JPS58111345A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS58111345A
JPS58111345A JP20940081A JP20940081A JPS58111345A JP S58111345 A JPS58111345 A JP S58111345A JP 20940081 A JP20940081 A JP 20940081A JP 20940081 A JP20940081 A JP 20940081A JP S58111345 A JPS58111345 A JP S58111345A
Authority
JP
Japan
Prior art keywords
layer
region
substrate
conductivity type
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20940081A
Other languages
Japanese (ja)
Inventor
Yukinori Kitamura
幸則 北村
Yoshinori Akamatsu
由規 赤松
Yoitsu Ohashi
大橋 洋逸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Microcomputer System Ltd
Hitachi Ltd
Original Assignee
Hitachi Ltd
Hitachi Microcomputer Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Microcomputer Engineering Ltd filed Critical Hitachi Ltd
Priority to JP20940081A priority Critical patent/JPS58111345A/en
Publication of JPS58111345A publication Critical patent/JPS58111345A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76243Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using silicon implanted buried insulating layers, e.g. oxide layers, i.e. SIMOX techniques

Abstract

PURPOSE:To reduce parasitic capacitance through reduction of PN junction area and increase degree of freedom of structure by electrically isolating semiconduictor elements with an SiO2 film obtained by the implantation of oxygen ion. CONSTITUTION:An example of insulatingly isolating a substrate and buried layer is explained. A mask 9 is provided on the surface of P type Si substrate 1 and the surface is annealed by implanting the oxygen ion 10. At this time, an implanting accelerating voltage is 150KV and a depth from the substrate surface is about 400nm. An SiO2 8 is formed in the substrate by this process. Next, a donor impurity such as Sb is introduced into a thin Si film 11 on the oxide film 8. Thereafter, the mask 9 is removed and an N type Si layer 3 is epitaxially grown on the entire part thereof. In this process, an N<+> buried layer 2 is formed simultaneously. Succeedingly, each element region is formed by the ordinary process. Since the substrate 1 is isolated by the SiO2 film 8 from the buried layer 2, a parasitic capacitance is reduced as much. In addition to the above example, this method can be adopted to various processes.

Description

【発明の詳細な説明】 本発明は半導体装置、特にa12素イオン打込みKよる
半導体酸化膜形成技術を用いた半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device, and particularly to a semiconductor device using a semiconductor oxide film forming technique by implanting A12 elementary ions.

現在の最も一般的なバイポーラNPN)ランジスタ構造
は第1図に断面図で示すように、P−型Si半導体基板
1上に一部でN++埋込層2を介してエピタキシャルN
型8i層3を形成し、このN型5iJi3t’アイソレ
一ジ冒ンP型層4によりいくつかの領域に分離し、分離
された一つのN型8i層3の一部をコレクタとして、こ
のN@8i層30層面0表面KP型領領域を拡散してそ
の一部をベースとし、P渥領域の他部表面にN+型領領
域6拡散してエミッタとするとともにN型8i層30表
面の一部KN+型領域7を拡散してコレクタ取出し部と
するものである。
The current most common bipolar NPN) transistor structure, as shown in the cross-sectional view in FIG.
A type 8i layer 3 is formed, and this N type 5iJi3t' isolation is separated into several regions by the P type layer 4, and a part of one separated N type 8i layer 3 is used as a collector. @8i layer 30 layer surface 0 surface KP type region is diffused to use a part of it as a base, N+ type region 6 is diffused to the other surface of the P region to serve as an emitter, and a part of the N type 8i layer 30 surface is used as an emitter. The part KN+ type region 7 is diffused to form a collector extraction part.

カカルバイボーラNPN)ランジスタにおいては、エミ
ッタ・ベース接合部に生ずる寄生容量0□、ペース・コ
レクタ接合部に生ずる寄生容量OTC’ 及びN”m埋
込層・P型基板間接合容量07.は総量として少なから
ず、トランジスタの高周波特性や高速性の面で問題があ
る。これら寄生″ 容量の低減を接合面積を少なくする
ことにより決定しようとすればトランジスタの素子の寸
法を小さくするより他はないが、マスク処理の点で困難
である。
In the bibolar NPN) transistor, the parasitic capacitance 0□ generated at the emitter-base junction, the parasitic capacitance OTC' generated at the pace-collector junction, and the junction capacitance between the N''m buried layer and the P-type substrate 07. are small in total. First, there are problems with the high-frequency characteristics and high-speed performance of transistors.The only way to reduce these parasitic capacitances by reducing the junction area is to reduce the dimensions of the transistor elements. Difficult in processing.

