JPS61137295A - Semiconductor memory integrated circuit - Google Patents

Semiconductor memory integrated circuit

Info

Publication number
JPS61137295A
JPS61137295A JP59258703A JP25870384A JPS61137295A JP S61137295 A JPS61137295 A JP S61137295A JP 59258703 A JP59258703 A JP 59258703A JP 25870384 A JP25870384 A JP 25870384A JP S61137295 A JPS61137295 A JP S61137295A
Authority
JP
Japan
Prior art keywords
power supply
potential power
line
storage units
word
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59258703A
Other languages
Japanese (ja)
Other versions
JPH0481839B2 (en
Inventor
Akihiro Katou
哲浩 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP59258703A priority Critical patent/JPS61137295A/en
Publication of JPS61137295A publication Critical patent/JPS61137295A/en
Publication of JPH0481839B2 publication Critical patent/JPH0481839B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To shorten inspection time and to obtain high reliability by connecting one or more word lines through a minimum potential power supply line and an ohm element and connecting one or more emitters which are respective storage units through the series connection of a maximum potential power supply line and the ohm element or that of the ohm element and a diode. CONSTITUTION:A storage circuit based upon a flip flop circuit obtained by crossing and coupling the bases and collectors of two bipolar transistor (IRs) constitutes one unit, plural storage units C are arranged almost straight so as to form a string by connecting the ends of the load elements of the collector side of a common word line WTi and plural strings are arranged almost in parallel to form the matrix of the storage units C. The word line WTi which is the high potential side end of the storage units C is connected to a minimum potential power supply VEE with high resistance RTi which may not interrupt the usual operation and a word bottom line WBi which is the low potential side end is connected to a maximum potential power supply VCC with high resistance RBi which may not interrupt the usual operation. If a current leakage is generated in any one of TRs constituting the storage unit C, the leakage can be directly observed between the external terminals VCC and VEE.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体メモリ集積回路に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to semiconductor memory integrated circuits.

〔従来の技術〕[Conventional technology]

半導体メモリ集積回路(以下、メモIJICという。)
の集積度は増々犬きくなシ、その信頼性も増々高いもの
が要求される。
Semiconductor memory integrated circuit (hereinafter referred to as Memo IJIC)
The degree of integration is becoming more and more important, and the reliability is also required to be higher and higher.

一般に、メモIJIcの検査は、ある1つのビットと他
の全てのビットとの間で正常動作する事を調べ、これを
全ピットについて行うため、Nビットのメモリの検査回
数はN2に比列する。従って、メモリICの規模が大き
くなると、検査に必要な時間は急激に増加し、高価な測
定機の使用効率が悪化する。このような事から、検査時
間の短縮が希求される。
Generally, when testing a memory IJIc, it is checked that normal operation is performed between one bit and all other bits, and this is done for all pits, so the number of tests for an N-bit memory is proportional to N2. . Therefore, as the scale of the memory IC increases, the time required for inspection increases rapidly, and the efficiency of using expensive measuring equipment deteriorates. For this reason, it is desired to shorten the inspection time.

