JPH0482052B2 - - Google Patents

Info

Publication number
JPH0482052B2
JPH0482052B2 JP60192042A JP19204285A JPH0482052B2 JP H0482052 B2 JPH0482052 B2 JP H0482052B2 JP 60192042 A JP60192042 A JP 60192042A JP 19204285 A JP19204285 A JP 19204285A JP H0482052 B2 JPH0482052 B2 JP H0482052B2
Authority
JP
Japan
Prior art keywords
layer
region
conductivity type
forming
polycrystalline silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60192042A
Other languages
Japanese (ja)
Other versions
JPS6252965A (en
Inventor
Hiroyuki Myagawa
Hideki Takada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP60192042A priority Critical patent/JPS6252965A/en
Publication of JPS6252965A publication Critical patent/JPS6252965A/en
Publication of JPH0482052B2 publication Critical patent/JPH0482052B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はある導電型の半導体基板に特性の異な
る素子をモノリシツクに形成する半導体装置、特
に集積回路装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a semiconductor device, particularly a method for manufacturing an integrated circuit device, in which elements having different characteristics are monolithically formed on a semiconductor substrate of a certain conductivity type.

〔発明の技術的背景〕[Technical background of the invention]

最近は、バイポーラ型トランジスタのエミツタ
構造にDOPOS構造が広く用いられている。この
DOPOS方式では高濃度に不純物元素を含有した
多結晶珪素層をエミツタ形成部分に堆積後この不
純物元素の熱拡散によつてエミツタ領域を得る手
段が採用されている。
Recently, the DOPOS structure has been widely used as the emitter structure of bipolar transistors. this
In the DOPOS method, a method is adopted in which a polycrystalline silicon layer containing a high concentration of impurity elements is deposited on the emitter forming portion and then the emitter region is obtained by thermal diffusion of the impurity elements.

この方式では多結晶珪素中に添化する不純物の
種類、量、多結晶珪素層の厚さならびに熱拡散の
温度と時間によつて素子特性が制御可能な利点を
生かし、広く使用されているのが現状である。
This method is widely used because it has the advantage that device characteristics can be controlled by the type and amount of impurities added to polycrystalline silicon, the thickness of the polycrystalline silicon layer, and the temperature and time of thermal diffusion. is the current situation.

第2図によりこのDOPOS方式を適用したバイ
ポーラトランジスタについて説明する。P導電型
を示すシリコン半導体基板30を準備して、その
表面にN+導電型領域31を形成するが、この領
域は後述するバイポーラトランジスタの埋込領域
として機能する。このN+導電型領域31を形成
したP導電型シリコン半導体基板30に気相エピ
タキシヤル層32を堆積後その所定位置にPをイ
オン注入法により導入してN−Well層を形成す
る。
A bipolar transistor to which this DOPOS method is applied will be explained with reference to FIG. A silicon semiconductor substrate 30 exhibiting P conductivity type is prepared, and an N + conductivity type region 31 is formed on its surface, and this region functions as a buried region of a bipolar transistor to be described later. A vapor phase epitaxial layer 32 is deposited on the P conductivity type silicon semiconductor substrate 30 in which the N + conductivity type region 31 is formed, and then P is introduced into a predetermined position by ion implantation to form an N-well layer.

