JPH0480736B2 - - Google Patents
Info
- Publication number
- JPH0480736B2 JPH0480736B2 JP60095214A JP9521485A JPH0480736B2 JP H0480736 B2 JPH0480736 B2 JP H0480736B2 JP 60095214 A JP60095214 A JP 60095214A JP 9521485 A JP9521485 A JP 9521485A JP H0480736 B2 JPH0480736 B2 JP H0480736B2
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- activated alumina
- slurry
- oxide
- carrier
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000003054 catalyst Substances 0.000 claims description 63
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 41
- 239000002002 slurry Substances 0.000 claims description 32
- 238000000034 method Methods 0.000 claims description 30
- 239000000843 powder Substances 0.000 claims description 16
- 229910044991 metal oxide Inorganic materials 0.000 claims description 12
- 150000004706 metal oxides Chemical class 0.000 claims description 12
- 238000000576 coating method Methods 0.000 claims description 10
- 239000011248 coating agent Substances 0.000 claims description 9
- 239000002245 particle Substances 0.000 claims description 9
- 239000007864 aqueous solution Substances 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 7
- 238000002156 mixing Methods 0.000 claims description 7
- 230000002378 acidificating effect Effects 0.000 claims description 5
- 229910000428 cobalt oxide Inorganic materials 0.000 claims description 5
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 claims description 5
- 239000007787 solid Substances 0.000 claims description 5
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims description 4
- 229910001404 rare earth metal oxide Inorganic materials 0.000 claims description 4
- 229910001928 zirconium oxide Inorganic materials 0.000 claims description 4
- 238000001354 calcination Methods 0.000 claims 1
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 14
- 229910052751 metal Inorganic materials 0.000 description 13
- 239000002184 metal Substances 0.000 description 13
- 239000007789 gas Substances 0.000 description 10
- 230000000694 effects Effects 0.000 description 8
- 229910052697 platinum Inorganic materials 0.000 description 8
- 239000010948 rhodium Substances 0.000 description 8
- 229910052703 rhodium Inorganic materials 0.000 description 8
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 6
- 230000003197 catalytic effect Effects 0.000 description 6
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 4
- 229910052878 cordierite Inorganic materials 0.000 description 4
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 4
- 238000010298 pulverizing process Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 3
- 229910002091 carbon monoxide Inorganic materials 0.000 description 3
- 229910000420 cerium oxide Inorganic materials 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 3
- 229910052763 palladium Inorganic materials 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- VQCBHWLJZDBHOS-UHFFFAOYSA-N erbium(iii) oxide Chemical compound O=[Er]O[Er]=O VQCBHWLJZDBHOS-UHFFFAOYSA-N 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- PLDDOISOJJCEMH-UHFFFAOYSA-N neodymium(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Nd+3].[Nd+3] PLDDOISOJJCEMH-UHFFFAOYSA-N 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 2
- MMKQUGHLEMYQSG-UHFFFAOYSA-N oxygen(2-);praseodymium(3+) Chemical compound [O-2].[O-2].[O-2].[Pr+3].[Pr+3] MMKQUGHLEMYQSG-UHFFFAOYSA-N 0.000 description 2
- 229910003447 praseodymium oxide Inorganic materials 0.000 description 2
- 239000010970 precious metal Substances 0.000 description 2