一方、メモリICの検査は一般に外部端子よシ行うため
、特に、バイポーラトランジスタからなるフリップフロ
ップ回路を基本の記憶単位とするメモIJ I Cにお
いては、記憶単位を構成する素子にリーク等の多少の劣
化があっても正常動作として見える場合が多い。「多少
の劣化」は時間と共に「大きな劣化」とな)、誤動作を
起こす原因となる危険性を持っている。従って、高い信
頼性をイ(するためには、このような「多少の劣化」し
た素子を持つメモIJ I Cは検出して、排除しなけ
ればならない。
On the other hand, since testing of memory ICs is generally performed using external terminals, especially in memory ICs whose basic storage unit is a flip-flop circuit made of bipolar transistors, there may be some leakage or other problems in the elements that make up the storage unit. Even if there is deterioration, it often appears to be operating normally. Over time, "some deterioration" becomes "major deterioration"), and there is a danger that it may cause malfunction. Therefore, in order to achieve high reliability, it is necessary to detect and eliminate such memorandums with "slightly deteriorated" elements.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、従来、上記要望を満足するメモリI C
が実現されていない。従って本発明の目的は、半導体メ
モリ集積回路の検査時間が短縮でき、且つ、高い信頼性
が得られる半導体メモリ集積回路を提供する事にある。
However, conventionally, memory ICs that satisfy the above requirements have been developed.
has not been realized. SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a semiconductor memory integrated circuit which can shorten the testing time of the semiconductor memory integrated circuit and provide high reliability.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本発明の半導体メモリ集積回路は、2つのバイポーラト
ランジスタのベースとコレクタが互いに交差結合してな
るフリップフロップ回路を基本とする記憶回路を1単位
とし、この記憶単位がコレクタ側の負荷素子の端を共通
のワード線に接続されて、はぼ直線状に腹数個配されて
列を形成し、この列がほぼ平行に複数個配列されてなる
前記記憶単位のマトリクスを含む半導体メモリ集積回路
において、1つ以上のワード線が最低電位電源線とオー
ム性の素子を介して接続され、且つ、前記記憶単位のエ
ミッタの1つ以上が最高電位電源線とオーム性の素子又
はオーム性の素子とダイオードの直列接続で結合されて
いる事からなっている。
In the semiconductor memory integrated circuit of the present invention, one unit is a memory circuit based on a flip-flop circuit in which the bases and collectors of two bipolar transistors are cross-coupled with each other, and this memory unit connects the end of a load element on the collector side. A semiconductor memory integrated circuit including a matrix of storage units connected to a common word line and arranged in a substantially straight line to form a plurality of columns, the plurality of which are arranged substantially parallel to each other, One or more word lines are connected to the lowest potential power line via an ohmic element, and one or more of the emitters of the memory units are connected to the highest potential power line and an ohmic element, or an ohmic element and a diode. are connected in series.

〔作用〕[Effect]

第1図は本発明のメモIJ I Cの基本的構成を示す
回路図で、64X64の4096ビツト1出力のバイポ
ーラメモリを示す。
FIG. 1 is a circuit diagram showing the basic configuration of the memory IJIC of the present invention, which is a 64×64 4096-bit bipolar memory with 1 output.

2つのバイポーラトランジスタのベースとコレクタが互
に交差結合してなるフリップフロップ回路を基本とする
記憶回路を1県位とし、この記憶単位Cがコレクタ側の
負荷素子の端を共通のワード線WTlに接続されてほぼ
直線状に複数個配置されて列を形成し、この列がほぼ平
行に4i、数個配置されて記憶単位Cのマトリクスが形
成される。なお、第1図において、WBlはワードボト
ム&、DL+DRIはディジット線% Qw+はワード
ドライバトランジスタ、■Ll v ■R1e 工H1
は定電流源である。
One prefecture is a memory circuit based on a flip-flop circuit in which the bases and collectors of two bipolar transistors are cross-coupled with each other, and this memory unit C connects the end of the load element on the collector side to a common word line WTl. A plurality of them are connected and arranged in a substantially straight line to form a column, and several 4i columns are arranged in substantially parallel to form a matrix of storage units C. In Fig. 1, WBl is word bottom &, DL+DRI is digit line%, Qw+ is word driver transistor, ■Ll v ■R1e Engineering H1
is a constant current source.

ここでWT、 、 J)。3等の添字iは1−O2・・
・、63を意味する。
Here WT, , J). The subscript i of 3rd grade is 1-O2...
・, means 63.

そして、記憶単位Cの高電位側端であるワード線WT、
は通常動作を妨げない程度の高抵抗”TIで最低電位電
源■。。に接続され、低電位側端であるワードボトム線
WBlは、これも通常動作を妨げない程度の高抵抗Ru
 +で最高電位電源VCCに接続されている。
Then, the word line WT, which is the high potential side end of the memory unit C,
is a high-resistance TI that does not disturb normal operation and is connected to the lowest potential power supply ■.The word bottom line WBl, which is the end on the low-potential side, is also a high-resistance Ru that does not disturb normal operation.
+ is connected to the highest potential power supply VCC.