工程が前後するが前述の気相エピタキシヤル層
形成後にはフイールド酸化層34を従来より公知
の選択酸化法で設置する。このN−Well層33
表面には薄い珪素酸化物層35を被覆後この酸化
物層35上からBをイオン注入してベース領域3
6を形成し、この酸化物層35にエミツタ領域3
7及びベース接点38用の開口を設けこのエミツ
タ領域用開口にのみ不純物含有多結晶珪素層39
を堆積する。この含有不純物であるPをベース領
域36に導入してエミツタ領域37を形成する。
一方前記選択酸化法によつて形成したフイールド
酸化層34にも開口を設けこゝにN+領域41を
Pの導入によつて形成してコレクタ接点として機
能させる。またベース接点38はBの高濃度拡散
によりP+型領域として形成される。このコレク
タ接点41及びベース接点38に導電性金属Al
を堆積して夫々の電極としてバイポーラトランジ
スタを製造していた。
Although the steps are different, after the vapor phase epitaxial layer is formed, a field oxide layer 34 is provided by a conventionally known selective oxidation method. This N-well layer 33
After coating the surface with a thin silicon oxide layer 35, B ions are implanted from above this oxide layer 35 to form the base region 3.
6 is formed, and an emitter region 3 is formed in this oxide layer 35.
An impurity-containing polycrystalline silicon layer 39 is formed only in this opening for the emitter region.
Deposit. This impurity containing P is introduced into the base region 36 to form an emitter region 37.
On the other hand, an opening is also provided in the field oxide layer 34 formed by the selective oxidation method, and an N + region 41 is formed therein by introducing P to function as a collector contact. Further, the base contact 38 is formed as a P + type region by high concentration diffusion of B. The collector contact 41 and the base contact 38 are made of conductive metal Al.
was used to manufacture bipolar transistors by depositing them as respective electrodes.

〔背景技術の問題点〕[Problems with background technology]

この不純物含有多結晶珪素層によりバイポーラ
トランジスタとりわけエミツタ領域を形成する技
術は特性の異なる素子を形成するのに極めて不都
合となる。すなわち、所望の特性を得るには多結
晶珪素層の厚さ、添加不純物の種類、量をそれぞ
れ合せて変えなければならない。従つて製造工程
の増加、それに伴なう製造コストの上昇、更に工
数増加による歩溜り低下の原因にもなる等集積回
路素子の製造に当つては多くの難点を生じる。
The technique of forming a bipolar transistor, especially an emitter region, using this impurity-containing polycrystalline silicon layer is extremely inconvenient for forming elements with different characteristics. That is, in order to obtain desired characteristics, the thickness of the polycrystalline silicon layer and the type and amount of added impurities must be changed. Therefore, many difficulties arise in the manufacture of integrated circuit devices, such as an increase in the number of manufacturing steps, an accompanying increase in manufacturing costs, and an increase in the number of man-hours that causes a decrease in yield.

〔発明の目的〕[Purpose of the invention]

本発明は上記難点を除去した新規な半導体装置
の製造方法を提供するもので、特に特性の異なる
素子を半導体基板にモノリシツクにしかも同時に
形成可能とした。
The present invention provides a novel method for manufacturing a semiconductor device that eliminates the above-mentioned difficulties, and in particular allows elements with different characteristics to be formed monolithically and simultaneously on a semiconductor substrate.

〔発明の概要〕[Summary of the invention]

本発明は上記目的を達成するために、半導体基
板に被着した薄い絶縁物層に不純物導入用開口を
設け、ここに堆積した多結晶層の横方向即ち半導
体基板表面に沿つた方向に不純物を拡散させ、し
かも開口に対向する多結晶層に設けた珪素酸化物
によつてその拡散を制御する方式を採用し、汎用
性の高い不純物のうち多結晶珪素中での拡散速度
が最も早いPを不純物として利用する。
In order to achieve the above object, the present invention provides an impurity introduction opening in a thin insulating layer deposited on a semiconductor substrate, and introduces the impurity in the lateral direction of the polycrystalline layer deposited there, that is, in the direction along the semiconductor substrate surface. We adopted a method in which P is diffused and controlled by silicon oxide provided in the polycrystalline layer facing the opening. Among the highly versatile impurities, P has the fastest diffusion rate in polycrystalline silicon. Use as an impurity.

〔発明の実施例〕[Embodiments of the invention]

第1図A〜Eにより本発明を詳述する。 The present invention will be explained in detail with reference to FIGS. 1A to 1E.