- SONJTKJMTWTJCT-UHFFFAOYSA-K rhodium(iii) chloride Chemical compound [Cl-].[Cl-].[Cl-].[Rh+3] SONJTKJMTWTJCT-UHFFFAOYSA-K 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910017569 La2(CO3)3 Inorganic materials 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 235000014443 Pyrus communis Nutrition 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003426 co-catalyst Substances 0.000 description 1
- 239000006255 coating slurry Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 229910003440 dysprosium oxide Inorganic materials 0.000 description 1
- NLQFUUYNQFMIJW-UHFFFAOYSA-N dysprosium(iii) oxide Chemical compound O=[Dy]O[Dy]=O NLQFUUYNQFMIJW-UHFFFAOYSA-N 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229910001938 gadolinium oxide Inorganic materials 0.000 description 1
- 229940075613 gadolinium oxide Drugs 0.000 description 1
- CMIHHWBVHJVIGI-UHFFFAOYSA-N gadolinium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[Gd+3].[Gd+3] CMIHHWBVHJVIGI-UHFFFAOYSA-N 0.000 description 1
- JYTUFVYWTIKZGR-UHFFFAOYSA-N holmium oxide Inorganic materials [O][Ho]O[Ho][O] JYTUFVYWTIKZGR-UHFFFAOYSA-N 0.000 description 1
- OWCYYNSBGXMRQN-UHFFFAOYSA-N holmium(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ho+3].[Ho+3] OWCYYNSBGXMRQN-UHFFFAOYSA-N 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- NZPIUJUFIFZSPW-UHFFFAOYSA-H lanthanum carbonate Chemical compound [La+3].[La+3].[O-]C([O-])=O.[O-]C([O-])=O.[O-]C([O-])=O NZPIUJUFIFZSPW-UHFFFAOYSA-H 0.000 description 1
- 229960001633 lanthanum carbonate Drugs 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- UZLYXNNZYFBAQO-UHFFFAOYSA-N oxygen(2-);ytterbium(3+) Chemical compound [O-2].[O-2].[O-2].[Yb+3].[Yb+3] UZLYXNNZYFBAQO-UHFFFAOYSA-N 0.000 description 1
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 229910001954 samarium oxide Inorganic materials 0.000 description 1
- 229940075630 samarium oxide Drugs 0.000 description 1
- FKTOIHSPIPYAPE-UHFFFAOYSA-N samarium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[Sm+3].[Sm+3] FKTOIHSPIPYAPE-UHFFFAOYSA-N 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 229910000033 sodium borohydride Inorganic materials 0.000 description 1
- 239000012279 sodium borohydride Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229910003451 terbium oxide Inorganic materials 0.000 description 1
- SCRZPWWVSXWCMC-UHFFFAOYSA-N terbium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[Tb+3].[Tb+3] SCRZPWWVSXWCMC-UHFFFAOYSA-N 0.000 description 1
- 229910003454 ytterbium oxide Inorganic materials 0.000 description 1
- 229940075624 ytterbium oxide Drugs 0.000 description 1
Landscapes
- Catalysts (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
Description
〔産業上の利用分野〕
この発明は、炭化水素、一酸化炭素、および酸
化窒素の無害化に使用するための触媒担体の製造
方法に関するもので、特に自動車排気ガスおよび
固定型エンジン排気ガスの浄化に使用する触媒担
体の製造方法に関する。
〔従来の技術〕
一体型構造担体(モノリス担体)には、材質、
形状、製法、各種あるが、一般的にはコーニング
社製、日本硝子株式会社製のコーデイエライト
質、角型セルのモノリス担体が多く使用されてい
る。このコーデイエライト質モノリス担体は、比
表面積が約1m2/gと非常に小さいため貴金属の
ような触媒金属を担持しても、担体表面上へ分散
させることができない。その結果、初期性能、耐
久性能、共に劣る触媒しか得られず、このまま担
体として使用するには実用性がない。そこで、従
来上記欠点を解決するために、モノリス担体に、
活性アルミナ被膜を形成せしめ、比表面積を増大
させて触媒金属の分散性を向上させ、性能を良好
にすることが行われている。それと同時に助触媒
成分を担持させることも行なわれている。
活性アルミナ被膜をモノリス担体に形成せしめ
る技術についてはすでに各種明らかにされている
が、大きく分けて3種類があげられる。
(1) 活性アルミナ粉末を水に分散させ、ミルに
かけて粒径を小さくし、安定なスラリーをつく
り、これにモノリス担体を浸漬し、乾燥焼成して
活性アルミナ被膜を形成せしめる方法、(2) 飽
和、もしくは濃厚硝酸アルミニウム水溶液中に、
担体を浸漬し、乾燥焼成して、活性アルミナ被膜
を形成せしめる方法、および(3) 活性アルミナ粉
末とバインダー成分、たとえば硝酸アルミニウム
やアルミナゾルとを混合し、スラリーとする。こ
のスラリー中に担体を浸漬し、乾燥焼成して活性
アルミナ被膜を形成せしめる方法である(特公昭
30−1570号公報、特公昭55−1818号公報、特公昭
50−9749号公報、特公昭56−13500号公報、特公
昭56−27295号公報、および特開昭53−135898号
公報参照)。
近年における最も一般的な活性アルミナ被膜形
成方法は、上記3種類の方法から改良が種々行な
われた結果、つぎに示す2種となつた。すなわ
ち、
(1) 活性アルミナ粉末と酸性水溶液とを混合した
のち、微粉砕してスラリー化する方法(特開昭
53−135898号)、および
(2) 活性アルミナ粉末とバインダー成分と水とを
混合し、スラリー化する方法(特公昭56−
13500号、特公昭55−1818号および特公昭50−
9749号)である。
また助触媒効果を有する金属を、被膜に含有さ
せる方法については3種類ある。すなわち、(a)前
記のように、各種の活性アルミナコート方法によ
り、被膜を形成したのち金属塩水溶液、たとえば
硝酸塩水溶液等を用いて、含浸法をもつて担持す
