JPH0481839B2 - - Google Patents

Info

Publication number
JPH0481839B2
JPH0481839B2 JP59258703A JP25870384A JPH0481839B2 JP H0481839 B2 JPH0481839 B2 JP H0481839B2 JP 59258703 A JP59258703 A JP 59258703A JP 25870384 A JP25870384 A JP 25870384A JP H0481839 B2 JPH0481839 B2 JP H0481839B2
Authority
JP
Japan
Prior art keywords
power supply
word
supply terminal
lines
bipolar transistors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59258703A
Other languages
Japanese (ja)
Other versions
JPS61137295A (en
Inventor
Tetsuhiro Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP59258703A priority Critical patent/JPS61137295A/en
Publication of JPS61137295A publication Critical patent/JPS61137295A/en
Publication of JPH0481839B2 publication Critical patent/JPH0481839B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体メモリ集積回路に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to semiconductor memory integrated circuits.

〔従来の技術〕[Conventional technology]

半導体メモリ集積回路(以下、メモリICとい
う。)の集積度は増々大きくなり、その信頼性も
増々高いものが要求される。
The degree of integration of semiconductor memory integrated circuits (hereinafter referred to as memory ICs) is increasing, and their reliability is also required to be higher and higher.

一般に、メモリICの検査は、ある1つのビツ
トと他の全てのビツトとの間で正常動作する事を
調べ、これを全ビツトについて行うため、Nビツ
トのメモリの検査回数はN2に比例する。従つて、
メモリICの規模が大きくなると、検査に必要な
時間は急激に増加し、高価な測定器の使用効率が
悪化する。このような事から、検査時間の短縮が
要求される。
Generally, when testing a memory IC, it is checked to see if it operates normally between one bit and all other bits, and this is done for all bits, so the number of tests for an N-bit memory is proportional to N2 . . Therefore,
As the scale of memory ICs increases, the time required for testing increases rapidly, making the use of expensive measuring instruments less efficient. For this reason, there is a need to shorten the inspection time.

一方、メモリICの検査は一般に外部端子より
行うため、特に、バイポーラトランジスタからな
るフリツプフロツプ回路を基本の記憶単位とする
メモリICにおいては、記憶単位を構成する素子
にリーク等の多少の劣化があつても正常動作とし
て見える場合が多い。「多少の劣化」は時間と共
に「大きな劣化」となり、誤動作を起こす原因と
なる危険性を持つている。従つて、高い信頼性を
得るためには、このような「多少の劣化」した素
子を持つメモリICは検出して、排除しなければ
ならない。
On the other hand, since testing of memory ICs is generally performed from external terminals, there is a possibility that there may be some deterioration such as leakage in the elements that make up the storage unit, especially in memory ICs whose basic storage unit is a flip-flop circuit made of bipolar transistors. is often seen as normal operation. ``Some deterioration'' becomes ``major deterioration'' over time, and there is a risk that it may cause malfunction. Therefore, in order to obtain high reliability, memory ICs with such "slightly degraded" elements must be detected and eliminated.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、従来、上記要望を満足するメモ
リICが実現されていない。従つて本発明の目的
は、半導体メモリ集積回路の検査時間が短縮で
き、且つ、高い信頼性が得られる半導体メモリ集
積回路を提供する事にある。
However, until now, a memory IC that satisfies the above requirements has not been realized. SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a semiconductor memory integrated circuit which can shorten the testing time of the semiconductor memory integrated circuit and provide high reliability.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の半導体メモリ集積回路は、ベース及び
コレクタを互いに交差接続しエミツタを共通接続
する第1及び第2のバイポーラトランジスタ、並
びに一端をこれら第1及び第2のバイポーラトラ
ンジスタのコレクタとそれぞれ対応して接続し他
端を共通接続する第1及び第2の負荷素子をそれ
ぞれ備え複数行、複数列にマトリクス状に配列さ
れたフリツプフロツプ回路型の複数の記憶単位
と、外部からの第1及び第2の電源電位をそれぞ
れ対応して受電する第1及び第2の電源端子と、
前記複数の記憶単位の各行とそれぞれ対応して設
けられ対応する行の各記憶単位の第1及び第2の
負荷素子の他端とそれぞれ接続し前記第1の電源
電位と対応する選択レベルのときこれら各記憶単
位を選択状態とする複数のワード線と、前記複数
の記憶単位の各行とそれぞれ対応して設けられ対
応する行の各記憶単位の第1及び第2のバイポー
ラトランジスタのエミツタとそれぞれ接続する複
数のワードボトム線と、これら複数のワードボト
ム線と前記第2の電源端子との間にそれぞれ対応
して設けられ対応する行の各記憶素子にデータ保
持電流を供給する複数の低電流源とを有する半導
体メモリ集積回路において、前記各ワード線と前
記第2の電源端子との間に電流経路を形成する第
1のオーム性素子と、前記各ワードボトム線と前
記第1の電源端子との間に電流経路を形成する第
2のオーム性素子とを設けて構成される。
The semiconductor memory integrated circuit of the present invention includes first and second bipolar transistors whose bases and collectors are cross-connected to each other and whose emitters are commonly connected, and whose one ends correspond to the collectors of the first and second bipolar transistors, respectively. A plurality of flip-flop circuit type storage units each having first and second load elements connected to each other and having the other ends commonly connected and arranged in a matrix in multiple rows and columns; first and second power supply terminals that respectively receive power supply potentials;
provided corresponding to each row of the plurality of storage units, respectively connected to the other ends of the first and second load elements of each storage unit of the corresponding row, and at a selection level corresponding to the first power supply potential; A plurality of word lines that select each of these storage units are provided corresponding to each row of the plurality of storage units, and are connected to the emitters of the first and second bipolar transistors of each storage unit in the corresponding row. a plurality of word bottom lines, and a plurality of low current sources provided correspondingly between the plurality of word bottom lines and the second power supply terminal and supplying a data holding current to each storage element in a corresponding row. a first ohmic element forming a current path between each of the word lines and the second power supply terminal; and a first ohmic element forming a current path between each of the word lines and the first power supply terminal; and a second ohmic element forming a current path therebetween.