バイポーラ素子を一つの半導体チップ上に多数個組込ん
で集積回路(10)を構成する場合、素子間の配線が複
雑化し、配線の多層化がさけられないが、配線の一部を
半導体内部に設けようとする場合、半導体層内に前記し
たように多(のPN接合が存在するため内部配耐は困難
である。
When a large number of bipolar elements are assembled on one semiconductor chip to form an integrated circuit (10), the wiring between the elements becomes complicated and multilayer wiring is unavoidable. When attempting to provide this, internal wiring is difficult due to the presence of multiple PN junctions in the semiconductor layer as described above.

前記のようなアイソレーン1フ2層の代’)I/CM択
酸化膜酸化膜ソレージ1ンに使った場合は、P基板とN
++込層とは逆バイアスの接合分離構造となり、高速化
、基板へのリーク電流及び雑音の面で好ましくないとい
う問題がある。
When used for the I/CM selective oxide film oxide film 1 layer, the P substrate and N
The ++-containing layer has a reverse bias junction separation structure, which is undesirable in terms of high speed, leakage current to the substrate, and noise.

本発明は上記した従来技術における各種の問題を酸素イ
オン打込み技術の利用により解決しようとするものであ
る。
The present invention attempts to solve the various problems in the prior art described above by utilizing oxygen ion implantation technology.

したがって本発明の一つの目的はバイポーラ素子の低容
量化であり、それに伴う高速化・低雑音本発明の他の目
的はバイポーラ半導体装置における内部配線化であり、
それに伴う配線自由度の増加にある。
Therefore, one object of the present invention is to reduce the capacitance of a bipolar element, and another object of the present invention is to increase the speed and reduce the noise associated with the bipolar element.
This results in an increase in the degree of freedom in wiring.

以下本発明を若干の実施例にそって詳述する。The present invention will be described in detail below with reference to some examples.

実施例1 第2図は本発明の原理的構造を示すバイポーラ半導体装
置の断面図である。同図に示すようk、P型基板1とN
++込層2との接合面にP型基板への酸素イオン打込み
による半導体酸化膜(8i0.)8を形成し、この上に
N++込層2を介してエピタキシャルN層3を形成し、
8層30表面にベースとなるPfIi領域5.エミッタ
・コレクタとなるN+型領領域67を形成してバイポー
ラNPN)ランジスタを構成したものである。
Embodiment 1 FIG. 2 is a sectional view of a bipolar semiconductor device showing the basic structure of the present invention. As shown in the figure, k, P type substrate 1 and N
A semiconductor oxide film (8i0.) 8 is formed by implanting oxygen ions into a P-type substrate on the bonding surface with the ++-filled layer 2, and an epitaxial N layer 3 is formed on this via the N++-filled layer 2.
5. A PfIi region serving as a base on the surface of the 8 layer 30. A bipolar NPN transistor is constructed by forming an N+ type region 67 serving as an emitter and collector.

第3図(at〜(elに上記バイポーラNPN)ランジ
スタの製造プロセスの例が各工程(a)〜(e)VC従
って示される。
FIG. 3 shows an example of the manufacturing process of the bipolar NPN transistor (at to el), each step (a) to (e) VC.

(al  高比抵抗のP−型81基板1(結晶面(10
0)。
(al High resistivity P-type 81 substrate 1 (crystal plane (10
0).

比抵抗1.800Ω・cm)の表面Kili膜等による
マスク9を設け、酸素イオン10をイオン打込み・アニ
ールする。打込み加速電圧は150KV又はそれ以上、
ドーズ量は1.2X10”Ca1−”、打込み深さは8
i表面から約400nmQ度とする。アニール温度は9
00〜1150℃で2時間以上とする。
A mask 9 made of a surface Kili film or the like having a specific resistance of 1.800 Ω·cm) is provided, and oxygen ions 10 are implanted and annealed. Implant acceleration voltage is 150KV or higher,
Dose amount is 1.2X10"Ca1-", implantation depth is 8
It is approximately 400 nm Q degrees from the i surface. Annealing temperature is 9
00 to 1150°C for 2 hours or more.