る方法(特公昭56−13500号公報)、(b)活性アルミ
ナと金属酸化物(たとえば酸化セリウム)の複合
酸化物粉末と酸性水溶液とを混合したのち、微粉
砕して得られたスラリーを担体に付着させる方法
(特開昭53−135898号)、および(c)活性アルミナと
水溶性アルミニウム塩と炭酸ランタンと水とによ
り、スラリーを調製し、該スラリーを担体に付着
させる方法(特開昭58−122044号)である。
〔発明が解決しようとする問題点〕
活性アルミナ被報形成にあたつて評価項目は大
きく分けて3点ある。すなわち、(1)スラリーとし
ての実用性、換言すれば粘度が300±200cps程度
でチクソトロピー性が小さい方が良い、(2)触媒化
したのち、触媒性能が良いこと、および(3)被膜の
強度が十分であることである。
従来の活性アルミナ被膜形成方法による触媒
は、上記3点を全て満足させることはむずかし
く、いずれかの点が犠牲となつている。
すなわち、(1)活性アルミナ粉末と酸性水溶液と
の混合液を微粉砕する方法では、チクソトロピー
性が生じ、また粘度上昇が起きるため固形分を20
〜50重量%(好ましくは35〜45重量%)程度にし
かできず、その結果被膜強度の弱いものが得られ
る。また、(2)活性アルミナ粉末とバインダー成分
と水とを混合しスラリー化する方法では、バイン
ダー成分を大量に使用すると、触媒性能が悪くな
りこれも良い結果をもたらさない。
助触媒効果を有する金属を含有した被膜を形成
する前記の方法においても、上記の活性アルミナ
被膜形成の問題点がそのままあてはまるが、さら
に助触媒効果が最もよく発揮できるような担持の
され方が必要である。従来方法は、いずれもアル
ミナとの反応が起こりやすく、純粋な金属酸化物
を含有させるためには好ましくない。
〔問題点を解決するための手段〕
この発明は、上記従来技術の問題点を解決し、
新規な活性アルミナの被膜形成方法により、触媒
活性に秀れ、かつ被膜強度の十分な触媒担体を得
るための製造方法を提供するものである。しかし
て、この発明の方法は、平均粒径が20μm以下で
ある活性アルミナ粉末と、希土類金属酸化物、酸
化コバルト、および酸化ジルコニウムから選ばれ
た少くとも1種の金属酸化物とを含む酸性水溶液
を混合して得られたスラリーを、一体型構造担体
に付着させたのち、焼成して活性アルミナ50〜99
重量%および上記の少くとも1種の金属酸化物1
〜50重量%からなる被膜を有する触媒担体を製造
することを特徴とする。
この発明方法において使用する活性アルミナ粉
末は平均粒径が20μm以下であることが、スラリ
ーの安定性をよくして沈降を生じさせないことか
らして必要である。また、活性アルミナの比表面
積は、触媒担体の耐熱性を良好とするために、75
m2/g以下であることが好ましい。
この発明方法において得られる触媒担体の被膜
中における助触媒効果を有する金属酸化物の含有
割合は、1〜50重量%、活性アルミナの含有割合
は50〜99重量%である。金属酸化物の含有割合が
50重量%をこえると、活性アルミナ量が減少し、
触媒金属を担持する際における担体表面上への分
散性を上昇するのに必要な比表面積を確保できな
いからであり、かつ50重量%をこえて含有させて
も助触媒効果のそれ以上の増大も期待できないか
らである。また金属酸化物の含有割合が1重量%
未満ではスラリーの安定性、分散性を確保できな
いとともに、助触媒効果を発揮できない。なお、
活性アルミナ粉末と金属酸化物とを混合後の微粉
砕はおこなわないほうが好ましい。
この発明の方法において使用するスラリーは、
固形分が50重量%以上のものが安定で分散性に富
むスラリーとなすために好ましい。また、スラリ
ーを一体構造型担体に付着させ、乾燥させたのち
の焼成の温度は250℃ないし800℃が好ましい。
この発明方法で使用する希土類金属酸化物とし
ては、酸化セリウム、酸化ランタン、酸化プラセ
オジウム、酸化ネオジウム、酸化イツトリウム、
酸化サマリウム、酸化ガドリニウム、酸化イツテ
ルビウム、酸化ジスプロシウム、酸化エルビウ
ム、酸化ホルミウム、酸化テルビウム等が好適で
ある。また、この発明方法によつて得られる触媒
担体に担持する触媒金属としては、白金、パラジ
ウム、ロジウムがもつとも好ましい。
〔作 用〕
この発明方法では、スラリー中に希土類金属酸
化物、酸化コバルトおよび酸化ジルコニウムから
選ばれた少くとも1種の金属酸化物の酸性溶液を
含有させ、スラリーの安定性や分散性を確保し、
かつスラリーの粘度を調整して被膜強度の向上を
はかるとともに、排ガス浄化用触媒の助触媒成分
としての作用をおこなわせている。
また、この発明方法では、平均粒径20μm以下
のアルミナ粉末を用いることにより、スラリー安
定性と分散性を良好とし、被膜強度の向上をはか
つている。なお、スラリーとして、固形分50重量
%以上のものを用いることにより、一層安定で分
散性に富むスラリーとなし被膜強度のより一層の
向上をはかることができる。
さらに活性アルミナ粉末として比表面積が75
m2/g以下のものを用いた場合、あらかじめ比表
面積が75m2/g以下に〓焼されているため、高熱
にさらされても安定である。またこの発明方法で
用いられる金属酸化物は、700℃以上の高温でと
くに秀れた助触媒効果を示す。したがつてこの発
明の方法により耐熱性のある触媒担体を得ること
が可能となる。なおあらかじめγ−アルミナを
900℃以下の温度で〓焼し、δ−θ−アルミナに
変態させておいたものを活性アルミナとして用い
ると、さらに高温耐久性に秀れた触媒担体となし
得る。
〔実施例〕
実施例 1
平均粒子径が、11.2μmで、比表面積が75m2/
gの活性アルミナ粉末950gと、平均粒径15μmの
酸化コバルト50gと水600gと硝酸30gとをヤマト
製ラボスターラーで3時間混合し撹拌し、粉末を
均一に分散させてコーテイング用スラリーを調製
した。このようにして調製したスラリーの固形分
は60.9%、PHは4.1、粘度は320cpsであつた。毎
平方インチ300個のセルを有する円筒形状のコー
デイエライト製モノリス担体(日本硝子株式会社
製、直径93mm、長さ100mm、体積0.679)を水中
に浸し、十分に吸水させたのち、取り出し、セル
内に残つた水を空気流(5Kg/cm2の圧力)で吹き
払つた。先に調製したスラリー中にこの吸水させ
た担体を15分間浸漬し、取り出し、セル内の過剰
のスラリーを空気流を用いて吹き払つた。このよ
うにして活性アルミナスラリーを付着した担体を
110℃で1時間乾燥後、電気炉を用い空気中3000
℃で1時間焼成して86gの活性アルミナ被膜を担
体に形成され、触媒担体を得た。つぎに、この触
媒担体を白金アンミン水溶液中に浸漬し、触媒担
体に触媒金属の白金を吸着させたのち、水洗し、
引きつづき塩化ロジウム水溶液中に浸漬して、触
媒担体に触媒金属のロジウムを担持させ、ついで
100℃で乾燥後、500℃で30分間焼成して自動車排
気ガス浄化用触媒を得た。この触媒に担持された
貴金属担持量の化学分析を行つたところ、白金の
担持量は1.0g/−触媒、ロジウムの担持量は
0.1g/−触媒であつた。
実施例 2〜6
実施例1の酸化コバルトにかえて、酸化イツト
リウム(実施例2)、酸化ジルコニウム(実施例
3)、酸化セリウム(実施例4)、酸化ランタン
(実施例5)および酸化プラセオジウム(実施例
6)を用いた以外は、実施例1と同様にして触媒
担体を得た。この触媒担体に実施例1と同様にし
て触媒金属を担持し、自動車排気ガス浄化用触媒
を得た。
比較例 1
平均粒子径が25.1μmで比表面積が154m2/gの
活性アルミナ粉末1000gと水1800gと硝酸80gとを
ヤマト製ラボスターラーを用いて1時間混合撹拌
し、さらにボールミルにうつし、17時間湿式粉砕
した。このようにして調製したスラリーの固形分
は34.7%、PHは2.82、粘度は1100cpsであつた。
毎平方インチ300個のセルを有するコーデイエラ
イト質のモノリス担体(日本硝子株式会社製、直
径93mm、長さ100mm、体積0.679)を水中に浸し
十分に吸水させたのち、取り出しセル内に残つた
水を空気流(5Kg/cm2の圧力)で吹き払つた。先
に調製したスラリー中にこの吸水させた担体を15
分間浸漬し取り出し、セル内に残つた過剰のスラ
リーを空気流を用いて吹き払つた。このようにし
て活性アルミナスラリーを付着した担体を110℃
で1時間乾燥後、電気炉を用い空気中700℃で1
時間焼成して43.2gの活性アルミナ被膜を担体上
