JPH0480737B2 - - Google Patents

Info

Publication number
JPH0480737B2
JPH0480737B2 JP60095215A JP9521585A JPH0480737B2 JP H0480737 B2 JPH0480737 B2 JP H0480737B2 JP 60095215 A JP60095215 A JP 60095215A JP 9521585 A JP9521585 A JP 9521585A JP H0480737 B2 JPH0480737 B2 JP H0480737B2
Authority
JP
Japan
Prior art keywords
catalyst
slurry
activated alumina
carrier
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60095215A
Other languages
Japanese (ja)
Other versions
JPS61254251A (en
Inventor
Takao Kawai
Mineo Yamaki
Original Assignee
Kyatara Kogyo Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyatara Kogyo Kk filed Critical Kyatara Kogyo Kk
Priority to JP60095215A priority Critical patent/JPS61254251A/en
Publication of JPS61254251A publication Critical patent/JPS61254251A/en
Publication of JPH0480737B2 publication Critical patent/JPH0480737B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明は、炭化水素、一酸化炭素、および酸
化窒素の無害化に使用するための触媒担体の製造
方法に関するもので、特に自動車排気ガスおよび
固定型エンジン排気ガスの浄化に使用する触媒担
体の製造方法に関する。 〔従来の技術〕 一体型構造担体(モノリス担体)には、材質、
形状、製法、各種あるが、一般的にはコーニング
社製、日本硝子株式会社製のコーデイエライト
質、角型セルのモノリス担体が多く使用されてい
る。このコーデイエライト質モノリス担体は、比
表面積が約1m2/gと非常に小さいため、貴金属
のような触媒金属を担持しても、担体表面上へ分
散させることができない。その結果、初期性能、
耐久性能、共に劣る触媒しか、得られず、このま
ま担体として使用するには実用性がない。そこ
で、従来上記欠点を解決するために、モノリス担
体に、活性アルミナ被膜を形成せしめ、比表面積
を増大させて触媒金属の分散性を向上させ、性能
を良好にすることが行われている。それと同時に
助触媒成分を担持させることも行なわれている。 一般に、活性アルミナ被膜をモノリス担体に形
成せしめる方法には、種々あるが近年における最
も一般的な方法としては、各種の改良がおこなわ
れた結果つぎに示す2種となつた。すなわち (1) 活性アルミナ粉末と酸性水溶液とを混合した
のち、微粉砕してスラリー化する方法(特開昭
53−135898号)および (2) 活性アルミナ粉末とバインダー成分と水とを
混合し、スラリー化する方法(特公昭56−
13500号、特公昭55−1818号特公昭50−9749号)
である。 また、従来助触媒効果を有する希土類金属等を
含有させる方法としては、 (a)特開昭53−135898号公報の実施例にみられるよ
うに高比表面積のアルミナと希土類との複合酸化
物を形成し酸と水によりスラリー化し、それを更
にボールミルにより微粉砕する方法により得られ
たスラリーを担体に付着させ、乾燥焼成する方
法、(b)特公昭56−13500号公報に示されるように
活性アルミナとアルミナゾルのようなバインダー
成分と水とによりスラリーを調整し、該スラリー
を担体に付着させ乾燥焼成したのち、希土類金属
塩水溶液により含侵し、乾燥焼成して担持する方
法、および(c)特開昭58−122044号公報に示される
ように、活性アルミナと水溶性アルミニウム塩と
炭酸ランタンと水とによりスラリーを調整し、該
スラリーを担体に付着させ乾燥焼成する方法等が
ある。 〔発明が解決しようとする問題点〕 従来の活性アルミナ被膜形成方法にはつぎの問
題点がある。すなわち (1) 活性アルミナ粉末と酸性水溶液の混合液を微