P導電型を示した表面濃度としてBが約
1014atoms/cc含有した半導体基板1を準備し
こゝに後述するバイポーラトランジスタの埋込領
域として機能するN+領域2を5×1019atoms/cc
程度のsbによつて形成する。この半導体基板1に
Bを約1015atoms/cc含むP型エピタキシヤル層
3を堆積し、こゝに厚さ8000Åのフイールド絶縁
物層4を公知の選択酸化法もしくは熱酸化法によ
り形成する。
As the surface concentration showing P conductivity type, B is approximately
A semiconductor substrate 1 containing 10 14 atoms/cc is prepared, and an N + region 2 which functions as a buried region of a bipolar transistor to be described later is filled with 5×10 19 atoms/cc.
Formed by degree sb. A P-type epitaxial layer 3 containing about 10 15 atoms/cc of B is deposited on this semiconductor substrate 1, and a field insulating layer 4 with a thickness of 8000 Å is formed thereon by a known selective oxidation method or thermal oxidation method.

次に素子形成予定位置のフイールド絶縁物層4
を食刻法によつて開口し、露出したエピタキシヤ
ル層にPを1016atoms/cc程度イオン注入してN
−Well領域5,5を形成し、その表面には数百
Å程度の酸化膜6,6を形成する。この時点の断
面構造を第1図Aに示す。この図ではコレクタ接
点11を示してあるが、その形成時期は後述の工
程間であつても差支えない。その表面濃度は
1020atoms/cc程度のN+領域である。
Next, the field insulator layer 4 is placed at the location where the element is to be formed.
An opening is made by etching the exposed epitaxial layer, and P ions are implanted at approximately 10 16 atoms/cc into the exposed epitaxial layer.
-Well regions 5, 5 are formed, and oxide films 6, 6 of approximately several hundred Å thick are formed on their surfaces. The cross-sectional structure at this point is shown in FIG. 1A. Although the collector contact 11 is shown in this figure, it may be formed between the steps described later. Its surface concentration is
This is an N + region of about 10 to 20 atoms/cc.

次いでこの薄い酸化膜6,6を介してBを
35KeV4.9×1013cm-2の条件でイオン注入し、更
にN+雰囲気のもと900℃で熱処理してベース領域
7,7を設けN−Well領域をバイポーラ型トラ
ンジスタのコレクタとして機能させる。
Next, B is introduced through the thin oxide films 6, 6.
Ions are implanted under the conditions of 35 KeV4.9×10 13 cm −2 and further heat treated at 900° C. in an N + atmosphere to form base regions 7 and 7, and the N-well region functions as a collector of a bipolar transistor.

この酸化膜6,6にはエミツタ領域用ならびに
ベース接点用の開口を設けるが、先ずエミツタ領
域用の開口8,8を食刻法で形成後、この開口を
もつ半導体基板1上に多結晶珪素層10を約3500
Å堆積するので、結果的にはフイールド絶縁物層
4及び薄い酸化膜6,6にも積層される。
Openings for the emitter region and the base contact are provided in the oxide films 6, 6. First, the openings 8, 8 for the emitter region are formed by an etching method, and then polycrystalline silicon is formed on the semiconductor substrate 1 having these openings. layer 10 about 3500
As a result, the field insulator layer 4 and the thin oxide films 6, 6 are also laminated.

更にこの多結晶珪素層10にはCVD法により
約6000Åの二酸化珪素層15を第1図Bに示すよ
うに堆積後通常の写真食刻法により開口8,8に
対向する部分をパターニングする。次に、このパ
ターニングされた二酸化珪素層即ち珪素酸化物層
15,15周囲に露出した多結晶珪素層10,1
0にイオン注入法もしくはPOCl3からPを導入し
て開口8,8に導き、こゝに露出したベース領域
7,7部分にエミツタ領域12,12を設ける。
このエミツタ領域12,12の表面濃度は約
1020atoms/ccでありこの断面図を第1図Cに示
す。このP導入に当つては珪素酸化物層15,1
5の面積によつてその導入量が制御され、即ち、
開口8,8の面積より珪素酸化物層15,15の
底面積が大きいとその導入量は少なく、その逆で
は導入量が大きくなり、得られるエミツタ領域の
xjは導入量が大きいと大となる。しかし、第1図
Dにおいて例えば開口8にいわゆるテーパを設け
るとP導入量が増大するので、珪素酸化物層15
とによつて導入量を調整することも可能である。
Further, on this polycrystalline silicon layer 10, a silicon dioxide layer 15 having a thickness of about 6000 Å is deposited by the CVD method as shown in FIG. Next, the polycrystalline silicon layers 10 and 1 exposed around the patterned silicon dioxide layer, that is, the silicon oxide layer 15 and 15 are
P is introduced into the openings 8, 8 by ion implantation or from POCl 3 and emitter regions 12, 12 are provided in the exposed base regions 7, 7.
The surface concentration of these emitter regions 12, 12 is approximately
10 to 20 atoms/cc, and its cross-sectional view is shown in FIG. 1C. When introducing this P, silicon oxide layers 15,1
The amount of introduction is controlled by the area of 5, that is,
If the bottom area of the silicon oxide layers 15, 15 is larger than the area of the openings 8, 8, the amount introduced will be small, and vice versa, the amount introduced will be large, and the resulting emitter region will be
xj becomes large when the amount introduced is large. However, in FIG. 1D, for example, if the opening 8 is provided with a so-called taper, the amount of P introduced increases.
It is also possible to adjust the amount introduced depending on the conditions.