〔実施例〕〔Example〕

次に本発明の実施例について図面を参照して説
明する。
Next, embodiments of the present invention will be described with reference to the drawings.

図1は本発明の第1の実施例を示す回路図であ
る。
FIG. 1 is a circuit diagram showing a first embodiment of the present invention.

この実施例は、ベース及びコレクタを互いに交
差接続し第1のエミツタを共通接続する2エミツ
タ型の第1及び第2のバイポーラトランジスタ、
並びに一端をこれら第1及び第2のバイポーラト
ランジスタのコレクタとそれぞれ対応して接続し
他端を共通接続する第1及び第2の負荷素子をそ
れぞれ備え複数行、複数列のマトリクス状に配列
されたフリツプフロツプ回路型の複数の記憶単位
Cと、外部からの高電位の第1の電源電位VCC
び低電位の第2の電源電位VEEをそれぞれ対応し
て受電する第1及び第2の電源端子T1,T2
と、複数の記憶単位Cの各行とそれぞれ対応して
設けられ対応する行の各記憶単位Cの第1及び第
2の負荷素子の他端とそれぞれ接続し第1の電源
電位VCCと対応する選択レベルのとき、これら各
記憶単位を選択状態とする複数のワード線WTO
WT63と、複数の記憶単位Cの各行とそれぞれ対
応して設けられ対応する行の各記憶単位Cの第1
及び第2のバイポーラトランジスタのエミツタと
それぞれ接続する複数のワードボトム線WBO
WB63と、これら複数のワードボトム線WBO
WB63と第2の電源端子T2との間にそれぞれ対
応して設けられ対応する行の各記憶素子Cにデー
タ保持電流を供給する複数の定電流源IHO〜IH63
と、複数の記憶単位Cの各列とそれぞれ対応して
設けられ対応する列の各記憶単位Cの第1及び第
2のバイポーラトランジスタの第2のエミツタと
それぞれ対応して接続する複数の対をなす第1及
び第2のデイジツト線DLO,DRO〜DL63,DR63と、
これらデイジツト線DLO,DRO〜DL63,DR63とそれ
ぞれ対応して接続し対応する記憶単位Cに書込み
用、読出し用の電流を供給する複数の定電流源
ILO,IRO〜IL63,IR63及びトランジスタと、ワード
線WTO〜WT63とそれぞれ対応して設けられ行アド
レス信号に従つて対応するワード線(WTO
WT63)を選択レベルにする複数のワードドライ
バトランジスタQWO〜QW63及び抵抗とを有する半
導体メモリ集積回路に、各ワード線WTO〜WT63
第2の電源端子T2との間にそれぞれ対応して電
流経路を作る複数の第1のオーム性素子の抵抗
RTO〜RT63と、各ワードボトム線WBO〜WB63と第
1の電源端子T1との間にそれぞれ対応して電流
経路を形作る複数の第2のオーム性素子の抵抗
RBO〜RB63とを設けた構成となつている。抵抗RTO
〜RT63,RBO〜RB63は通常動作を妨げない程度の
高抵抗値に設定されている。
This embodiment includes two emitter-type first and second bipolar transistors whose bases and collectors are cross-connected to each other and whose first emitters are commonly connected.
and first and second load elements, each of which has one end connected to the collectors of the first and second bipolar transistors, respectively, and whose other ends are commonly connected, and arranged in a matrix of multiple rows and columns. A plurality of flip-flop circuit type storage units C, and first and second power supply terminals that respectively receive a high potential first power supply potential V CC and a low potential second power supply potential V EE from the outside. T1, T2
and are provided corresponding to each row of the plurality of storage units C, respectively connected to the other ends of the first and second load elements of each storage unit C in the corresponding row, and correspond to the first power supply potential V CC . At the selection level, a plurality of word lines W TO ~ with each of these storage units in the selected state
W T63 , and the first memory unit C of each memory unit C in the corresponding row is provided corresponding to each row of the plurality of memory units C.
and a plurality of word bottom lines W BO ~ connected to the emitters of the second bipolar transistors, respectively.