紛砕する方法では、チクソトロピー性が生じ、
また粘度上昇が起きるため固形分を20〜50重量
%(好ましくは35〜45重量%)程度にしかでき
ず、その結果被膜強度の弱いものが得られる。
また、 (2) 活性アルミナ粉末とバインダー成分と水とを
混合しスラリー化する方法では、バインダー成
分を大量に使用すると、触媒性能が悪くなりこ
れも良い結果をもたらさない。また従来の希土
類金属等を含有させる方法にはつぎの問題点が
ある。すなわち、従来技術の(a)ではスラリー中
にバインダー成分がないため湿式粉砕をおこな
うことにより、被膜強度を保持させているが高
ガス流速で使用する自動車排気ガス浄化用触媒
としてはその強度は不十分である。また(b)の技
術ではスラリー中にバインダー成分を含有する
が故に被膜強度は十分であるが触媒性能に対し
ては、悪い効果となる。バインダー成分である
アルミナ水和物は焼成後アルミナとなるがその
活性度はいわゆるアルミナ粉末としてのγ−ア
ルミナと比べて低く触媒金属担持の際の分散性
が悪くなるためである。しかも工程が2工程と
なるため、コスト的にも不利である。これに対
し、(c)の技術は(a)および(b)の欠点を改良した点
で良好のものではあるが、バインダー成分とし
ての水溶性アルミニウム塩を使用している点で
やはり触媒性能的には良くない。したがつてバ
インダー成分を使用せず、しかも被膜強度の十
分で簡単な工程により希土類金属を含有するア
ルミナ被膜を形成する方法が望まれていた。 〔問題点を解決するための手段〕 この発明は上記従来技術の問題点を解決し、新
規な活性アルミナの被膜形成方法により、触媒活
性に秀れ、かつ被膜強度の十分な触媒担体を得る
ための製造方法を提供するものである。しかし
て、この発明の方法は、平均粒径が20μm以下で
ある活性アルミナ粉末と、希土類金属塩、コバル
ト塩およびジルコニウム塩から選ばれた少くとも
1種の金属塩の酸性水溶液とを混合して得られた
スラリーを一体型構造担体に付着させたのち、焼
成して活性アルミナ50〜99重量%および上記の少
くとも1種の金属の酸化物1〜50重量%からなる
被膜を有する触媒担体を製造することを特徴とす
る。 この発明方法において使用する活性アルミナ粉
末は平均粒径が20μm以下であることが、スラリ
ーの安定性をよくして沈降を生じさせないことか
らして必要である。また、活性アルミナの比表面
積は、触媒担体の耐熱性を良好とするために、75
m2/g以下であることが好ましい。 この発明方法において得られる触媒担体の被膜
中における助触媒効果を有する金属酸化物の含有
割合は1〜50重量%、活性アルミナの含有割合は
50〜99重量%である。金属酸化物の含有割合が50
重量%をこえると、活性アルミナ量が減少し、触
媒金属を担持する際における担体表面上への分散
性を上昇するのに必要な比表面積を確保できない
からである。また、金属酸化物の含有割合が1重
量%未満ではスラリーの安定性、分散性を確保で
きないとともに、助触媒効果を発揮できない。さ
らに、この発明の方法において使用するスラリー
は、PHが3〜5.5のもの、また固形分が50重量%
以上のものが安定で分散性に富むスラリーとなす
ために好ましい。 スラリーを一体構造型担体に付着させ乾燥させ
たのちの焼成の温度は、250℃〜800℃が好まし
い。 この発明方法で使用する希土類金属塩として
は、硝酸セリウム、硝酸ランタン、硝酸プラセオ
ジウム、硝酸ネオジウム、硝酸イツトリウム、硝
酸サマリウム、硝酸ガドリニウム、硝酸イツテル
ビウム、硝酸ジスプロシウム、硝酸エルビウム、
硝酸ホルミウム、硝酸テルビウム等が好適であ
る。また、この発明方法によつて得られる触媒担
体に担持する触媒金属としては、白金、パラジウ
ム、ロジウムがもつとも好ましい。 〔作 用〕 この発明方法では、スラリー中に希土類金属
塩、コバルト塩およびジルコニウム塩から選ばれ
た少くとも1種の金属塩を含有させ、スラリーの
安定性や分散性を確保して被膜強度の向上をはか
るとともに、助触媒としての作用をおこなわせて
いる。また、この発明方法では、平均粒径20μm
以下のアルミナ粉末を用いることにより、スラリ
ーの安定性と分散性を良好とし被膜強度の向上を
はかつている。なおスラリーとしてPH3〜5.5の
もの、また固形分50重量%以上のものを用いるこ
とにより、一層安定で分散性に富むスラリーとな
し、被膜強度のより一層の向上をはかることがで
きる。 さらに活性アルミナ粉末として比表面積が75
m2/g以下のものを用いた場合、あらかじめ比表
面積が75m2/g以下に〓焼されているため、高熱
にさらされても安定であり、したがつて耐熱性の