(bl  上記工程でアニール処理により酸化膜8が形
成され、この酸化膜の上に薄いSt  (単結晶)の膜
11が残る。この薄い8i膜の表面Ksbのごときドナ
不純物をデポジットする。
(bl) In the above step, an oxide film 8 is formed by annealing, and a thin St (single crystal) film 11 remains on this oxide film. Donor impurities such as Ksb are deposited on the surface of this thin 8i film.

(cl  8bデボジツ)k用いた酸化膜等のマスクを
除去し、前記の薄い8i膜11を含めて8i基基板面に
81をエピタキシャル成長させ厚さ10μm又はそれ以
上の厚さKN型ドープSt層34’形成する。このN型
81層成長によりPfJ基板1の酸化膜8とNWWB2
の間KN+堀込埋込が形成される。
(cl 8b deposit) Remove the mask such as the oxide film used in K and epitaxially grow 81 on the 8i base substrate surface including the thin 8i film 11 to a thickness of 10 μm or more KN type doped St layer 34 'Form. Due to this N-type 81 layer growth, the oxide film 8 of the PfJ substrate 1 and the NWWB 2
During this period, a KN+ trench embedment is formed.

(d)  A常のアイソレージ冒ンプロセスにより、8
層3とP基板1との間にアイソレーン1フ2層4を形成
し、N層の表面の一部にB(ボロン)選択拡散を行なっ
てベースとなるP領域5を形成する。
(d) By the usual isolation process, 8
An isolene 1 layer 2 layer 4 is formed between the layer 3 and the P substrate 1, and B (boron) is selectively diffused into a part of the surface of the N layer to form a P region 5 serving as a base.

(e)  As  (ヒ素)又はP (IJン)の選択
拡散な行なりてエンツタ及びコレクタ取出し部となるN
+領域6,7を形成し、拡散マスクに使用した表面酸化
膜12に、対してコンタクトホトエッチを行ない、kl
蒸着により各領域にコンタクトする電極B、  E、 
Oを形成する。
(e) Perform selective diffusion of As (arsenic) or P (IJ) to form the N that becomes the entrance and collector extraction part.
+ regions 6 and 7 are formed, contact photoetching is performed on the surface oxide film 12 used as a diffusion mask, and kl
Electrodes B, E, which contact each area by vapor deposition.
Form O.

実施例2 第4図(at (blは実施例1の変形例を示す工程断
面図である。
Example 2 FIG. 4 (at (bl) is a process sectional view showing a modification of Example 1.

(1)前記実施例1の工程(b)の後、エピタキシャル
成長によるN11B1層3mを通常よりも薄<(5〜1
0μm)形成した上、酸素イオン打込み・アニール処理
によりNilai層3mの表面近傍に酸化膜13を形成
する。
(1) After step (b) of Example 1, 3 m of N11B1 layer was grown by epitaxial growth to a thickness of <(5 to 1 m) thinner than usual.
0 μm), and then an oxide film 13 is formed near the surface of the Nilai layer 3m by oxygen ion implantation and annealing.

(bl  次いで全面にさらに第2のエピタキシャル成
長によるNfflSi層3bを積層し、P型ベース5を
拡散し、N+型工2ツタ6、N+型コレクタ取出し部7
を拡散により形成する。二iツタ接合の表面近傍に酸素
イオン打込み、アニールを行ない、酸化膜14を形成す
る。この後、図示されないが、表rMtIt化膜に対し
コンタクトホトエッチを行ない、Aj蒸着ホトエッチに
より各領域にコンタクトする電極を形成するととkなる
(bl) Next, a second NfflSi layer 3b is layered on the entire surface by second epitaxial growth, the P type base 5 is diffused, the N+ type 2 vines 6 and the N+ type collector extraction part 7 are formed.
is formed by diffusion. Oxygen ions are implanted near the surface of the two-i ivy junction and annealing is performed to form an oxide film 14. Thereafter, although not shown, contact photoetching is performed on the surface rMtIt film, and electrodes contacting each region are formed by Aj vapor deposition photoetching.