W B63 and these multiple word bottom lines W BO ~
A plurality of constant current sources I HO to I H63 are respectively provided between W B63 and the second power supply terminal T2 and supply data holding current to each memory element C in the corresponding row.
and a plurality of pairs provided correspondingly to each column of the plurality of memory units C and respectively connected to the second emitters of the first and second bipolar transistors of each memory unit C of the corresponding column. first and second digit lines D LO , D RO to D L63 , D R63 ;
A plurality of constant current sources are connected correspondingly to these digit lines D LO , D RO to D L63 , D R63 and supply current for writing and reading to the corresponding memory unit C.
I LO , I RO to I L63 , I R63 and transistors are provided corresponding to the word lines W TO to W T63 , respectively, and the corresponding word lines (W TO to W T63) are provided in accordance with the row address signal.
A semiconductor memory integrated circuit having a plurality of word driver transistors Q WO to Q W63 and resistors that set the word lines WT to W T63 to a selected level, respectively, between each word line W TO to W T63 and the second power supply terminal T2. resistance of a plurality of first ohmic elements to create a current path
Resistances of a plurality of second ohmic elements forming corresponding current paths between R TO to R T63 , each word bottom line W BO to W B63 , and the first power supply terminal T1, respectively.
The configuration includes R BO to R B63 . Resistance R TO
~R T63 , R BO ~ R B63 are set to high resistance values that do not interfere with normal operation.

このため、記憶単位Cを構成するバイポーラト
ランジスタの1つにでもリークがあると、第1の
電源端子T1と第2の電源端子T2との間でリー
ク電流が流れこれを直接観測できる。リークはト
ランジスタのエミツタ・ベースやエミツタ・コレ
クタ間のものが多い。第1の電源端子T1と第2
の電源端子T2との間には通常動作のための周辺
回路が接続されているが、この周辺回路は通常、
ダイオード順方向電圧(以下VFという。)約0.7
(V)までは電流が殆んど流れないようになつて
いる。従つて、電源端子T1,T2間に、VF
り低い電圧を印加すれば、記憶単位Cのリーク電
流のみ観測できる。
Therefore, if there is a leak in even one of the bipolar transistors constituting the memory unit C, a leak current flows between the first power supply terminal T1 and the second power supply terminal T2, and this can be directly observed. Most leaks occur between the emitter and base or emitter and collector of the transistor. The first power terminal T1 and the second
A peripheral circuit for normal operation is connected between the power supply terminal T2 of the
Diode forward voltage (hereinafter referred to as V F ) approximately 0.7
(V), almost no current flows. Therefore, if a voltage lower than V F is applied between the power supply terminals T1 and T2, only the leakage current of the memory unit C can be observed.

