。
(1) Relationship between the average particle size of the hydrogen storage alloy powder and the number of falling and winding deviations of the active material Here, the packing density of the active material was set equal to 4.85 g / cm 3 , The average particle size is 30 μm (hydrogen storage alloy electrode t), 50 μm (hydrogen storage alloy electrode u), 7
When the number of active materials that had fallen off and the number of winding deviations was changed to 0 μm (hydrogen storage alloy electrode v) and 90 μm (hydrogen storage alloy electrode w), the results shown in Table 1 below were obtained.

【0035】[0035]

【表1】 [Table 1]

【0036】上記表1の結果から明らかなように、水素
吸蔵合金粉末の充填密度が4.85g/cm3の水素吸
蔵合金電極を作製する場合、用いる水素吸蔵合金粉末の
平均粒径が大きくなるほど活物質の脱落数が減少する反
面、巻きズレの発生数が増大すること、逆に言えば、水
素吸蔵合金粉末の平均粒径が小さくなるほど活物質の脱
落数が増大する反面、巻きズレの発生数が減少すること
が分かる。これは、水素吸蔵合金粉末の平均粒径が小さ
くなるほど、充填密度が4.85g/cm3になるまで
加圧した際に、水素吸蔵合金粉末同士を固着したりある
いは水素吸蔵合金粉末と導電性芯体とを固着する結着剤
に亀裂が生じて、活物質が脱落しやすくなったと考えら
れる。一方、水素吸蔵合金粉末の平均粒径が大きくなる
ほど、充填密度が4.85g/cm3になるまで加圧し
た水素吸蔵合金電極に波打ちやしわが発生したためであ
る。
As is clear from the results shown in Table 1, when producing a hydrogen storage alloy electrode having a hydrogen storage alloy powder packing density of 4.85 g / cm 3 , the larger the average particle size of the hydrogen storage alloy powder used, the larger the average particle size of the hydrogen storage alloy powder used. While the number of active materials falling off decreases, the number of occurrences of winding deviation increases. Conversely, the smaller the average particle diameter of the hydrogen storage alloy powder, the more the number of active materials falling off increases, but the number of winding deviations increases. It can be seen that the number decreases. This is because the smaller the average particle size of the hydrogen storage alloy powder, the more the hydrogen storage alloy powder is fixed when the packing density is increased to 4.85 g / cm 3 , or the more the hydrogen storage alloy powder becomes conductive. It is considered that a crack was generated in the binder that fixes the core body, and the active material was easily dropped off. On the other hand, as the average particle diameter of the hydrogen storage alloy powder increases, the hydrogen storage alloy electrode pressed to a packing density of 4.85 g / cm 3 has more waves and wrinkles.

【0037】また、活物質の充填密度を高めて、5.1
0g/cm3と等しくし、水素吸蔵合金の平均粒径を3
0μm(水素吸蔵合金電極r)、50μm(水素吸蔵合
金電極x)、70μm(水素吸蔵合金電極y)、90μ
m(水素吸蔵合金電極z)と変化させた場合の活物質の
脱落および巻きズレを発生した個数を求めると下記の表
2に示すような結果となった。
Further, the packing density of the active material was increased to increase the packing density of 5.1.
0 g / cm 3 and the average particle size of the hydrogen storage alloy is 3
0 μm (hydrogen storage alloy electrode r), 50 μm (hydrogen storage alloy electrode x), 70 μm (hydrogen storage alloy electrode y), 90 μm
m (hydrogen storage alloy electrode z), the number of the active materials that had fallen off and the winding had shifted was obtained. The results are shown in Table 2 below.

【0038】[0038]

【表2】 [Table 2]