以上実施例1.2で述べた本発明によれば、N+埋込層
とP型基板の接合面に酸素イオン打込みによる醸化膜を
形成するため、少なくともこの接合面での寄生容量07
.を現在のバイポーラトランジスタの平面寸法を変更す
ることなく減少することができる。又、図4 (a)(
b)の酸化膜8. 13. 14を形成するととにより
、サイリスタ防止の効果が得られる。
According to the present invention described in Example 1.2 above, since an enhanced film is formed by oxygen ion implantation on the junction surface between the N+ buried layer and the P type substrate, the parasitic capacitance 07 at least on this junction surface is
.. can be reduced without changing the planar dimensions of current bipolar transistors. Also, Figure 4 (a) (
b) Oxide film 8. 13. By forming 14, the effect of preventing thyristors can be obtained.

実施例2で述べた本発明によれば、N+堀埋込2のP基
板10間の他kPベースと8層の間及びN十工きツタと
ベースの間の接合面の一部にwII素イオン打込みによ
る酸化膜8,13.14を形成するためこれら接合面で
の寄生容量0.c、  0□をトランジスタの平面寸法
を変更することな(減少することができ、高周波特性及
び高速性が得られ、例えばIIL技術に適用して高性能
の回路が得られる。又0□の減少によりノイズ特性も優
れ低雑音特性も得られる。
According to the present invention described in Embodiment 2, the wII element is formed between the P substrate 10 of the N+ trench embedding 2, between the kP base and the 8th layer, and in a part of the bonding surface between the Njyukuki vine and the base. Since the oxide films 8, 13 and 14 are formed by ion implantation, the parasitic capacitance at these junction surfaces is 0. c, 0□ can be reduced without changing the plane dimensions of the transistor, high frequency characteristics and high speed can be obtained, and high performance circuits can be obtained by applying it to IIL technology, for example. This provides excellent noise characteristics and low noise characteristics.

実施例3 第5図(at〜(blは本発明をアイソプレーナ型トラ
ンジスタに応用した場合をそのプロセスに従って示すも
のである。
Embodiment 3 FIGS. 5 (at to (bl) show the case where the present invention is applied to an isoplanar transistor according to its process.

tat  高比抵抗別基板1の表面全面に酸素イオンを
打込み、アニールする。打込み加速電圧、ドーズ量、打
込み深さ、アニール温度は実施例1の場合と同様又はそ
れに近い程度とする。
tat Oxygen ions are implanted into the entire surface of the high resistivity substrate 1 and annealed. The implantation acceleration voltage, dose amount, implantation depth, and annealing temperature are the same as or close to those in Example 1.

(b)  上記工程でSi jiI板10表面に近い部
に酸化膜8が形成され、この酸化膜の上に薄い81膜1
1が残る。この薄い81膜11の表面(一部又は全部)
にN+堀埋込2形成のためのドナ不純物をデポジットし
、次いでエピタキシャル成長による低比抵抗Nff18
1層3を5〜10μm8i度の厚さに形成する。
(b) In the above process, an oxide film 8 is formed near the surface of the Si jiI plate 10, and a thin 81 film 1 is formed on this oxide film.
1 remains. The surface (part or all) of this thin 81 film 11
A donor impurity for forming the N+ trench 2 is deposited, and then a low resistivity Nff18 is formed by epitaxial growth.
One layer 3 is formed to a thickness of 5 to 10 μm 8i degrees.

(cl  N11層30表面の一部K 8 i 、 N
4のごとき耐酸化膜15を形成し、これをマスクとして
耐酸化性膜の形成されない部分を酸化性雰囲気により選
択酸化し、基板表面の酸化j[8に達するアイソレージ
璽ン酸化膜16を形成する。
(Cl N11 layer 30 surface part K 8 i, N
An oxidation-resistant film 15 such as No. 4 is formed, and using this as a mask, parts where the oxidation-resistant film is not formed are selectively oxidized in an oxidizing atmosphere to form an isolation oxide film 16 that reaches oxidation j[8 on the substrate surface. .