に形成させ、触媒担体を得た。つぎにこの触媒担
体を白金アンミン水溶液中に浸漬し、触媒担体に
触媒金属の白金を吸着させたのち水洗し、引きつ
づき塩化ロジウム水溶液中に浸漬して触媒担体に
触媒金属のロジウムを担持させ、ついで100℃で
乾燥後500℃で30分間焼成して自動車排気ガス浄
化用触媒を得た。この触媒に担持された貴金属担
持量の化学分析を行つたところ、白金の担持量は
1.0g/−触媒、ロジウムの担持量は0.1g/−
触媒であつた。
実施例7〜8および比較例2〜3
実施例1および比較例1において得られた触媒
担体を、塩化パラジウム水溶液に含浸し、さらに
水素化ホウ素ナトリウムによる還元処理を行つた
のち、白金アンミン、塩化ロジウムによる触媒金
属の担持を行つて触媒を得た。担持量は、パラジ
ウム0.5g/−触媒、白金0.5g/−触媒、ロジ
ウム0.1g/−触媒であつた(実施例7および比
較例2)。さらに上記の触媒調製法と同様にして
パラジウム1g/−触媒および、ロジウム0.1g/
−触媒を担持した触媒も調製した(実施例8お
よび比較例3)。
性能評価試験結果
実施例1〜6および比較例1により得られた触
媒について性能評価試験を行つた。性能評価は空
気流(5Kg/cm2)による剥離試験と触媒耐久性能
試験の2種類によつて行なつた。
剥離試験条件は新品触媒のコート被膜に空気流
(5Kg/cm2m2)をエアーガンにて10分間吹きつけ、
そのコート層の剥離した量を重量%で求め剥離率
としたものである。
触媒耐久性能試験条件はつぎに示すとおりであ
る。すなわち耐久試験条件は、排気量3400c.c.のエ
ンジンにて回転数3600rpm、ブースト−300mm
Hg、触媒入ガス温度750℃、空燃比(A/F)
14.8で50時間触媒を排気ガスにさらすという条件
である。このようにして耐久した触媒の性能の評
価は、排気量1600c.c.のエンジンにて回転数
2600rpm、ブースト−360mmHg、触媒入ガス温度
460℃、A/F14.5なる条件で耐久後の触媒に排気
ガスを通じ、炭化水素(HC)、一酸化炭素
(CO)、窒素酸化物(NOx)に対する浄化率を算
出することによりおこなつた。これらの結果を第
1表に示す。
[Industrial Application Field] This invention relates to a method for producing a catalyst carrier for use in detoxifying hydrocarbons, carbon monoxide, and nitrogen oxides, and in particular for purification of automobile exhaust gas and stationary engine exhaust gas. The present invention relates to a method for producing a catalyst carrier used for. [Prior art] An integrated structure carrier (monolith carrier) has various materials,
Although there are various shapes and manufacturing methods, generally cordierite and square cell monolithic carriers manufactured by Corning and Nippon Glass Co., Ltd. are often used. This cordierite monolithic support has a very small specific surface area of about 1 m 2 /g, so even if a catalytic metal such as a noble metal is supported, it cannot be dispersed on the surface of the support. As a result, a catalyst with poor initial performance and durability is obtained, and it is not practical to use it as a carrier as it is. Therefore, in order to solve the conventional drawbacks mentioned above, monolithic carriers were
It has been attempted to form an activated alumina film to increase the specific surface area, improve the dispersibility of the catalyst metal, and improve performance. At the same time, a promoter component is also supported. Various techniques have already been disclosed for forming an activated alumina coating on a monolithic carrier, but there are broadly three types. (1) A method in which activated alumina powder is dispersed in water and milled to reduce the particle size to create a stable slurry, in which a monolithic support is immersed and dried and fired to form an activated alumina film; (2) saturation. or in concentrated aluminum nitrate aqueous solution.
A method in which a carrier is immersed, dried and fired to form an activated alumina film, and (3) activated alumina powder and a binder component such as aluminum nitrate or alumina sol are mixed to form a slurry. This is a method in which the carrier is immersed in this slurry and then dried and fired to form an activated alumina film (Tokuko Sho
Publication No. 30-1570, Publication No. 55-1818, Special Publication No.
50-9749, Japanese Patent Publication No. 56-13500, Japanese Patent Publication No. 56-27295, and Japanese Patent Publication No. 53-135898). The most common methods for forming activated alumina films in recent years have been the following two methods, as a result of various improvements made from the above three methods. Namely, (1) a method of mixing activated alumina powder and an acidic aqueous solution and then finely pulverizing the mixture to form a slurry (as disclosed in Japanese Patent Application Laid-open No.