【0039】上記表2の結果から明らかなように、水素
吸蔵合金粉末の充填密度が5.10g/cm3の水素吸
蔵合金電極を作製する場合においても、用いる水素吸蔵
合金粉末の平均粒径が小さくなるほど活物質の脱落数が
増大する反面、巻きズレの発生数が減少することが分か
る。また、上記表1と表2の結果から明らかなように、
水素吸蔵合金粉末の平均粒径が同じであっても、水素吸
蔵合金粉末の充填密度が4.85g/cm3から5.1
0g/cm3に増大すると、活物質の脱落数および巻き
ズレの発生数が増大することが分かる。これは、平均粒
径が小さい水素吸蔵合金粉末を高密度に充填すると、単
位体積当たりの水素吸蔵合金粉末粒子数が増大するこ
と、および高充填密度化のために圧延荷重が増大するこ
とで、水素吸蔵合金粉末同士を固着したりあるいは水素
吸蔵合金粉末と導電性芯体とを固着する結着剤に亀裂が
生じ易くなって、水素吸蔵合金粉末同士および水素吸蔵
合金粉末と導電性芯体との間がよりズレ易くなったため
と考えられる。
As is evident from the results in Table 2, even when a hydrogen storage alloy electrode having a packing density of 5.10 g / cm 3 is prepared, the average particle size of the hydrogen storage alloy powder used is small. It can be seen that the smaller the number is, the more the number of active materials falling off, while the number of occurrences of winding deviation decreases. Also, as is clear from the results of Tables 1 and 2,
Even if the average particle size of the hydrogen storage alloy powder is the same, the packing density of the hydrogen storage alloy powder is from 4.85 g / cm 3 to 5.1.
It can be seen that, when it is increased to 0 g / cm 3 , the number of active materials falling off and the number of occurrences of winding deviation increase. This is because when the hydrogen storage alloy powder having a small average particle diameter is filled at a high density, the number of hydrogen storage alloy powder particles per unit volume increases, and the rolling load increases to increase the packing density. The binder that fixes the hydrogen storage alloy powders together or bonds the hydrogen storage alloy powder and the conductive core easily cracks, and the hydrogen storage alloy powders and the hydrogen storage alloy powder and the conductive core are It is considered that the gap between them became easier to shift.

【0040】(2)純水処理と活物質の脱落数および巻
きズレ数の関係 さらに、平均粒径が30μmの水素吸蔵合金粉末を用い
て、活物質の充填密度を5.10g/cm3と等しく
し、かつ純水処理を施した水素吸蔵合金電極a(スラリ
ー中に結着剤が含有されて再加圧が5%のもの),b
(芯体に結着剤が塗着されて再加圧が5%のもの),c
(スラリー中に結着剤が含有されて再加圧が10%のも
の)と、純水処理を施さなかった水素吸蔵合金電極r
(スラリー中に結着剤が含有されたもの),s(芯体に
結着剤が塗着されたもの)の活物質の脱落および巻きズ
レを発生した個数を求めると下記の表3に示すような結
果となった。
(2) Relationship between Pure Water Treatment and Number of Drops and Number of Windings of Active Material Further, using a hydrogen storage alloy powder having an average particle diameter of 30 μm, the packing density of the active material was set to 5.10 g / cm 3 . Hydrogen storage alloy electrode a (equalized and subjected to pure water treatment) (binder contained in slurry and repressurization of 5%), b
(The binder is applied to the core and the re-pressurization is 5%), c
(A slurry containing a binder and a re-pressurization of 10%) and a hydrogen storage alloy electrode r not subjected to pure water treatment.
Table 3 shows the numbers of the active materials (with the binder contained in the slurry) and s (with the binder applied to the core) in which the active material was dropped and the winding was displaced. The result was as follows.

【0041】[0041]

【表3】 [Table 3]

【0042】上記表3の結果から明らかなように、乾燥
加圧極板に純水処理を施さなかった水素吸蔵合金電極
r,sの活物質脱落数は78/100あるいは82/1
00と多かったのに対して、乾燥加圧極板に純水処理を
施した水素吸蔵合金電極a,b,cの活物質脱落数は2
/100、2/100、9/100と激減していること
が分かる。
As is evident from the results shown in Table 3, the number of active material drops of the hydrogen-absorbing alloy electrodes r and s in which the dry pressurized electrode plate was not subjected to the pure water treatment was 78/100 or 82/1.
00, the number of active material falling off of the hydrogen storage alloy electrodes a, b, and c obtained by subjecting the dry pressure electrode to pure water treatment is 2
It can be seen that the number has sharply decreased to / 100, 2/100 and 9/100.

【0043】これは、純水または水を乾燥極板の表面に
塗布して付着させるようにすると、純水または水が水素
吸蔵合金層中に浸透して水溶性結着剤(PEO)が再溶
解するようになるため、加圧時に水溶性結着剤に生じた
ひび割れが再度溶解し、この後、乾燥工程よりも低温
(40℃以下が望ましい)で乾燥させると、溶解した水
溶性結着剤が固結して、水素吸蔵合金粉末同士および導
電性芯体と水素吸蔵合金粉末とが強固に接着されたため
と考えられる。これにより、水素吸蔵合金層は剥がれに
くくなって、水素吸蔵合金粉末の脱落が防止できるよう
になる。
This is because, when pure water or water is applied to and adhered to the surface of the dry electrode plate, the pure water or water penetrates into the hydrogen storage alloy layer and the water-soluble binder (PEO) is re-used. Since it becomes soluble, cracks generated in the water-soluble binder at the time of pressurization dissolve again, and after that, when dried at a lower temperature (preferably 40 ° C. or lower) than the drying step, the dissolved water-soluble binder is dissolved. It is considered that the agent was solidified and the hydrogen storage alloy powder and the conductive core and the hydrogen storage alloy powder were firmly adhered to each other. This makes it difficult for the hydrogen storage alloy layer to be peeled off, thereby preventing the hydrogen storage alloy powder from falling off.