ある触媒担体とすることが可能となる。なおあら
かじめγ−アルミナを900℃以上の温度で〓焼し
δ−,θ−,アルミナに変態させておいたものを
活性アルミナとして用いると、さらに高温耐久性
に秀れた触媒担体となし得る。 〔実施例〕 実施例 1 あらかじめ〓焼した比表面積が56m2/g、平均
粒子径9.3μmの活性アルミナ粉末510gを硝酸セリ
ウム0.64モル/の水溶液500ml中に加えヤマト
製ラボスターラーを用いて1時間混合撹拌しコー
テイング用スラリーを調製した。このスラリーの
固形分は、56.4%、PHは3.35、粘度は540cpsであ
つた。多孔質、水浸透性で毎平方インチ300個の
セルを有するコーデイエライト質モノリス担体
(日本硝子株式会社製、直径93mm、長さ100mm)を
水中に浸し、十分吸水させたのち、取り出し、空
気流(5Kg/cm2)でセル内に残つた水を吹き払つ
たのち、先に調製したスラリー中へ15分間浸漬し
た。つぎに担体を取り出し、セル内に残つた過剰
なスラリーを空気流で吹き払い、ついで担体を
110℃で30分間通風乾燥し、電気炉を用い空気中
700℃で1時間焼成し、担体上に被膜を形成し触
媒担体を得た。形成した被膜による重量増加は
76gであつた。つぎにこの触媒担体を白金アンミ
ン水溶液中に浸漬し、触媒担体に触媒金属の白金
を吸着させたのち、水洗し引き続き塩化ロジウム
水溶液中に浸漬して触媒担体に触媒金属のロジウ
ムを担持させ、ついで100℃で乾燥後、500℃で30
分間焼成して自動車排気ガス浄化用触媒を得た。
この触媒に担持された貴金属担持量の化学分折を
行つたところ白金の担持量は1.0g/−触媒、ロ
ジウムは0.1g/−触媒であつた。 実施例 2〜6 実施例1の調製法を用い、活性アルミナ粉末を
分散させる分散液(実施例1の場合硝酸セリウム
水溶液)にかえて、硝酸イツトリウム水溶液(実
施例2)、硝酸ジルコニウム水溶液(実施例3)、
硝酸コバルト水溶液(実施例4)硝酸ランタン水
溶液(実施例5)および硝酸プラセオジウム水溶
液(実施例6)を用いた以外は、実施例1と同様
にして触媒担体を得た。この触媒担体にさらに実
施例1と同様にして触媒金属を担持し、自動車排
気ガス浄化用触媒を得た。 比較例 1 あらかじめ〓焼した平均粒子径が25.1μmで比
表面積が154m2/gの活性アルミナ粉末1000gと
水1800gと硝酸80gとをヤマト製ラボスターラー
を用いて1時間混合撹拌し、さらにポールミルに
うつし17時間湿式粉砕した。このようにして調製
したスラリーの固形分は34.7%、PHは2.82、粘度
は1100cpsであつた。 多孔質、水浸透性で毎平方インチ300個のセル
を有するコーデイエライト質モノリス担体(日本
硝子株式会社製、直径93mm、長さ100mm、体積
0.679)を水中に浸し、十分に吸水させたのち、
取り出し、セル内に残つた水を空気流(5Kg/
cm2)で吹き払つた。先に調製したスラリー中にこ
の吸水させた担体を15分間浸漬し、取り出し、セ
ル内に残つた過剰のスラリーを空気流を用いて吹
き払つた。このようにして活性アルミナスラリー
を付着した担体を110℃で1時間乾燥したのち、
電気炉を用い空気中700℃で1時間焼成し、43.2g
の活性アルミナ被膜を担体上に形成させ、触媒担
体を得た。つぎにこの触媒担体を白金アンミン水
溶液中に浸漬し、触媒担体に触媒金属の白金を吸
着させたのち、水洗し引きつづき塩化ロジウム水
溶液中に浸漬して触媒担体に触媒金属のロジウム
を担持させついで100℃で乾燥後、500℃で30分間
焼成して自動車排気ガス浄化用触媒を得た。この
触媒に担持された貴金属担持量の化学分折を行つ
たことろの白金の担持量は1.0g/−触媒、ロジ
ウムは0.1g/−触媒であつた。 実施例7〜8および比較例2〜3 実施例1および比較例1において得られた触媒
担体を、塩化パラジウム水溶液に含浸し、さらに
水素化ホウ素ナトリウムによる還元処理を行つた
のち、白金アンミン、塩化ロジウムによる触媒金
属の担持を行つて触媒を得た。担持量はパラジウ
ム0.5g/−触媒、白金0.5g/−触媒ロジウム
0.1g/−触媒であつた。(実施例7および比較
例2)さらに上記の触媒調製法と同様にしてパラ
ジウム1g/−触媒およびロジウム0.1g/−触
媒を担持した触媒も調製した。(実施例8および
比較例3) 性能評価試験結果 実施例1〜6および比較例1により得られた触
媒について性能評価試験を行つた。性能評価は空
気流(5Kg/cm2)による剥離試験と触媒耐久性能
試験の2種類によつて行なつた。 剥離試験条件は新品触媒のコート被膜に空気流
(5Kg/m2)をエアーガンにて10分間吹きつけ、