53-135898), and (2) a method of mixing activated alumina powder, a binder component, and water to form a slurry (Japanese Patent Publication No. 1983-
13500, Special Publication No. 1818 and Special Publication No. 1818-
No. 9749). Furthermore, there are three methods for incorporating a metal having a promoter effect into a film. That is, (a) as described above, a method in which a film is formed by various activated alumina coating methods and then supported by an impregnation method using an aqueous metal salt solution, such as an aqueous nitrate solution (Japanese Patent Publication No. 56-13500) (b) A method of mixing a composite oxide powder of activated alumina and a metal oxide (e.g. cerium oxide) with an acidic aqueous solution, and then finely pulverizing the resulting slurry and adhering it to a carrier (Japanese Unexamined Patent Publication No. 53 (c) a method of preparing a slurry from activated alumina, a water-soluble aluminum salt, lanthanum carbonate, and water, and depositing the slurry on a carrier (Japanese Patent Application Laid-Open No. 122044/1982). [Problems to be Solved by the Invention] There are broadly three evaluation items when forming activated alumina particles. In other words, (1) practicality as a slurry, in other words, it is better to have a viscosity of about 300±200 cps and less thixotropy, (2) good catalytic performance after catalyticization, and (3) strength of the coating. is sufficient. It is difficult for catalysts produced by conventional methods for forming activated alumina films to satisfy all of the above three points, and one of these points is sacrificed. In other words, (1) the method of finely pulverizing a mixture of activated alumina powder and acidic aqueous solution produces thixotropy and increases viscosity;
It is possible to produce only about 50% by weight (preferably 35 to 45% by weight), and as a result, a film with low strength is obtained. In addition, in the method (2) of mixing activated alumina powder, a binder component, and water to form a slurry, if a large amount of the binder component is used, the catalyst performance deteriorates and this also does not give good results. The above-mentioned problems of forming an activated alumina film also apply to the above-mentioned method of forming a film containing a metal that has a cocatalyst effect, but it is also necessary to support the film in a way that best exhibits the cocatalyst effect. It is. All conventional methods tend to cause reactions with alumina and are not preferred for containing pure metal oxides. [Means for solving the problems] This invention solves the problems of the above-mentioned prior art,
The present invention provides a manufacturing method for obtaining a catalyst carrier having excellent catalytic activity and sufficient coating strength using a novel method for forming an activated alumina coating. Therefore, the method of the present invention provides an acidic aqueous solution containing activated alumina powder having an average particle size of 20 μm or less and at least one metal oxide selected from rare earth metal oxides, cobalt oxide, and zirconium oxide. The slurry obtained by mixing is applied to an integrated structure carrier, and then fired to form activated alumina 50-99
% by weight and at least one metal oxide as mentioned above 1
It is characterized by producing a catalyst support with a coating consisting of ~50% by weight. The activated alumina powder used in the method of this invention must have an average particle size of 20 μm or less in order to improve the stability of the slurry and prevent sedimentation. In addition, the specific surface area of activated alumina is 75% in order to improve the heat resistance of the catalyst carrier.