【0044】なお、水溶性結着剤をスラリー中に含有さ
せた水素吸蔵合金電極a(あるいは水素吸蔵合金電極
r)と、結着剤を導電性芯体に予め塗着した水素吸蔵合
金電極b(あるいは水素吸蔵合金電極s)とを比較して
も、活物質脱落数はそれほど変わらないことが分かる。
これは、結着剤を導電性芯体に予め塗着しても、スラリ
ーの塗着時に水溶性結着剤がスラリー中に溶解して、水
素吸蔵合金粉末同士および導電性芯体と水素吸蔵合金粉
末とが強固に接着されたためと考えられる。
A hydrogen-absorbing alloy electrode a (or hydrogen-absorbing alloy electrode r) containing a water-soluble binder in a slurry and a hydrogen-absorbing alloy electrode b having a binder coated on a conductive core in advance. (Or hydrogen storage alloy electrode s), it can be seen that the number of active material drops is not so different.
This is because even when the binder is preliminarily applied to the conductive core, the water-soluble binder dissolves in the slurry when the slurry is applied, and the hydrogen storage alloy powder and the conductive core and the conductive core are absorbed in hydrogen. It is considered that the alloy powder was strongly bonded.

【0045】なお、乾燥加圧極板の表面に純水または水
を付着させた後に乾燥させると、水素吸蔵合金電極の表
面がざらつくという現象を生じた。このため、このよう
な水素吸蔵合金電極が最外周に位置するように渦巻状に
巻回し、この最外周に巻き取りテープを貼着する際に巻
き取りテープが最外周の水素吸蔵合金電極に貼着し難い
という問題を生じた。そこで、本発明においては、純水
または水を乾燥極板の表面に塗布し、低温乾燥後に再加
圧を行うようにしている。これにより、純水処理後の生
じたざらつき現象の発生を抑制できるようになる。
When pure water or water was allowed to adhere to the surface of the drying and pressing electrode plate and then dried, the surface of the hydrogen storage alloy electrode became rough. Therefore, such a hydrogen storage alloy electrode is spirally wound so as to be located at the outermost periphery, and when the winding tape is attached to the outermost periphery, the winding tape is attached to the outermost hydrogen storage alloy electrode. The problem that it is difficult to wear was caused. Therefore, in the present invention, pure water or water is applied to the surface of the drying electrode plate, and repressurization is performed after drying at low temperature. This makes it possible to suppress the occurrence of the roughening phenomenon that occurs after the pure water treatment.

【0046】この場合、再加圧により水素吸蔵合金粉末
同士および導電性芯体と水素吸蔵合金粉末との間にズレ
が生じないようにする必要があるが、上記表3の結果か
ら明らかなように、所定の厚みの10%以内の加圧力で
あれば、純水処理の効果を維持させることが可能となる
ので、再加圧時の加圧力は所定の厚みの10%以内とす
るのが望ましい。
In this case, it is necessary to prevent deviation between the hydrogen storage alloy powders and between the conductive core and the hydrogen storage alloy powder due to the re-pressurization. If the pressure is within 10% of the predetermined thickness, the effect of the pure water treatment can be maintained. Therefore, the pressure at the time of re-pressurization should be within 10% of the predetermined thickness. desirable.

【0047】5.水素吸蔵合金電極の強度の測定 ついで、上述のように作製した実施例1,2の水素吸蔵
合金電極a,bおよび比較例1,2の水素吸蔵合金電極
r,sをそれぞれ用い、これらの各水素吸蔵合金電極の
付着強度を測定した。なお、この強度測定においては、
図1に示すように、これらの各極板10(なお、この極
板10は導電性芯体11の両面に水素吸蔵合金層12,
13が形成されている)の片面の水素吸蔵合金層12の
表面を切削した後、切削面をウエスで軽く擦って表面の
切削くずを除去した。この後、これらの各極板10の水
素吸蔵合金層12の表面に対して約30度の角度にカッ
ター(図示せず)を保持した後、カッターの刃先に25
0g程度の荷重が掛かるようにして、水素吸蔵合金層1
2を切るように切溝x,yを引いた。なお、各切溝x,
yの間隔は1mm間隔とし、各切溝x,yをそれぞれ1
0本ずつ互いに直角に交差するように引いた。
5. Measurement of Strength of Hydrogen Storage Alloy Electrodes Next, the hydrogen storage alloy electrodes a and b of Examples 1 and 2 and the hydrogen storage alloy electrodes r and s of Comparative Examples 1 and 2 prepared as described above were used, respectively. The adhesion strength of the hydrogen storage alloy electrode was measured. In this strength measurement,
As shown in FIG. 1, each of these electrode plates 10 (this electrode plate 10 has a hydrogen storage alloy layer 12,
After the surface of the hydrogen-absorbing alloy layer 12 on one side (on which the surface 13 is formed) was cut, the cut surface was lightly rubbed with a rag to remove cutting debris on the surface. Thereafter, after holding a cutter (not shown) at an angle of about 30 degrees with respect to the surface of the hydrogen storage alloy layer 12 of each of the electrode plates 10, 25
A load of about 0 g is applied to the hydrogen storage alloy layer 1
The kerfs x and y were drawn so as to cut two. In addition, each kerf x,
The interval of y is 1 mm, and each kerf x, y is 1
Each of them was drawn so as to cross each other at right angles.