(di  この後、従来のバイポーラ素子製造プロセス
と同様のプロセスによる選択拡散を行うことKより、P
型ベース5. N+型工tツタ6、N1型コレクタ取出
し部7を形成し、表面酸化膜のコンタクトホトエッチ後
、Aj無蒸着エラチェ楊を経てアイソプレーナ型バイポ
ーラNPN)ランジスタを得る。
(di) After this, selective diffusion is performed by a process similar to the conventional bipolar element manufacturing process.
Mold base 5. After forming an N+ type machining tip 6 and an N1 type collector extraction portion 7, and contact photoetching of the surface oxide film, an isoplanar type bipolar NPN transistor is obtained through a non-deposition layer.

上記の実施例で述べた本発明によれば下記の効果が得ら
れる。
According to the present invention described in the above embodiments, the following effects can be obtained.

在来の高速アイソプレーナ型バイポーラ素子は素子間は
選択酸化膜を利用した絶縁分離構造となっているが基板
とコレクタとなるN+埋込層との間は逆バイアスの接合
分離であり、高速性や基板へのリーク電流及び雑音の点
で好ましくない。しかし、酸素イオン打込技術により基
板1とN+堀埋込2との関に酸化膜8を形成するととに
より完全分離の構造となり01.がほとんどなくなり、
素子の高速比、低雑音化が実現できる。
Conventional high-speed isoplanar bipolar devices have an insulation isolation structure using a selective oxide film between the devices, but reverse bias junction isolation is used between the substrate and the N+ buried layer that becomes the collector, which improves high-speed performance. This is undesirable in terms of leakage current to the circuit board and noise. However, when an oxide film 8 is formed between the substrate 1 and the N+ trench 2 using oxygen ion implantation technology, a completely isolated structure is created. is almost gone,
It is possible to achieve higher speed ratio and lower noise of the element.

実施例4 第6図(al〜(e)は半導体内部<*累イオン打込み
技術を利用し【上層と下層とを絶縁分離し多層の拡散配
線を形成する場合の例をそのプロセスに従って示すもの
である。
Embodiment 4 Figures 6(al) to (e) show an example of forming a multilayer diffusion wiring by insulating and separating the upper layer and the lower layer using the cumulative ion implantation technique in accordance with the process. be.

(a)  高比抵抗PII81基板1の表面に酸化膜1
7をマスクとする選択拡散によりN+拡散配線18を形
成する。
(a) Oxide film 1 on the surface of high resistivity PII81 substrate 1
N+ diffusion wiring 18 is formed by selective diffusion using 7 as a mask.

(bl  St基板lの表面に対し酸素イオン打込みを
行ない、次いでアニール処理することkより、基板表面
から少し深い部分に酸化膜8を形成する。
(bl St) By implanting oxygen ions into the surface of the substrate 1 and then performing an annealing treatment, an oxide film 8 is formed at a slightly deeper portion from the substrate surface.

(cl  上記酸化膜8の上に残る薄いSi層11上に
エピタキシャル成長による低比抵抗N型81層3を形成
する。
(cl) A low resistivity N-type 81 layer 3 is formed by epitaxial growth on the thin Si layer 11 remaining on the oxide film 8.

(dl  N 118 i層3の表面に酸化膜19をマ
スクとする選択酸化を行ない、PIN拡散層20m、2
0bを形成し、その一部(20a)を下層配a(又は抵
抗)とする、P型拡散層の他W(20b)表面kN+拡
散層21を形成してこれを他の配線(又は抵抗)とする
(dlN 118 Selective oxidation is performed on the surface of the i layer 3 using the oxide film 19 as a mask, and the PIN diffusion layers 20m, 2
0b and a part (20a) thereof as the lower layer wiring a (or resistance), in addition to the P type diffusion layer, the W (20b) surface kN+ diffusion layer 21 is formed and this is used as another wiring (or resistance). shall be.

tel  表面の酸化膜に対しコンタクトホトエッチを
行ない、AJ無蒸着ホトエッチにより、P拡散層又はN
+拡散層を用いた上層配all(又は抵抗)の配@Aj
端子22を形成すると同時に表面のAj配置123を形
成する。
tel Contact photoetch is performed on the oxide film on the surface, and the P diffusion layer or N
+ Upper layer all (or resistance) arrangement using a diffusion layer @Aj
At the same time as forming the terminals 22, the Aj arrangement 123 on the surface is formed.