It is preferable that it is below m2 /g. The content of the metal oxide having a promoter effect in the film of the catalyst carrier obtained by the method of this invention is 1 to 50% by weight, and the content of activated alumina is 50 to 99% by weight. The content percentage of metal oxide is
When it exceeds 50% by weight, the amount of activated alumina decreases,
This is because it is not possible to secure the specific surface area necessary to increase the dispersibility on the support surface when supporting the catalyst metal, and even if the content exceeds 50% by weight, the promoter effect will not increase further. This is because you cannot expect it. In addition, the content of metal oxides is 1% by weight.
If it is less than that, the stability and dispersibility of the slurry cannot be ensured, and the promoter effect cannot be exhibited. In addition,
It is preferable not to perform pulverization after mixing the activated alumina powder and the metal oxide. The slurry used in the method of this invention is
It is preferable that the solid content is 50% by weight or more in order to obtain a stable and highly dispersible slurry. Furthermore, the firing temperature after adhering the slurry to the monolithic carrier and drying it is preferably 250°C to 800°C. The rare earth metal oxides used in the method of this invention include cerium oxide, lanthanum oxide, praseodymium oxide, neodymium oxide, yttrium oxide,
Suitable examples include samarium oxide, gadolinium oxide, ytterbium oxide, dysprosium oxide, erbium oxide, holmium oxide, and terbium oxide. The catalyst metal supported on the catalyst carrier obtained by the method of the present invention is preferably platinum, palladium, or rhodium. [Function] In the method of this invention, an acidic solution of at least one metal oxide selected from rare earth metal oxides, cobalt oxide, and zirconium oxide is contained in the slurry to ensure stability and dispersibility of the slurry. death,
In addition, the viscosity of the slurry is adjusted to improve the film strength, and it also functions as a co-catalyst component of the exhaust gas purification catalyst. Further, in the method of the present invention, by using alumina powder with an average particle size of 20 μm or less, slurry stability and dispersibility are improved, and film strength is improved. Note that by using a slurry with a solid content of 50% by weight or more, it is possible to obtain a slurry that is more stable and more dispersible, and to further improve the strength of the pear coating. Furthermore, as activated alumina powder, the specific surface area is 75
When using a material with a specific surface area of 75 m 2 /g or less, it is stable even when exposed to high heat because it has been baked in advance to a specific surface area of 75 m 2 /g or less. Furthermore, the metal oxide used in the method of this invention exhibits particularly excellent cocatalyst effects at high temperatures of 700°C or higher. Therefore, the method of the present invention makes it possible to obtain a heat-resistant catalyst carrier. Note that γ-alumina is added in advance.
If activated alumina is calcined at a temperature of 900° C. or lower and transformed into δ-θ-alumina, a catalyst carrier with even better high-temperature durability can be obtained. [Example] Example 1 The average particle diameter is 11.2 μm and the specific surface area is 75 m 2 /
950 g of activated alumina powder, 50 g of cobalt oxide with an average particle size of 15 μm, 600 g of water, and 30 g of nitric acid were mixed and stirred for 3 hours using a Yamato Lab Stirrer to uniformly disperse the powder to prepare a coating slurry. The slurry thus prepared had a solid content of 60.9%, a pH of 4.1, and a viscosity of 320 cps. A cylindrical monolith carrier made of cordierite (manufactured by Nippon Glass Co., Ltd., diameter 93 mm, length 100 mm, volume 0.679) having 300 cells per square inch is immersed in water, and after absorbing sufficient water, it is taken out and the cells are removed. The water remaining inside was blown away with an air stream (pressure of 5 kg/cm 2 ). The imbibed carrier was immersed in the previously prepared slurry for 15 minutes, taken out, and the excess slurry in the cell was blown away using a stream of air. In this way, the carrier with the activated alumina slurry attached is
After drying at 110℃ for 1 hour, it was heated to 3000℃ in the air using an electric furnace.