【0048】ついで、各切溝x,yを10本ずつ互いに
直角に交差するように引くことにより、碁盤目状に10
0個の升目を形成した。ついで、碁盤目状に100個の
升目が形成された各極板10をそれぞれ10枚ずつ用い
て、水素吸蔵合金層12,13が垂直になるようにし
て、高さが約100mmの位置まで持ち上げた後、各極
板10をそれぞれ自由落下させた。この落下試験を3回
繰り返して行った後、各極板10に形成された升目の脱
落個数を数えて、その平均値を求めると下記の表4に示
すような結果となった。
Next, ten kerfs x and y are drawn so as to intersect at right angles at a time, thereby forming 10 kerfs in a grid pattern.
Zero cells were formed. Then, using 10 electrode plates 10 each having 100 grids formed in a grid pattern, the hydrogen storage alloy layers 12 and 13 are vertically set, and the height is raised to a position of about 100 mm. After that, each electrode plate 10 was freely dropped. After this drop test was repeated three times, the number of squares dropped on each electrode plate 10 was counted, and the average value was obtained. The results shown in Table 4 below were obtained.

【0049】[0049]

【表4】 [Table 4]

【0050】上記表4の結果から明らかなように、乾燥
加圧極板に純水処理を施さなかった水素吸蔵合金電極
r,sの活物質脱落数は65/100あるいは68/1
00と多かったのに対して、乾燥加圧極板に純水処理を
施した水素吸蔵合金電極a,bの活物質脱落数は1/1
00、2/100と激減していることが分かる。これ
は、純水または水を乾燥加圧極板の表面に塗布して付着
させるようにすると、純水または水が水素吸蔵合金層中
に浸透して水溶性結着剤が再溶解するようになるため、
加圧時に結着剤に生じたひび割れが再度溶解し、この
後、乾燥工程よりも低温(40℃以下が望ましい)で乾
燥させると、溶解した水溶性結着剤が固結して、水素吸
蔵合金粉末同士および導電性芯体と水素吸蔵合金粉末と
が強固に接着されたためと考えられる。これにより、水
素吸蔵合金層は剥がれにくくなって、水素吸蔵合金粉末
の脱落が防止できるようになる。
As is clear from the results shown in Table 4, the number of active material drops of the hydrogen-absorbing alloy electrodes r and s in which the dry pressurized electrode plate was not subjected to the pure water treatment was 65/100 or 68/1.
00, the number of active material drops of the hydrogen-absorbing alloy electrodes a and b obtained by subjecting the dried and pressed electrode plates to pure water treatment was 1/1.
It can be seen that the number has sharply decreased to 00 and 2/100. This is because if pure water or water is applied to the surface of the dry pressing electrode plate and adheres, the pure water or water permeates the hydrogen storage alloy layer and the water-soluble binder is re-dissolved. To become
The cracks generated in the binder at the time of pressurization are dissolved again, and thereafter, when the binder is dried at a lower temperature than the drying step (preferably 40 ° C. or less), the dissolved water-soluble binder is solidified and hydrogen storage is performed. It is considered that the alloy powders and the conductive core and the hydrogen storage alloy powder were strongly bonded. This makes it difficult for the hydrogen storage alloy layer to peel off, thereby preventing the hydrogen storage alloy powder from falling off.