このだめ、記憶単位Cを構成するトランジスタの1つに
でもリークがあると、外部の端子■。Cと端子Vゆの間
でリークを直接蜆則できる。リークはトランジスタのエ
ミッタ・ベースやエミッタ・コレクタ間のものが多い。
Unfortunately, if there is a leak in even one of the transistors that make up the memory unit C, the external terminal ■. Leakage can be directly prevented between C and terminal V. Leakage often occurs between the emitter and base or emitter and collector of transistors.

最高電位電源V。Cと最低電位電源■]i、。の間には
、通常動作のだめの周辺回路が接続されているが、この
周辺回路は通常、ダイオード順方向電圧(以下■2とい
う。)約07(V)までは電流は流れないようになって
いる。従って、端子■。Cと端子VF、Eの間に、■2
よシ低い電圧を印加すれば、記憶素子のリークのみ観測
できる。
Highest potential power supply V. C and the lowest potential power supply■]i,. A peripheral circuit that is not suitable for normal operation is connected between the terminal and the terminal, but current does not normally flow in this peripheral circuit until the diode forward voltage (hereinafter referred to as ■2) is approximately 0.7V. There is. Therefore, the terminal ■. Between C and terminals VF and E, ■2
If a very low voltage is applied, only leakage from the memory element can be observed.

又、第1図に点線で示すように、デカップルダイオード
TTIを用いて、複数のワード線WTlを1つの抵抗R
TTに接続すれば、抵抗素子の数を減らす事ができる。
Furthermore, as shown by the dotted line in FIG.
By connecting to TT, the number of resistive elements can be reduced.

この場合、記憶単位Cのリークは■F1段以−ヒの電圧
(例えば1. OV )かけて観測するので、周辺回路
はVF6段(約14V)までは、電流が流れないように
しておく必要がある。
In this case, the leakage of the memory unit C will be observed by applying a voltage (for example, 1.OV) higher than the F1 stage, so it is necessary to prevent current from flowing in the peripheral circuits up to the VF6 stage (approximately 14 V). There is.

〔実施例〕〔Example〕

第2図は本発明の一実施例を示す回路図である。 FIG. 2 is a circuit diagram showing one embodiment of the present invention.

本実施例は、4096ビツト1出力のバイポーラメモリ
で、基本的回路は説明に用いた第1図と同じで、抵抗R
Tl t ”Biを除いて、従来のものと同じである。
This embodiment is a bipolar memory with 4096 bits and 1 output.The basic circuit is the same as that shown in Fig. 1 used for explanation, and the resistor R
It is the same as the conventional one except for Tl t "Bi.

記憶単位Cのマトリクス構成は、64×64で記憶単位
01つ当シの保持電流は10μA1従って、1ワ一ド分
の電流は640μA必要である。
The matrix configuration of memory unit C is 64×64, and the holding current for memory unit 01 is 10 μA1. Therefore, the current for 1 word is 640 μA.

本実施例では、電源電圧変動で保持電流があまシ変らな
いように抵抗RBlに20μA流す。従って、回路図の
定電流源IHは660μAにし、抵抗RBは150にΩ
とする。
In this embodiment, 20 μA is applied to the resistor RBl so that the holding current does not change significantly due to fluctuations in the power supply voltage. Therefore, the constant current source IH in the circuit diagram is set to 660μA, and the resistor RB is set to 150Ω.
shall be.

本実施例には、ワード線WTlの電位の立下がシ6一 を急峻にするために、ワード線放電回路りがワードHw
T、とワードボトム線WB1間に入っている。
In this embodiment, in order to make the potential of the word line WTl fall steeply, the word line discharge circuit is arranged so that the word line Hw
T, and the word bottom line WB1.

ここで、ワード、13 ’w T、側の抵抗RTlは、
このワード線数′屯回路り中にあるワード線WTI線と
最低電位電源Vヤを接続する抵抗1稲□1.抵抗RD2
1の直列接続を流用する。
Here, the resistance RTl on the word, 13'w T, side is:
A resistor 1 is connected between the word line WTI line in this word line number circuit and the lowest potential power source Vya. Resistor RD2
Reuse the series connection of 1.