The catalyst carrier was calcined for 1 hour at ℃ to form an activated alumina coating of 86 g on the carrier. Next, this catalyst carrier is immersed in a platinum ammine aqueous solution to adsorb the catalyst metal platinum on the catalyst carrier, and then washed with water.
Subsequently, the catalyst carrier was immersed in an aqueous rhodium chloride solution to support the catalyst metal rhodium, and then
After drying at 100°C, it was calcined at 500°C for 30 minutes to obtain a catalyst for purifying automobile exhaust gas. Chemical analysis of the amount of precious metals supported on this catalyst revealed that the amount of platinum supported was 1.0g/-catalyst, and the amount of rhodium supported was 1.0g/-catalyst.
It was 0.1g/-catalyst. Examples 2 to 6 Instead of cobalt oxide in Example 1, yttrium oxide (Example 2), zirconium oxide (Example 3), cerium oxide (Example 4), lanthanum oxide (Example 5), and praseodymium oxide ( A catalyst carrier was obtained in the same manner as in Example 1 except that Example 6) was used. A catalyst metal was supported on this catalyst carrier in the same manner as in Example 1 to obtain a catalyst for purifying automobile exhaust gas. Comparative Example 1 1000 g of activated alumina powder with an average particle diameter of 25.1 μm and a specific surface area of 154 m 2 /g, 1800 g of water, and 80 g of nitric acid were mixed and stirred for 1 hour using a Yamato lab stirrer, and then transferred to a ball mill for 17 hours. Wet milled. The slurry thus prepared had a solid content of 34.7%, a pH of 2.82, and a viscosity of 1100 cps.
A monolithic cordierite carrier (manufactured by Nippon Glass Co., Ltd., diameter 93 mm, length 100 mm, volume 0.679) having 300 cells per square inch was immersed in water to absorb sufficient water, and then taken out and left inside the cells. The water was blown off with a stream of air (pressure of 5 Kg/cm 2 ). Add this water-absorbed carrier to the previously prepared slurry for 15 minutes.
After soaking for a minute and removing, excess slurry remaining in the cell was blown away using a stream of air. The carrier to which the activated alumina slurry was attached in this way was heated to 110°C.
After drying for 1 hour at 700℃ in air using an electric furnace,
A 43.2 g activated alumina film was formed on the carrier by firing for a period of time to obtain a catalyst carrier. Next, this catalyst carrier is immersed in a platinum ammine aqueous solution to adsorb platinum as a catalytic metal on the catalyst carrier, and then washed with water, and subsequently immersed in an aqueous rhodium chloride solution to support rhodium as a catalytic metal on the catalyst carrier, The mixture was then dried at 100°C and fired at 500°C for 30 minutes to obtain a catalyst for purifying automobile exhaust gas. Chemical analysis of the amount of precious metal supported on this catalyst revealed that the amount of platinum supported was
1.0g/- catalyst, amount of rhodium supported is 0.1g/-
It was a catalyst. Examples 7 to 8 and Comparative Examples 2 to 3 The catalyst supports obtained in Example 1 and Comparative Example 1 were impregnated with an aqueous palladium chloride solution and further subjected to a reduction treatment with sodium borohydride. A catalyst was obtained by supporting the catalyst metal with rhodium. The supported amounts were palladium 0.5 g/-catalyst, platinum 0.5 g/-catalyst, and rhodium 0.1 g/-catalyst (Example 7 and Comparative Example 2). Further, in the same manner as the above catalyst preparation method, palladium 1g/-catalyst and rhodium 0.1g/-
- Catalysts with supported catalysts were also prepared (Example 8 and Comparative Example 3). Performance Evaluation Test Results Performance evaluation tests were conducted on the catalysts obtained in Examples 1 to 6 and Comparative Example 1. Performance evaluation was carried out by two types: a peel test using air flow (5 kg/cm 2 ) and a catalyst durability test. The peeling test conditions were as follows: spraying air flow (5 kg/cm 2 m 2 ) onto the coated film of the new catalyst for 10 minutes with an air gun;
The peeled amount of the coat layer was determined in weight % and was defined as the peeling rate. The catalyst durability performance test conditions are as shown below. In other words, the durability test conditions were an engine with a displacement of 3400 c.c., a rotation speed of 3600 rpm, and a boost of -300 mm.
Hg, catalyst inlet gas temperature 750℃, air fuel ratio (A/F)
14.8, the catalyst is exposed to exhaust gas for 50 hours. The performance of the durable catalyst was evaluated using an engine with a displacement of 1600 c.c.
2600rpm, boost - 360mmHg, catalyst inlet gas temperature
This is done by passing exhaust gas through the catalyst after durability at 460℃ and A/F 14.5, and calculating the purification rate for hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NO x ). Ta. These results are shown in Table 1.
【表】
さらに実施例7〜8ならびに比較例2〜3で得
られた触媒につき、上記と同様にして耐久後の触
媒の性能評価をおこないその結果を第2表に示し
た。[Table] Furthermore, the catalysts obtained in Examples 7 and 8 and Comparative Examples 2 and 3 were evaluated for their performance after durability in the same manner as above, and the results are shown in Table 2.