【0051】上述したように、本発明においては、純水
または水を乾燥加圧極板の表面に塗布して付着させるよ
うにしているので、平均粒径が60μm以下の水素吸蔵
合金粉末を4.85g/cm3以上の高充填密度で導電
性芯体に付着させても、水素吸蔵合金層は剥がれにくく
なって、水素吸蔵合金粉末の脱落が防止できるようにな
る。これにより、高容量の水素吸蔵合金電極となるの
で、このような高容量の水素吸蔵合金電極を用いてアル
カリ蓄電池を構成すると、負極の容量比が増大してリザ
ーブ量が増加するため、充放電サイクル特性に優れ、長
寿命のアルカリ蓄電池を提供することが可能となる。
As described above, in the present invention, since pure water or water is applied to and adhered to the surface of the dry pressing electrode plate, the hydrogen storage alloy powder having an average particle size of 60 μm or less is used. Even if the hydrogen storage alloy layer is adhered to the conductive core at a high packing density of 0.85 g / cm 3 or more, the hydrogen storage alloy layer is hardly peeled off, and the hydrogen storage alloy powder can be prevented from falling off. As a result, a high-capacity hydrogen-absorbing alloy electrode is formed.If an alkaline storage battery is formed using such a high-capacity hydrogen-absorbing alloy electrode, the capacity ratio of the negative electrode increases and the reserve amount increases. It is possible to provide an alkaline storage battery having excellent cycle characteristics and a long life.

【0052】なお、上述した実施の形態においては、水
素吸蔵合金としてMmNi3.4Co0 .8Al0.2Mn0.6
用いる例について説明したが、水素吸蔵合金としてはM
mNi3.4Co0.8Al0.2Mn0.6に限らず、MmaNib
CocAldMne(但し、a=1の場合は、4.5≦b
+c+d+e≦5.5の関係を有するもの)で表される
水素吸蔵合金を用いるようにしてもよい。この場合、M
aNibCocAldMneで表されるNiの一部をC
o,Mn,Alで置換した水素吸蔵合金、あるいはNi
の一部をCoと、Cu,Fe,Cr,Si,Mo等で置
換した水素吸蔵合金を用いるようにしてもよい。
[0052] In the embodiment described above, description has been made of an example of using the MmNi 3.4 Co 0 .8 Al 0.2 Mn 0.6 as the hydrogen storage alloy, the hydrogen storage alloy M
not limited to mNi 3.4 Co 0.8 Al 0.2 Mn 0.6 , Mm a Ni b
Co c Al d Mn e (However, in the case of a = 1, 4.5 ≦ b
+ C + d + e ≦ 5.5) may be used. In this case, M
m a Ni b Co c Al d Mn part of Ni represented by e C
hydrogen storage alloy substituted with o, Mn, Al, or Ni
May be used as a hydrogen storage alloy in which a part of Co is replaced with Co, Cu, Fe, Cr, Si, Mo, or the like.

【0053】また、MmaNibCocAldMneで表さ
れる水素吸蔵合金以外の他のAB5型希土類系の水素吸
蔵合金、例えば、LaNi5系でNiの一部をCoとA
l,W等で置換した水素吸蔵合金を用いるようにしても
よい。また、上述した実施の形態においては、機械的に
粉砕した水素吸蔵合金を用いる例について説明したが、
アトマイズ法により作製した水素吸蔵合金あるいはこれ
に粉砕合金を混合した混合粉末を用いるようにしてもよ
い。
[0053] Further, Mm a Ni b Co c Al d Mn e in other AB 5 type rare earth hydrogen storage alloy other than hydrogen absorbing alloy represented, for example, a portion of the Ni Co and A in LaNi 5 type
A hydrogen storage alloy substituted with l, W, etc. may be used. Further, in the above-described embodiment, the example in which the mechanically pulverized hydrogen storage alloy is used has been described.
A hydrogen storage alloy prepared by an atomizing method or a mixed powder obtained by mixing a pulverized alloy with the hydrogen storage alloy may be used.

【0054】また、上述した実施の形態においては、水
溶性結着剤としてポリエチレンオキサイド(PEO)を
用いる例について説明したが、水溶性結着剤としてはポ
リエチレンオキサイド(PEO)に限らず他の水溶性結
着剤、例えば、ヒドロキシプロピルセルロース(HP
C)、不飽和ポリエステル樹脂(エアロジル)、メチル
セルロース(MC)、カルボキシルメチルセルロース
(CMC)、ポリビニルアルコール(PVA)、ポリビ
ニルピロリドン(PVP)、ポリアクリル酸、ポリアク
リルアミド、架橋澱粉、アクリル酸ソーダ、アルギン酸
ソーダ、ケイ酸ソーダ等を用いるようにしてもよい。さ
らに、結着剤としては水溶性結着剤に限らず他の結着剤
を用いるようにしてもよい。ただし、この場合は、純水
処理に代えて使用する結着剤の溶媒を乾燥加圧極板に付
着させる必要がある。
In the above-described embodiment, an example in which polyethylene oxide (PEO) is used as the water-soluble binder has been described. However, the water-soluble binder is not limited to polyethylene oxide (PEO), but may be other water-soluble binders. Binders such as hydroxypropylcellulose (HP
C), unsaturated polyester resin (Aerosil), methylcellulose (MC), carboxymethylcellulose (CMC), polyvinyl alcohol (PVA), polyvinylpyrrolidone (PVP), polyacrylic acid, polyacrylamide, crosslinked starch, sodium acrylate, sodium alginate , Sodium silicate or the like may be used. Further, the binder is not limited to the water-soluble binder, and another binder may be used. However, in this case, it is necessary to attach the solvent of the binder used in place of the pure water treatment to the dry pressurized electrode plate.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 活物質の付着強度を測定するために活物質層
に碁盤目状の切溝を入れた状態を模式的に示す斜視図で
ある。
FIG. 1 is a perspective view schematically showing a state in which cross-cut grooves are formed in an active material layer in order to measure the adhesive strength of the active material.