このP導入後、第1図Dに示すようにエミツタ
領域12,12に対向して積層した多結晶珪素層
10をエミツタ電極とするため、その他を溶除し
て露出した薄い酸化珪素層にベース接点用開口
9,9を設けこゝにBを拡散してP+導電型領域
13,13を設ける。更に、このベース接点領域
及びコレクタ接点用N+導電型領域11,11に
導電性金属Alを堆積して図示しないベース電極
及びコレクタ電極を形成してバイポーラ型トラン
ジスタをもつ集積回路装置を形成する。
After introducing this P, as shown in FIG. 1D, in order to use the polycrystalline silicon layer 10 stacked facing the emitter regions 12, 12 as an emitter electrode, the remaining parts are melted away and the exposed thin silicon oxide layer is used as a base. Contact openings 9, 9 are provided, and B is diffused therein to provide P + conductivity type regions 13, 13. Further, a conductive metal Al is deposited on the base contact region and the N + conductivity type regions 11 for collector contact to form a base electrode and a collector electrode (not shown), thereby forming an integrated circuit device having a bipolar transistor.

〔発明の効果〕〔Effect of the invention〕

本発明では多結晶珪素におけるPの拡散速度が
極めて大きい現象を利用しており、又エミツタ領
域形成予定位置上の多結晶珪素は酸化珪素層によ
つて被覆されているので周囲からの横方向によつ
てPベース領域上の薄い酸化膜に形成した開口に
導入されてエミツタ領域が形成される。しかも、
この導入量はこの酸化珪素層の面積によつて左右
され、更に開口部に設けるテーパ部によつても調
整できる。
The present invention utilizes the phenomenon that the diffusion rate of P in polycrystalline silicon is extremely high, and since the polycrystalline silicon at the position where the emitter region is planned to be formed is covered with a silicon oxide layer, it is possible to Thus, the emitter region is formed by being introduced into the opening formed in the thin oxide film on the P base region. Moreover,
The amount introduced depends on the area of the silicon oxide layer, and can also be adjusted by the taper provided in the opening.

このように電気特性が異なるバイポーラ型トラ
ンジスタを同一基板内に同時に形成できることに
なるので、集積回路設計の自由度を増すことが可
能となると共により良い性能をもつた集積回路が
得られる。
Since bipolar transistors having different electrical characteristics can be formed simultaneously on the same substrate, the degree of freedom in integrated circuit design can be increased, and an integrated circuit with better performance can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図A〜Eは本発明の工程順にその断面構造
を示す図、第2図は従来工程の一部を示す断面図
である。
FIGS. 1A to 1E are views showing the cross-sectional structure of the present invention in the order of steps, and FIG. 2 is a cross-sectional view showing a part of the conventional process.