【表】
〔発明の効果〕
以上の結果から明白のようにこの出願の発明方
法は被膜強度が強く、かつ触媒活性に秀れた触媒
担体を提供することができる。[Table] [Effects of the Invention] As is clear from the above results, the method of the invention of this application can provide a catalyst carrier with strong coating strength and excellent catalytic activity.
Claims (1)
粉末と、希土類金属酸化物、酸化コバルトおよび
酸化ジルコニウムから選ばれた少くとも1種の金
属酸化物とを含む酸性水溶液を混合して得られた
スラリーを、一体型構造担体に付着させたのち、
焼成することからなる活性アルミナ50〜99重量%
および上記の少くとも一種の金属酸化物1〜50重
量%からなる被膜を有する触媒担体の製造方法。 2 活性アルミナが比表面積75m2/g以下である
特許請求の範囲第1項記載の触媒担体の製造方
法。 3 スラリー固形分が50重量%以上である特許請
求の範囲第1項記載の触媒担体の製造方法。[Claims] 1. Mixing an acidic aqueous solution containing activated alumina powder with an average particle size of 20 μm or less and at least one metal oxide selected from rare earth metal oxides, cobalt oxide, and zirconium oxide. After attaching the slurry obtained by this process to an integral structure carrier,
Activated alumina 50-99% by weight consisting of calcining
and a method for producing a catalyst carrier having a coating comprising 1 to 50% by weight of at least one of the above-mentioned metal oxides. 2. The method for producing a catalyst carrier according to claim 1, wherein the activated alumina has a specific surface area of 75 m 2 /g or less. 3. The method for producing a catalyst carrier according to claim 1, wherein the solid content of the slurry is 50% by weight or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60095214A JPS61254250A (en) | 1985-05-02 | 1985-05-02 | Preparation of catalyst carrier |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60095214A JPS61254250A (en) | 1985-05-02 | 1985-05-02 | Preparation of catalyst carrier |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61254250A JPS61254250A (en) | 1986-11-12 |
JPH0480736B2 true JPH0480736B2 (en) | 1992-12-21 |
Family
ID=14131496
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60095214A Granted JPS61254250A (en) | 1985-05-02 | 1985-05-02 | Preparation of catalyst carrier |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61254250A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1131105C (en) * | 1998-03-04 | 2003-12-17 | 株式会社日本能源 | Solid acid catalyst, method for preparing same and reaction using same |
WO2000056447A1 (en) * | 1999-03-23 | 2000-09-28 | Japan Energy Corporation | Solid acid catalyst, method for preparing the same and reaction using the same |
CN104475170B (en) * | 2014-12-15 | 2017-02-22 | 中南大学 | Aluminum silicon alloy catalyst carrier as well as preparation method and application thereof |
CN109476493B (en) | 2016-07-29 | 2021-06-11 | 住友化学株式会社 | Alumina and method for producing automotive catalyst using same |
-
1985
- 1985-05-02 JP JP60095214A patent/JPS61254250A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS61254250A (en) | 1986-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6377543A (en) | Catalyst for purifying exhaust gas | |
JPH04244232A (en) | Improved alumina-ceria catalyst coating | |
JPH01130732A (en) | Catalyst and its production | |
JPS63205141A (en) | Catalyst for purifying exhaust gas | |
JPS60110335A (en) | Catalyst for purifying exhaust gas | |
JP3483190B2 (en) | Nitrogen oxide removal catalyst and method for producing the same | |
JPH05237390A (en) | Catalyst for purification of exhaust gas | |
JPH0480736B2 (en) | ||
JPH06114264A (en) | Production of catalyst for purification of exhaust gas | |
JPS62241552A (en) | Monolithic catalyst carrier for purifying exhaust gas | |
JPH05253484A (en) | Catalyst for cleaning exhaust gas and depositing method therefor | |
JPS62282641A (en) | Production of catalyst for purifying exhaust gas | |
JP3247956B2 (en) | Exhaust gas purification catalyst | |
JPS61293550A (en) | Catalyst for purifying exhaust gas | |
JPH0480737B2 (en) | ||
JPS61209045A (en) | Catalyst for purifying exhaust gas | |
JP4303799B2 (en) | Method for producing lean NOx purification catalyst | |
JPH0424099B2 (en) | ||
JP3309711B2 (en) | Exhaust gas purification catalyst and method for producing the same | |
JPS6320036A (en) | Production of catalyst for purifying exhaust gas | |
JPS6054730A (en) | Catalyst for purifying exhaust gas | |
JPH06190282A (en) | Catalyst for purification of exhaust gas | |
JP3314301B2 (en) | Method for producing palladium (Pd) three-way catalyst | |
JP3156577B2 (en) | Material for exhaust gas purification catalyst and method for producing the same | |
JPS6377545A (en) | Catalyst for purifying exhaust gas |