【符号の説明】[Explanation of symbols]

10…水素吸蔵合金電極、11…導電性芯体(パンチン
グメタル)、12,13…水素吸蔵合金層
10: hydrogen storage alloy electrode, 11: conductive core (punched metal), 12, 13: hydrogen storage alloy layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 長江 輝人 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 里口 功祐 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 和田 聖司 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 Fターム(参考) 5H028 AA05 BB03 BB04 BB05 BB08 CC08 CC12 CC13 HH01 HH03 HH05 HH08 5H050 AA07 BA14 CA03 CB17 DA04 DA11 FA05 FA17 GA02 GA10 GA22 GA27 HA05 HA08 HA15 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Teruhito Nagae 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Kousuke Satoguchi 2 Keihanhondori, Moriguchi-shi, Osaka 5-5-5 Sanyo Electric Co., Ltd. (72) Inventor Seiji Wada 2-5-5 Keihanhondori, Moriguchi-shi, Osaka F-term in Sanyo Electric Co., Ltd. 5H028 AA05 BB03 BB04 BB05 BB08 CC08 CC12 CC13 HH01 HH03 HH05 HH08 5H050 AA07 BA14 CA03 CB17 DA04 DA11 FA05 FA17 GA02 GA10 GA22 GA27 HA05 HA08 HA15