このとき、記憶単位Cには、通常動作時に対し
て逆極性電圧が印加される。記憶単位Cの数は多
く、この実施例では64×64=4096個が電源端子T
1,T2間に並列接続されている。従つて0.7V
以下の電圧であつても、この電圧が記憶単位Cに
通常動作時と同一極性(順方向)に印加される
と、記憶単位Cが正常であつてもこの記憶単位C
には極めてわずかではあるが順方向電流が流れ、
記憶単位の数が多くなる程これら全記憶単位Cを
通して流れる電流は無視できなくなり、これら記
憶単位Cの中にリークがあるために流れる電流か
正常であるにもかかわらず流れる電流かどうかの
区別がしにくくなる。
At this time, a voltage with a polarity opposite to that during normal operation is applied to the memory unit C. The number of memory units C is large, and in this embodiment, 64×64=4096 units are connected to the power supply terminal T.
1 and T2 are connected in parallel. Therefore 0.7V
Even if the voltage is below, if this voltage is applied to the memory unit C with the same polarity (forward direction) as during normal operation, even if the memory unit C is normal, this memory unit C
A very small forward current flows through the
As the number of memory units increases, the current flowing through all of these memory units C cannot be ignored, and it is difficult to distinguish whether the current flows due to a leak in these memory units C or the current flows despite normality. It becomes difficult to do.

しかし本発明においては前述したように記憶単
位Cには逆極性の電圧が印加されるので、記憶単
位Cに流れる電流は順方向の電圧が印加される場
合に比べ桁ちがいに小さくなり、記憶単位の数が
多くなつてもこれら全記憶単位Cに流れる電流は
無視することができ、記憶単位Cのリークの検出
を容易にかつ確実にし信頼性の向上をはかること
ができる。
However, in the present invention, as described above, since a voltage of opposite polarity is applied to the memory unit C, the current flowing to the memory unit C is orders of magnitude smaller than when a forward voltage is applied, Even if the number of memory units C increases, the current flowing through all of these memory units C can be ignored, making it possible to easily and reliably detect leaks in the memory units C and improve reliability.

なお、第1図の破線部分に示したように、一端
をワード線WTO〜WT63とそれぞれ対応して接続す
るデカツプリング用のダイオードTTO〜TT63と、
一端をこれらダイオードTTO〜TT63の他端と接続
し他端を第2の電源端子T2と接続する抵抗RTT
とにより、ワード線WTO〜WT63と電源端子T2と
の間に電流経路を作る構成とすることもでき、こ
の場合、抵抗の数を低減することができる。ただ
しこの場合、記憶単位CのリークはVF1段分よ
り高い電圧(例えば1.0V)かけて観測する必要
があり、従つて周辺回路はVF2段(約1.4V)ま
では、電流が流れないようにしておく必要があ
る。ワードボトム線WBO〜WB63に対しても同様で
ある。
In addition, as shown by the broken lines in FIG. 1, decoupling diodes T TO to T T63 whose one ends are connected to the word lines W TO to W T63 in correspondence with each other,
A resistor R TT whose one end is connected to the other end of these diodes T TO ~T T63 and whose other end is connected to the second power supply terminal T2
Accordingly, a current path can be created between the word lines W TO to W T63 and the power supply terminal T2, and in this case, the number of resistors can be reduced. However, in this case, it is necessary to observe the leakage of the memory unit C by applying a voltage higher than one stage of V F (for example, 1.0V), and therefore the peripheral circuit has a current of up to two stages of V F (approximately 1.4V). It is necessary to prevent it from flowing. The same applies to word bottom lines W BO to W B63 .

第2図は本発明の第2の実施例を示す回路図で
ある。
FIG. 2 is a circuit diagram showing a second embodiment of the present invention.

この実施例は、ワード線WTO〜WT63の立上りを
急峻にするために、ワード線放電回路Dが各ワー
ド線WTO〜WT63と対応するワードボトム線WBO
WB63との間に入つている半導体メモリ集積回路
に本発明を適用したものである。
In this embodiment, in order to make the rise of the word lines W TO -W T63 steep, the word line discharge circuit D connects the word bottom lines W BO - corresponding to each word line W TO -W T63 .
The present invention is applied to a semiconductor memory integrated circuit inserted between the W B63 and the W B63 .

各ワード線放電回路Dには、対応するワード線
(WTO〜WT63)と第2の電源端子T2との間に抵
抗RD10,RD20が接続されているので、この抵抗
RD10,RD20を第1のオーム性素子として流用した
ものである。
Each word line discharge circuit D has resistors R D10 and R D20 connected between the corresponding word line (W TO - W T63 ) and the second power supply terminal T2.
R D10 and R D20 are used as the first ohmic elements.