第7図は第6図(e)で示した下層拡散配縁よりの配置
取出し構造な示すものである。すなわち、下層N+拡散
配I!118の延長部において、P基板1の上にエピタ
キシャルN層3を形成し、N層30表面よりN+拡散配
置118kl!続するN+コレクタ拡散(ON)層24
を形成し、表面へのN+拡散配線取出し層とする。N+
拡散配線取出し層24の周囲のエピタキシャルN層3に
は表面よりP基板に達するアイソレージ璽ンP層25を
設けて各配線取出し眉間の絶縁分離を図る。
FIG. 7 shows the arrangement and extraction structure from the lower layer diffusion wiring shown in FIG. 6(e). That is, lower layer N+diffused distribution I! 118, an epitaxial N layer 3 is formed on the P substrate 1, and an N+ diffusion arrangement 118kl! is formed from the surface of the N layer 30. Continuing N+ collector diffusion (ON) layer 24
is formed to serve as an N+ diffusion wiring extraction layer to the surface. N+
The epitaxial N layer 3 surrounding the diffusion wiring extraction layer 24 is provided with an isolation P layer 25 that reaches from the surface to the P substrate to provide insulation isolation between the eyebrows of each wiring extraction.

以上の実施例で述べた本発#4によれば下記の効果が得
られる。
According to the present invention #4 described in the above embodiment, the following effects can be obtained.

従来のバイポーラ構造ではP基板、エピタキシャルN層
の内部はPH1合でバイアス分離を行なう程度で構造的
に制約され半導体内部での多層配線は実現困難である。
In the conventional bipolar structure, the interior of the P substrate and epitaxial N layer is structurally restricted to the extent that bias separation is performed at PH1, making it difficult to realize multilayer wiring inside the semiconductor.

しかし本発明によれば半導体内部に形成された酸素イオ
ン打込みによる8i0゜膜を絶縁膜として半導体層が上
層と下層に完全に絶縁分離するから、それぞれの半導体
層内KPN接合による配−等の動作活動部を形成するこ
とができる。このため本発明によれば配−の自由度が大
幅に増加し、狭いチップ内で複雑な配線が可能となった
However, according to the present invention, the semiconductor layer is completely insulated and separated into an upper layer and a lower layer using an 8i0° film formed inside the semiconductor by implanting oxygen ions as an insulating film. An activity club can be formed. Therefore, according to the present invention, the degree of freedom in wiring is greatly increased, and complex wiring becomes possible within a narrow chip.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はバイポーラトランジスタの構造の例を示す断面
図である。第2図は本発明によるノ(イポーラトランジ
スタの原理的構造を示す断面図である。第3図(a)〜
(@)及び第4図(a)(b)は本発明における実施例
1及び実施例2に対応するプロセスの一部を示す工糧断
面図、第5図(a)〜(d)は本発明における実施例3
に対応するプロセスの一部を示す工程断面図、第6図(
1)〜(e)及び第7図は本発明における実施例4に対
応するプロセスの一部を示す工程断面図である。 1・・・Pal半導体基板、2・・・N+堀埋込、3・
・・NtIist層、4・・・アインレーシ習ンP71
.5・・・ペースP領域、6・・・工きツタN+領域、
7・・・コレクタN+領域、8・・・酸素イオン打込み
Kよる酸化膜、9・・・酸化膜マスク、10・・・打込
み酸素、11・・・薄い81膜、12・・・表面酸化膜
、13.14・・・酸素イオン打込みkよる酸化膜、1
5・・・耐酸化性膜、16・・・アイソレージ曹ン酸化
膜、17・・・酸化膜マスク、18・・・拡散配線、1
9・・・酸化膜、2one20b・・・P型拡散層、2
1・・・NW拡散配線、22・・・Aj端子、23・・
・A!配線、24・・・コレクタ拡散層、25・・・ア
イツレ−シーンP層。 代理人 弁理士  薄 1)利 幸、、。 −・。 1ノノ 竺 1 図 第2図 第  3  図 第  3 図 第  、4f’21 第  6  図 第  6  図 第  7  図
FIG. 1 is a sectional view showing an example of the structure of a bipolar transistor. FIG. 2 is a sectional view showing the principle structure of a polar transistor according to the present invention.
(@) and FIGS. 4(a) and 4(b) are cross-sectional views of a part of the process corresponding to Example 1 and Example 2 of the present invention, and FIGS. 5(a) to (d) are Example 3 of the invention
A process cross-sectional diagram showing part of the process corresponding to Fig. 6 (
1) to (e) and FIG. 7 are process sectional views showing a part of the process corresponding to Example 4 of the present invention. 1...Pal semiconductor substrate, 2...N+ trench embedding, 3.
...NtIist layer, 4...Einlasi training P71
.. 5...Pace P area, 6...Ivy N+ area,
7... Collector N+ region, 8... Oxide film by oxygen ion implantation K, 9... Oxide film mask, 10... Oxygen implantation, 11... Thin 81 film, 12... Surface oxide film , 13.14...Oxide film by oxygen ion implantation, 1
5... Oxidation resistant film, 16... Isolation carbon oxide film, 17... Oxide film mask, 18... Diffusion wiring, 1
9... Oxide film, 2one20b... P-type diffusion layer, 2
1... NW diffusion wiring, 22... Aj terminal, 23...
・A! Wiring, 24... Collector diffusion layer, 25... Eitzley Sheen P layer. Agent Patent Attorney Susuki 1) Toshiyuki... −・. 1 Nonojiku 1 Figure 2 Figure 3 Figure 3 Figure 3 , 4f'21 Figure 6 Figure 6 Figure 7