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 導電性芯体に少なくとも水素吸蔵合金粉
末と再溶解が可能な結着剤とを含有する合剤が付着され
た水素吸蔵合金電極であって、 前記水素吸蔵合金粉末の平均粒径は60μm以下で、該
水素吸蔵合金の充填密度が4.85g/cm3以上であ
るとともに、 前記水素吸蔵合金粉末同士および該水素吸蔵合金粉末と
前記導電性芯体とが前記再溶解が可能な結着剤により固
着されていることを特徴とする水素吸蔵合金電極。
1. A hydrogen storage alloy electrode having a mixture containing at least a hydrogen storage alloy powder and a re-dissolvable binder attached to a conductive core, wherein the average particle size of the hydrogen storage alloy powder is The diameter is 60 μm or less, the packing density of the hydrogen storage alloy is 4.85 g / cm 3 or more, and the hydrogen storage alloy powders and the hydrogen storage alloy powder and the conductive core can be re-dissolved. A hydrogen storage alloy electrode which is fixed by a suitable binder.
【請求項2】 導電性芯体に少なくとも水素吸蔵合金粉
末を含有する活物質スラリーを付着させた水素吸蔵合金
電極の製造方法であって、 前記導電性芯体に平均粒径が60μm以下の水素吸蔵合
金粉末と再溶解が可能な結着剤と該結着剤の溶媒とから
なる活物質スラリーを塗着してスラリー塗着電極とする
塗着工程と、 前記スラリー塗着電極を乾燥させて乾燥電極とする乾燥
工程と、 前記乾燥電極を加圧して加圧電極とする加圧工程と、 前記加圧電極の表面に前記結着剤の溶媒を付着させる溶
媒付着工程とを備え、 前記導電性芯体に水素吸蔵合金粉末を4.85g/cm
3以上の充填密度で付着させるようにしたことを特徴と
する水素吸蔵合金電極の製造方法。
2. A method for producing a hydrogen-absorbing alloy electrode in which an active material slurry containing at least a hydrogen-absorbing alloy powder is attached to a conductive core, wherein the conductive core has an average particle diameter of 60 μm or less. An application step of applying an active material slurry composed of the resorbable binder powder, a remeltable binder and a solvent of the binder to form a slurry-coated electrode, and drying the slurry-coated electrode. A drying step of forming a drying electrode, a pressing step of pressing the drying electrode to form a pressing electrode, and a solvent adhering step of adhering a solvent of the binder to the surface of the pressing electrode; 4.85 g / cm of hydrogen storage alloy powder on the conductive core
A method for manufacturing a hydrogen storage alloy electrode, wherein the electrode is attached at a packing density of 3 or more.
【請求項3】 導電性芯体に少なくとも水素吸蔵合金粉
末を含有する活物質スラリーを付着させた水素吸蔵合金
電極の製造方法であって、 前記導電性芯体に再溶解が可能な結着剤と該結着剤の溶
媒とからなる結着剤溶液を塗布する結着剤塗布工程と、 前記結着剤が塗布された導電性芯体に平均粒径が60μ
m以下の水素吸蔵合金粉末を含有する活物質スラリーを
塗着してスラリー塗着電極とする塗着工程と、 前記スラリー塗着電極を乾燥させて乾燥電極とする乾燥
工程と、 前記乾燥電極を加圧して加圧電極とする加圧工程と、 前記加圧電極の表面に前記結着剤の溶媒を付着させる溶
媒付着工程とを備え、 前記導電性芯体に水素吸蔵合金粉末が4.85g/cm
3以上の充填密度で付着させるようにしたことを特徴と
する水素吸蔵合金電極の製造方法。
3. A method for producing a hydrogen storage alloy electrode in which an active material slurry containing at least a hydrogen storage alloy powder is attached to a conductive core, wherein the binder is capable of being re-dissolved in the conductive core. And a binder application step of applying a binder solution comprising the solvent of the binder, and an average particle diameter of 60 μm on the conductive core coated with the binder.
m, a coating step of applying an active material slurry containing a hydrogen storage alloy powder of m or less to form a slurry-coated electrode; a drying step of drying the slurry-coated electrode to form a dry electrode; A pressurizing step of pressurizing the pressurized electrode; and a solvent adhering step of adhering a solvent of the binder to the surface of the pressurized electrode, wherein 4.85 g of the hydrogen storage alloy powder is applied to the conductive core. / Cm
A method for manufacturing a hydrogen storage alloy electrode, wherein the electrode is attached at a packing density of 3 or more.
【請求項4】 前記溶媒付着工程の後、前記溶媒が付着
した電極を前記乾燥工程での乾燥温度よりも低温で乾燥
させる低温乾燥工程を備えるようにしたことを特徴とす
る請求項2または請求項3に記載の水素吸蔵合金電極の
製造方法。
4. The method according to claim 2, further comprising, after the solvent attaching step, a low-temperature drying step of drying the electrode to which the solvent is attached at a lower temperature than the drying temperature in the drying step. Item 4. The method for producing a hydrogen storage alloy electrode according to Item 3.
【請求項5】 前記低温乾燥工程の後、低温乾燥された
電極を再加圧する再加圧工程を備えるようにしたことを
特徴とする請求項4に記載の水素吸蔵合金電極の製造方
法。
5. The method for producing a hydrogen storage alloy electrode according to claim 4, further comprising, after the low-temperature drying step, a re-pressurizing step of re-pressing the low-temperature dried electrode.
【請求項6】 前記再加圧工程における加圧力は所定の
厚みよりも10%以下の厚みだけ圧縮する加圧力である
ことを特徴とする請求項5に記載の水素吸蔵合金電極の
製造方法。
6. The method for manufacturing a hydrogen storage alloy electrode according to claim 5, wherein the pressing force in the re-pressurizing step is a pressing force that compresses the thickness by 10% or less than a predetermined thickness.
【請求項7】 水素吸蔵合金粉末が塗着された負極と正
極とをセパレータを介して積層した電極群を金属製外装
缶内に備えたアルカリ蓄電池であって、 前記負極は導電性芯体に平均粒径が60μm以下の水素
吸蔵合金粉末が4.85g/cm3以上の充填密度で付
着されていることを特徴とするアルカリ蓄電池。
7. An alkaline storage battery provided with an electrode group in which a negative electrode coated with a hydrogen storage alloy powder and a positive electrode are laminated via a separator in a metal outer can, wherein the negative electrode is a conductive core. An alkaline storage battery, characterized in that hydrogen storage alloy powder having an average particle size of 60 μm or less is attached at a packing density of 4.85 g / cm 3 or more.
【請求項8】 前記電極群の最外側には前記負極が配置
されて該負極が前記金属製外装缶の内面に接触している
ことを特徴とする請求項7に記載のアルカリ蓄電池。
8. The alkaline storage battery according to claim 7, wherein the negative electrode is disposed on the outermost side of the electrode group, and the negative electrode is in contact with the inner surface of the metal outer can.
JP2001024151A 2000-08-18 2001-01-31 Hydrogen storage alloy electrode, method of manufacturing the same, and alkaline battery with hydrogen storage alloy electrode Pending JP2002231236A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2001024151A JP2002231236A (en) 2001-01-31 2001-01-31 Hydrogen storage alloy electrode, method of manufacturing the same, and alkaline battery with hydrogen storage alloy electrode
CNB011242388A CN1275346C (en) 2000-08-18 2001-08-17 Hydrogen absorption alloy electrode and its producing method, and alkaline accumulator mounted with said hydrogen absorption alloy electrode
TW090120191A TW518783B (en) 2000-08-18 2001-08-17 Hydrogen absorbing alloy electrode, manufacturing method thereof, and alkaline storage battery equipped with the hydrogen absorbing alloy electrode
EP01119917A EP1180808A3 (en) 2000-08-18 2001-08-17 Hydrogen absorbing alloy electrode, manufacturing method thereof, and alkaline storage battery equipped with the hydrogen absorbing alloy electrode
US09/931,051 US6824571B2 (en) 2000-08-18 2001-08-17 Hydrogen absorbing alloy electrode, manufacturing method thereof, and alkaline storage battery equipped with the hydrogen absorbing alloy electrode
HK02105188.9A HK1043442B (en) 2000-08-18 2002-07-12 Manufacturing method of alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001024151A JP2002231236A (en) 2001-01-31 2001-01-31 Hydrogen storage alloy electrode, method of manufacturing the same, and alkaline battery with hydrogen storage alloy electrode