Claims (1)

【特許請求の範囲】[Claims] 1 第1導電型の半導体層から成る複数の島領域
を形成する工程と、この島領域を新たな薄い絶縁
物層で覆う工程と、この薄い絶縁物層を介して第
1不純物を拡散して第2導電型の領域を形成する
工程と、前記薄い絶縁物層に開口を設ける工程
と、前記薄い絶縁物層を覆つてノンドープ多結晶
珪素層を堆積する工程と、前記開口に対向するノ
ンドープ多結晶珪素層に珪素酸化物層を形成する
際に、任意の島領域における珪素酸化物層の面積
を他の珪素酸化物層の面積と違つて形成する工程
と、前記ノンドープ多結晶珪素の露出表面から第
2不純物を前記開口に位置する第2導電型の領域
に導入して第1導電型の領域を形成する工程とを
具備することを特徴とする半導体装置の製造方
法。
1. A step of forming a plurality of island regions made of a semiconductor layer of a first conductivity type, a step of covering the island regions with a new thin insulating layer, and a step of diffusing a first impurity through the thin insulating layer. forming a region of a second conductivity type; providing an opening in the thin insulating layer; depositing a non-doped polycrystalline silicon layer over the thin insulating layer; and forming a non-doped polycrystalline silicon layer opposite to the opening. When forming a silicon oxide layer on a crystalline silicon layer, forming the area of the silicon oxide layer in an arbitrary island region to be different from the area of other silicon oxide layers, and the exposed surface of the non-doped polycrystalline silicon. A method of manufacturing a semiconductor device, comprising the step of: introducing a second impurity into a region of a second conductivity type located in the opening to form a region of a first conductivity type.
JP60192042A 1985-09-02 1985-09-02 Manufacture of semiconductor device Granted JPS6252965A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60192042A JPS6252965A (en) 1985-09-02 1985-09-02 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60192042A JPS6252965A (en) 1985-09-02 1985-09-02 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS6252965A JPS6252965A (en) 1987-03-07
JPH0482052B2 true JPH0482052B2 (en) 1992-12-25

Family

ID=16284639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60192042A Granted JPS6252965A (en) 1985-09-02 1985-09-02 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6252965A (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5563821A (en) * 1978-11-06 1980-05-14 Nec Corp Semiconductor device
JPS58108765A (en) * 1981-12-23 1983-06-28 Clarion Co Ltd Manufacture of semiconductor device
JPS5933860A (en) * 1982-08-19 1984-02-23 Toshiba Corp Semiconductor device and manufacture thereof

Also Published As

Publication number Publication date
JPS6252965A (en) 1987-03-07

Similar Documents

Publication Publication Date Title
US4481706A (en) Process for manufacturing integrated bi-polar transistors of very small dimensions
US3864817A (en) Method of making capacitor and resistor for monolithic integrated circuits
EP0034910A1 (en) A method of manufacturing a semiconductor device, and a device so manufactured
JPH0640582B2 (en) Method for manufacturing insulating gate field effect transistor
JPH0465548B2 (en)
JPS62203380A (en) Semiconductor device and manufacture of the same
EP0051500B1 (en) Semiconductor devices
KR100191685B1 (en) Process of fabricating capacitor having waved rough surface of accumulating electrode
EP0051534B1 (en) A method of fabricating a self-aligned integrated circuit structure using differential oxide growth
EP0078220B1 (en) Polycrystalline silicon interconnections for bipolar transistor flip-flop
JPS6133253B2 (en)
US4968635A (en) Method of forming emitter of a bipolar transistor in monocrystallized film
JPH0482052B2 (en)
JPS6155250B2 (en)
JPS58111345A (en) Semiconductor device
JP2538077B2 (en) Method for manufacturing semiconductor device
JP2654056B2 (en) Method for manufacturing semiconductor device
JPH02207534A (en) Semiconductor device
JPH0621077A (en) Semiconductor device and manufacture thereof
JPH0389549A (en) Semiconductor device
JPH0536911A (en) Three-dimensional circuit element and manufacture thereof
JP2557840B2 (en) Semiconductor device manufacturing method
JPH0637097A (en) Semiconductor device and manufacture thereof
JPS6188543A (en) Manufacture of semiconductor device
JPH01160051A (en) Bipolar transistor