第3図aにこれら実施例における電源端子T
1,T2間の電圧V対電流I特性を示す。4.0V
〜5.5Vが正常動作領域である。また第3図bは、
第3図aのOV付近の様子を拡大して示す。記憶
単位にリーク電流が無い場合を実線で、リーク電
流がある場合を点線で示す。点線の場合、トラン
ジスタのエミツタ−ベース間か、エミツタ−コレ
クタ間かは分からないが、ともかく、いずれかの
記憶単位Cのバイポーラトランジスタにシークが
ある事が分かる。
Figure 3a shows the power supply terminal T in these embodiments.
The voltage V vs. current I characteristics between T1 and T2 are shown. 4.0V
~5.5V is the normal operating area. In addition, Fig. 3b shows
This is an enlarged view of the area near the OV in Figure 3a. The case where there is no leakage current in the memory unit is shown by a solid line, and the case where there is a leakage current is shown by a dotted line. In the case of the dotted line, it is not known whether it is between the emitter and base of the transistor or between the emitter and collector, but in any case, it can be seen that there is a seek in the bipolar transistor of one of the memory units C.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、各記憶単位に対
通常動作時とは逆極性の電圧が印加されるよう
に、各ワード線と第2の電源端子との間、及び各
ワードボトム線と第1の電源端子との間にオーム
性素子による電流経路を設けた構成とすることに
より、第1及び第2の電源端子間の電流を観測す
るだけで記憶単位のリークの有無を検出でき、し
かも記憶単位の数が増大してもこれら全記憶単位
に流れる正常時の電流は無視できて確実に記憶単
位のリークの有無を検出できるので、検査時間が
短縮でき、かつ製品の信頼性向上をはかることが
できる効果がある。
As explained above, the present invention is arranged between each word line and the second power supply terminal, and between each word bottom line and the By having a configuration in which a current path is provided by an ohmic element between the first power supply terminal and the second power supply terminal, it is possible to detect the presence or absence of a leak in the memory unit simply by observing the current between the first and second power supply terminals. Even if the number of memory units increases, the normal current flowing through all of these memory units can be ignored and the presence or absence of leaks in memory units can be reliably detected, reducing inspection time and improving product reliability. There is an effect that can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例を示す回路図、
第2図は本発明の第2の実施例を示す回路図、第
3図a,bはそれぞれ第1及び第2の動作及び効
果を説明するための第1及び第2の電源端子間電
源電圧対電流特性図である。 C……記憶単位、D……ワード線放電回路、
DLO,DRO〜DL63.DR63……デイジツト線、IDO
IHO〜IH63,ILO,IRO〜IL63,IR63……定電流源、QWO
〜QW63……ワードドライバトランジスタ、RBO
RB63,RD10,RD20,RTO〜RT63,RTT……抵抗、
TTO〜TT63……ダイオード、T1,T2……電源
端子、WBO〜WB63……ワードボトム線、WTO
WT63……ワード線。
FIG. 1 is a circuit diagram showing a first embodiment of the present invention,
FIG. 2 is a circuit diagram showing a second embodiment of the present invention, and FIGS. 3a and 3b are power supply voltages between the first and second power supply terminals for explaining the first and second operations and effects, respectively. FIG. 2 is a current characteristic diagram. C...memory unit, D...word line discharge circuit,
D LO , D RO ~ D L63 . D R63 ……digit line, I DO ,
I HO ~ I H63 , I LO , I RO ~ I L63 , I R63 ... Constant current source, Q WO
~Q W63 ...Word driver transistor, R BO ~
R B63 , R D10 , R D20 , R TO ~ R T63 , R TT ...Resistance,
T TO ~ T T63 ...Diode, T1, T2...Power supply terminal, W BO ~W B63 ...Word bottom line, W TO ~
W T63 ...Word line.

Claims (1)