Publications (1)

Publication Number Publication Date
JP2002231236A true JP2002231236A (en) 2002-08-16

Family

ID=18889334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001024151A Pending JP2002231236A (en) 2000-08-18 2001-01-31 Hydrogen storage alloy electrode, method of manufacturing the same, and alkaline battery with hydrogen storage alloy electrode

Country Status (1)

Country Link
JP (1) JP2002231236A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007311095A (en) * 2006-05-17 2007-11-29 Sanyo Electric Co Ltd Alkaline storage battery
JP2007323892A (en) * 2006-05-31 2007-12-13 Sanyo Electric Co Ltd Alkaline storage battery
JP2018152276A (en) * 2017-03-14 2018-09-27 Jsr株式会社 Composition for electric storage device, slurry for electric storage device, electric storage device electrode, and electric storage device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007311095A (en) * 2006-05-17 2007-11-29 Sanyo Electric Co Ltd Alkaline storage battery
JP2007323892A (en) * 2006-05-31 2007-12-13 Sanyo Electric Co Ltd Alkaline storage battery
JP2018152276A (en) * 2017-03-14 2018-09-27 Jsr株式会社 Composition for electric storage device, slurry for electric storage device, electric storage device electrode, and electric storage device

Similar Documents

Publication Publication Date Title
JP5062724B2 (en) Method for producing nickel electrode for alkaline battery and nickel electrode for alkaline battery
JP2001035499A (en) Electricity collecting base board for electrode of alkaline secondary battery, electrode using same, and alkaline secondary battery incorporating the electrode
US6824571B2 (en) Hydrogen absorbing alloy electrode, manufacturing method thereof, and alkaline storage battery equipped with the hydrogen absorbing alloy electrode
JP3245072B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP2002231236A (en) Hydrogen storage alloy electrode, method of manufacturing the same, and alkaline battery with hydrogen storage alloy electrode
JP4772185B2 (en) Positive electrode plate for alkaline storage battery, method for producing the same, and alkaline storage battery using the same
JP4056207B2 (en) Method for producing alkaline storage battery
JP2005093297A (en) Hydrogen storage alloy powder and its manufacturing method, hydrogen storage alloy electrode and nickel-hydrogen storage battery using the electrode
JP3893856B2 (en) Square alkaline storage battery
JP3253162B2 (en) Nickel hydride rechargeable battery
JP3639494B2 (en) Nickel-hydrogen storage battery
US7247409B2 (en) Alkaline storage battery and hydrogen storage alloy electrode used therefor
JP2000012011A (en) Manufacture of nickel-hydrogen storage battery
JP2981538B2 (en) Electrodes for alkaline batteries
JP2011102433A (en) Hydrogen storage alloy powder and method for producing the same, hydrogen storage alloy electrode and nickel-hydrogen storage battery using the same
JP3370071B2 (en) Hydrogen storage alloy electrode and nickel-metal hydride storage battery using this electrode
JP2003317796A (en) Storage battery
JP3374995B2 (en) Manufacturing method of nickel electrode
JP3475033B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPH06283162A (en) Metal hydride electrode, battery and production
JP2590437B2 (en) Electrode substrate for alkaline batteries
JP2001266859A (en) Hydrogen storage alloy electrode and nickel hydrogen secondary battery incorporating the same
JP4168578B2 (en) Square alkaline storage battery and manufacturing method thereof
JPH103928A (en) Nickel-hydrogen secondary battery
JPH02183964A (en) Manufacture of hydrogen storage electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100105