周辺回路は従来通りで、電源端子間電圧がvF1段分(
約n、 7 V’ )以下では電流は流れないようにな
っている。
The peripheral circuit is the same as before, and the voltage between the power supply terminals is one step of vF (
Current does not flow below approximately n, 7 V').

第3図(a)に端子VCC一端子■F、F、間の電圧■
−電電流時特性示す。4.0V〜5.5■が正常動作領
域である。第3図(b)にOv付近の様子を拡大して示
す。
Figure 3 (a) shows the voltage between terminal VCC and terminal ■ F, F.
-Characteristics under current conditions are shown. The normal operating range is 4.0V to 5.5V. FIG. 3(b) shows an enlarged view of the vicinity of Ov.

記憶単位Cにリークが無い場合を実線で、リークがある
場合を点線で示す。点線の場合、トランジスタのエミッ
ターペース間カ、エミッターコレクタ間かは分からない
が、ともかく、いずれかの記憶単位Cのトランジスタに
リークがある事が分かる。
The case where there is no leak in the storage unit C is shown by a solid line, and the case where there is a leak is shown by a dotted line. In the case of the dotted line, it is not known whether it is between the emitter-pace or between the emitter-collector of the transistor, but it can be seen that there is a leak in the transistor of one of the memory units C.

〔発明の効果〕〔Effect of the invention〕

以上、詳細り発明したとおり、本発明の半導体メモリ集
積回路においては、記憶単位を構成する各々の素子の合
計のリークを外部端子から直接観測できる。すなわち、
1ビツトでもリークがあると、外部からそのリークが観
測されるのですぐ不良品であると判定できる。従って、
本発明により従来のように1ビツトずつ検査していだの
に比べ検査時間が大幅に短縮できる。又、リークの大き
さが直接外るので、信頼性上好ましくない「多少の劣化
」した素子も排除でき、製品の信頼性の向上を図ること
ができる。
As described above in detail, in the semiconductor memory integrated circuit of the present invention, the total leakage of each element constituting a storage unit can be directly observed from the external terminal. That is,
If there is a leak in even one bit, the leak can be observed from the outside, so it can be immediately determined that the product is defective. Therefore,
According to the present invention, the inspection time can be significantly reduced compared to the conventional method of inspecting each bit one by one. Furthermore, since the magnitude of leakage is directly determined, it is possible to eliminate elements that are "slightly deteriorated" which is undesirable in terms of reliability, and it is possible to improve the reliability of the product.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の半導体メモリ集積回路の基本図である
。 C・・・・・・記憶単位、D・・・・・・ワード線放電
回路%DROIDR63,DLo、DL63・・・・・
・ディジット線、■D。、■Ho。 lH63g ■LOg ■L63 + ■ROHlH6
1+ ’・・−・・定電流源、Qwo 。 QW63・・・・・・ワードドライバトランジスタ、几
B。、 RB63゜RDIOg ”D20 + ”TO
+ ”TO3t ”TT”’ ”’抵抗s TTo +
 TT 63・・・・・・ディカップルダイオード、v
cc・・団・最高電位電源線及びその外部端子s VE
。・・・・・・最低電位電源線及びその外部端子、WB
o 、WB 63 ・・・・・・ワードボトムa、 W
TO、WT63・・・・・・ワード線。 咳 3  図
FIG. 1 is a basic diagram of a semiconductor memory integrated circuit according to the present invention. C... Memory unit, D... Word line discharge circuit %DROIDR63, DLo, DL63...
・Digital line, ■D. ,■Ho. lH63g ■LOg ■L63 + ■ROH1H6
1+'...- Constant current source, Qwo. QW63...Word driver transistor, 几B. , RB63゜RDIOg “D20 +”TO
+ ”TO3t ”TT”'”'Resistance s TTo +
TT 63... Decoupled diode, v
cc...Group, highest potential power supply line and its external terminals VE
.・・・・・・Lowest potential power line and its external terminal, WB
o, WB 63...Ward bottom a, W
TO, WT63...Word line. cough 3 diagram