【特許請求の範囲】[Claims] 1 ベース及びコレクタを互いに交差接続しエミ
ツタを共通接続する第1及び第2のバイポーラト
ランジスタ、並びに一端をこれら第1及び第2の
バイポーラトランジスタのコレクタとそれぞれ対
応して接続し他端を共通接続する第1及び第2の
負荷素子をそれぞれ備え複数行、複数列のマトリ
クス状に配列されたフリツプフロツプ回路型の複
数の記憶単位と、外部からの第1及び第2の電源
電位をそれぞれ対応して受電する第1及び第2の
電源端子と、前記複数の記憶単位の各行とそれぞ
れ対応して設けられ対応する行の各記憶単位の第
1及び第2の負荷素子の他端とそれぞれ接続し前
記第1の電源電位と対応する選択レベルのときこ
れら各記憶単位を選択状態とする複数のワード線
と、前記複数の記憶単位の各行とそれぞれ対応し
て設けられ対応する行の各記憶単位の第1及び第
2のバイポーラトランジスタのエミツタとそれぞ
れ接続する複数のワードボトム線と、これら複数
のワードボトム線と前記第2の電源端子との間に
それぞれ対応して設けられ対応する行の各記憶素
子にデータ保持電流を供給する複数の定電流源と
を有する半導体メモリ集積回路において、前記各
ワード線と前記第2の電源端子との間に電流経路
を形成する第1のオーム性素子と、前記各ワード
ボトム線と前記第1の電源端子との間に電流経路
を形成する第2のオーム性素子とを設けたことを
特徴とする第2のオーム性素子とを設けたことを
特徴とする半導体メモリ集積回路。
1 first and second bipolar transistors whose bases and collectors are cross-connected to each other and whose emitters are commonly connected; one end is connected correspondingly to the collectors of these first and second bipolar transistors, and the other end is commonly connected; A plurality of flip-flop circuit type memory units each having first and second load elements and arranged in a matrix of multiple rows and columns, and receiving power from the first and second power supply potentials from the outside, respectively. first and second power supply terminals provided corresponding to each row of the plurality of storage units, respectively connected to the other ends of the first and second load elements of each storage unit of the corresponding row; a plurality of word lines which put these storage units in a selected state when the selection level corresponds to one power supply potential; and a plurality of word bottom lines respectively connected to the emitters of the second bipolar transistors, and a plurality of word bottom lines respectively provided between the plurality of word bottom lines and the second power supply terminal and connected to each storage element in the corresponding row. A semiconductor memory integrated circuit having a plurality of constant current sources supplying a data retention current, a first ohmic element forming a current path between each of the word lines and the second power supply terminal; A semiconductor comprising a second ohmic element forming a current path between the word bottom line and the first power supply terminal. Memory integrated circuit.
JP59258703A 1984-12-07 1984-12-07 Semiconductor memory integrated circuit Granted JPS61137295A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59258703A JPS61137295A (en) 1984-12-07 1984-12-07 Semiconductor memory integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59258703A JPS61137295A (en) 1984-12-07 1984-12-07 Semiconductor memory integrated circuit

Publications (2)

Publication Number Publication Date
JPS61137295A JPS61137295A (en) 1986-06-24
JPH0481839B2 true JPH0481839B2 (en) 1992-12-25

Family

ID=17323925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59258703A Granted JPS61137295A (en) 1984-12-07 1984-12-07 Semiconductor memory integrated circuit

Country Status (1)

Country Link
JP (1) JPS61137295A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100370956B1 (en) * 2000-07-22 2003-02-06 주식회사 하이닉스반도체 Test pattern for measuring leakage current

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6145490A (en) * 1984-08-09 1986-03-05 Nec Corp Semiconductor memory integrated circuit

Also Published As

Publication number Publication date
JPS61137295A (en) 1986-06-24

Similar Documents

Publication Publication Date Title
US4418403A (en) Semiconductor memory cell margin test circuit
JPS631676B2 (en)
EP0032015B1 (en) Field programmable device with test-bits
EP0084260A1 (en) Semiconductor integrated-circuit device with test circuit
US5351211A (en) Semiconductor integrated circuit device having circuit inspection function
EP0192121B1 (en) Test circuit for a cross-coupled transistor storage cell
US5963490A (en) Static semiconductor memory device having a variable power supply voltage applied to a memory cell depending on the state in use and method of testing the same
KR100454118B1 (en) Semiconductor memory device and test method thereof
EP0028157A1 (en) Semiconductor integrated circuit memory device with integrated injection logic
US4820974A (en) Method for measuring a characteristic of semiconductor memory device
JPH0481839B2 (en)
KR950011730B1 (en) Dynamic random acess memory device
KR940010422B1 (en) Semiconductor integrated circuit device with test circuit
JPH0458120B2 (en)
KR910002502B1 (en) Memory circuit with sereal variable clamp type memory cell
KR0126908B1 (en) Static semiconductor memory device
JP3092223B2 (en) Semiconductor storage device
JPS62141696A (en) Bipolar ram cell
JPS61294686A (en) Memory circuit
JPH0458679B2 (en)
JPS601720B2 (en) semiconductor memory
JPS62140295A (en) Bipolar ram cell
JPS6079772A (en) Semiconductor memory device
KR830001405B1 (en) Semiconductor memory
WO1982002792A1 (en) Semiconductor memory cell margin test circuit