Claims (1)

【特許請求の範囲】 1、第1導電屋半導体基板上に第2導電型半導体層を形
成し℃その一部をコレクタとし、該第2導電型牛導体層
の他部表面に第1導電型領域を形成してその一部をベー
スとし、腋第2導電型領域の他S表面に第2導電漏領域
を形成してエミッタとするトランジスタを構成した半導
体装置において、第1導電型半導体基板と第2導電型半
導体層との接合面に該半導体基板への酸素イオン打込み
による半導体酸化膜を形成したことを特徴とする半導体
装置。 2、第1導電型半導体基板上に第2導電型半導体層を形
成してその一部をコレクタとし、該第2導電型半導体層
の他部表面に第1導電型領域を形成してその一部をベー
スとし、該第2導電型領域の他部表面に第2導電型領域
を形成してエミッタとするトランジスタを構成した半導
体装置にお(・て、第1導電屋半導体基板と第2導電臘
半導体層との接合面、第2導電型半導体層とベースとな
る第1導電置領域との接合面の一部及び第1導電型領域
とエミッタとなる第2導電型領域との接合面の−ISK
半導体基板及び半導体層への!l素イオン打込みによる
半導体酸化膜を形成したことを特徴とする半導体装置。 3、第1導電型半導体基板上に第2導電型半導体層を形
成し、咳第2導電型半導体層の一部表面に第1導電温領
域を形成してその一部を配線とし、又は及び該第2導電
型領域の他部表面に第2導電澄領域を形成して配線とす
る半導体装置において、第1導電型半導体基板と第2導
電型半導体層との接合面に諌半導体基板への酸素イオン
打込みによる半導体酸化膜を形成するとともに#[化腰
下の半導体基板表面の一部に高濃度第2導電型埋込層か
らなる配線を形成したことを特徴とする半導体装置。
[Claims] 1. A second conductivity type semiconductor layer is formed on a first conductivity type semiconductor substrate, a part of which is used as a collector, and a first conductivity type semiconductor layer is formed on the other surface of the second conductivity type conductor layer. In a semiconductor device in which a transistor is configured by forming a region and using a part of the region as a base, and forming a second conductive leakage region on the S surface in addition to the armpit second conductivity type region to serve as an emitter, the first conductivity type semiconductor substrate and A semiconductor device characterized in that a semiconductor oxide film is formed on a bonding surface with a second conductivity type semiconductor layer by implanting oxygen ions into the semiconductor substrate. 2. Forming a second conductivity type semiconductor layer on the first conductivity type semiconductor substrate, using a part of the second conductivity type semiconductor layer as a collector, and forming a first conductivity type region on the other surface of the second conductivity type semiconductor layer. A semiconductor device constitutes a transistor in which a second conductive type region is formed as a base and a second conductive type region is formed on the other surface of the second conductive type region to serve as an emitter. The bonding surface with the semiconductor layer, part of the bonding surface between the second conductive type semiconductor layer and the first conductive region serving as the base, and the bonding surface between the first conductive type region and the second conductive type region serving as the emitter. -ISK
To semiconductor substrates and semiconductor layers! 1. A semiconductor device characterized in that a semiconductor oxide film is formed by implanting l-ion atoms. 3. Forming a second conductive type semiconductor layer on the first conductive type semiconductor substrate, forming a first conductive temperature region on a part of the surface of the second conductive type semiconductor layer and using the part as a wiring, and In a semiconductor device in which a second conductive clear region is formed on the other surface of the second conductive type region to form a wiring, a ridge is formed on the bonding surface between the first conductive type semiconductor substrate and the second conductive type semiconductor layer. A semiconductor device characterized in that a semiconductor oxide film is formed by implanting oxygen ions, and a wiring made of a highly concentrated buried layer of a second conductivity type is formed on a part of the surface of a semiconductor substrate under the oxide layer.
JP20940081A 1981-12-25 1981-12-25 Semiconductor device Pending JPS58111345A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20940081A JPS58111345A (en) 1981-12-25 1981-12-25 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20940081A JPS58111345A (en) 1981-12-25 1981-12-25 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS58111345A true JPS58111345A (en) 1983-07-02