Claims (1)

【特許請求の範囲】[Claims]  2つのバイポーラトランジスタのベースとコレクタが
互いに交差結合してなるフリップフロップ回路を基本と
する記憶回路を1単位とし、この記憶単位がコレクタ側
の負荷素子の端を共通のワード線に接続されてほぼ直線
状に複数個配されて列を形成し、この列がほぼ平行に複
数個配列されてなる前記記憶単位のマトリクスを含む半
導体メモリ集積回路において、1つ以上の前記ワード線
が最低電位電源線とオーム性の素子を介して接続され、
且つ、前記記憶単位のエミッタの一つ以上が最高電位電
源線とオーム性の素子又はオーム性の素子とダイオード
の直列接続で結合されている事を特徴とする半導体メモ
リ集積回路。
One unit is a memory circuit based on a flip-flop circuit in which the bases and collectors of two bipolar transistors are cross-coupled with each other. In a semiconductor memory integrated circuit including a matrix of memory units arranged in a straight line to form a column, the plurality of columns being arranged substantially parallel to each other, one or more of the word lines is a lowest potential power supply line. and are connected through an ohmic element,
A semiconductor memory integrated circuit characterized in that one or more of the emitters of the memory unit is coupled to the highest potential power supply line by an ohmic element or a series connection of an ohmic element and a diode.
JP59258703A 1984-12-07 1984-12-07 Semiconductor memory integrated circuit Granted JPS61137295A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59258703A JPS61137295A (en) 1984-12-07 1984-12-07 Semiconductor memory integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59258703A JPS61137295A (en) 1984-12-07 1984-12-07 Semiconductor memory integrated circuit

Publications (2)

Publication Number Publication Date
JPS61137295A true JPS61137295A (en) 1986-06-24
JPH0481839B2 JPH0481839B2 (en) 1992-12-25

Family

ID=17323925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59258703A Granted JPS61137295A (en) 1984-12-07 1984-12-07 Semiconductor memory integrated circuit

Country Status (1)

Country Link
JP (1) JPS61137295A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100370956B1 (en) * 2000-07-22 2003-02-06 주식회사 하이닉스반도체 Test pattern for measuring leakage current

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6145490A (en) * 1984-08-09 1986-03-05 Nec Corp Semiconductor memory integrated circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6145490A (en) * 1984-08-09 1986-03-05 Nec Corp Semiconductor memory integrated circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100370956B1 (en) * 2000-07-22 2003-02-06 주식회사 하이닉스반도체 Test pattern for measuring leakage current

Also Published As

Publication number Publication date
JPH0481839B2 (en) 1992-12-25

Similar Documents

Publication Publication Date Title
JP2991440B2 (en) Power line test method for integrated circuits
US4739250A (en) Semiconductor integrated circuit device with test circuit
JPH01166399A (en) Static type random access memory
US4719418A (en) Defect leakage screen system
JP3265129B2 (en) Circuit for measuring cell characteristics of nonvolatile semiconductor memory device
US4729117A (en) Semiconductor memory device
JPS61137295A (en) Semiconductor memory integrated circuit
JPS6116097A (en) Memory circuit
JPS6145490A (en) Semiconductor memory integrated circuit
JPS588079B2 (en) hand tie memory
JPH07312100A (en) Semiconductor memory integrated circuit
JPS6126160B2 (en)
JPH0458679B2 (en)
JPS601720B2 (en) semiconductor memory
JP2924933B2 (en) Storage circuit device
JP3092223B2 (en) Semiconductor storage device
JP3272315B2 (en) Memory array having test function and memory array test method
JPS61274341A (en) Semiconductor logic device
JPS6043300A (en) Sense amplifier circuit
JPH01184800A (en) Bipolar prom
JPH01319329A (en) Programmable logic array
JPS61184798A (en) Bipolar prom device
JPS59180896A (en) Programmable element
JPS61501350A (en) compensation current generator
JPS6190399A (en) Input circuit part of mos type memory ic