Family

ID=16572262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20940081A Pending JPS58111345A (en) 1981-12-25 1981-12-25 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS58111345A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61188966A (en) * 1985-02-16 1986-08-22 Fujitsu Ltd Manufacture of high speed semiconductor device
JPS6271272A (en) * 1985-08-20 1987-04-01 Fujitsu Ltd Manufacture of semiconductor device
JPS63500627A (en) * 1985-08-19 1988-03-03 モトロ−ラ・インコ−ポレ−テッド Manufacturing of semiconductor devices with buried oxide
US5616509A (en) * 1994-09-28 1997-04-01 Nec Corporation Method for fabricating a semiconductor device
KR970067767A (en) * 1996-03-12 1997-10-13 문정환 Method for forming a separation film of a semiconductor element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61188966A (en) * 1985-02-16 1986-08-22 Fujitsu Ltd Manufacture of high speed semiconductor device
JPS63500627A (en) * 1985-08-19 1988-03-03 モトロ−ラ・インコ−ポレ−テッド Manufacturing of semiconductor devices with buried oxide
JPS6271272A (en) * 1985-08-20 1987-04-01 Fujitsu Ltd Manufacture of semiconductor device
JPH0530303B2 (en) * 1985-08-20 1993-05-07 Fujitsu Ltd
US5616509A (en) * 1994-09-28 1997-04-01 Nec Corporation Method for fabricating a semiconductor device
KR970067767A (en) * 1996-03-12 1997-10-13 문정환 Method for forming a separation film of a semiconductor element

Similar Documents

Publication Publication Date Title
US4396930A (en) Compact MOSFET device with reduced plurality of wire contacts
JPH05347383A (en) Manufacture of integrated circuit
US4322738A (en) N-Channel JFET device compatible with existing bipolar integrated circuit processing techniques
JPS5941864A (en) Method of producing monolithic integrated circuit
US5557131A (en) Elevated emitter for double poly BICMOS devices
JPS62277745A (en) Semiconductor integrated circuit
JP3078436B2 (en) Method for forming a Bi-CMOS structure and Bi-CMOS structure
JPS58111345A (en) Semiconductor device
US4247343A (en) Method of making semiconductor integrated circuits
US3841918A (en) Method of integrated circuit fabrication
JPS62229880A (en) Semiconductor device and manufacture thereof
JP2633559B2 (en) Method for manufacturing bipolar CMOS semiconductor device
JP2715479B2 (en) Method for manufacturing semiconductor device
KR20000028965A (en) Semiconductor device and manufacturing method of the same
JPH06314771A (en) Semiconductor device and manufacture thereof
JPS6021568A (en) Manufacture of semiconductor device
JPS6072228A (en) Method for inpurity doping into semiconductor substrate
JPH09129884A (en) Soi thin film field-effect transistor and its manufacture
JPS5816559A (en) Manufacture of semiconductor device
JPS625657A (en) Semiconductor integrated circuit device
JPH0621077A (en) Semiconductor device and manufacture thereof
JPS62111459A (en) Manufacture of semiconductor device
JPS61139057A (en) Manufacture of semiconductor integrated circuit device
JPS589354A (en) Semiconductor device
JPH0482052B2 (en)