そのコート層の剥離した量を重量%で求め剥離率
としたものである。 触媒耐久性能試験条件はつぎに示すとおりであ
る。すなわち耐久試験条件は、排気量3400c.c.のエ
ンジンにて回転数3600rpm、ブースト−300mm
Hg、触媒入ガス温度750℃、空燃比(A/F)
14.8で50時間触媒を排気ガスにさらすという条件
である。このようにして耐久した触媒の性能の評
価は、排気量1600c.c.のエンジンにて回転数
2600rpm、ブースト−360mmHg、触媒入ガス温度
460℃、A/F14.5なる条件で耐久後の触媒に排気
ガスを通じ、炭化水素(HC)、一酸化炭素
(CO)、窒素酸化物(NOx)に対する浄化率を算
出することによりおこなつた。これらの結果を第
1表に示す。
[Industrial Application Field] This invention relates to a method for producing a catalyst carrier for use in detoxifying hydrocarbons, carbon monoxide, and nitrogen oxides, and in particular for purification of automobile exhaust gas and stationary engine exhaust gas. The present invention relates to a method for producing a catalyst carrier used for. [Prior art] An integrated structure carrier (monolith carrier) has various materials,
Although there are various shapes and manufacturing methods, generally cordierite and square cell monolithic carriers manufactured by Corning and Nippon Glass Co., Ltd. are often used. This cordierite monolith support has a very small specific surface area of about 1 m 2 /g, so even if a catalyst metal such as a noble metal is supported, it cannot be dispersed on the support surface. As a result, initial performance,
Only catalysts with inferior durability and performance can be obtained, and it is not practical to use them as is as a carrier. In order to solve the above-mentioned drawbacks, conventional methods have been to form an activated alumina coating on a monolithic carrier to increase the specific surface area, improve the dispersibility of the catalyst metal, and improve performance. At the same time, a promoter component is also supported. Generally, there are various methods for forming an activated alumina coating on a monolithic carrier, but as a result of various improvements, the following two methods have become the most common methods in recent years. Namely, (1) a method in which activated alumina powder and an acidic aqueous solution are mixed and then finely pulverized to form a slurry (as disclosed in JP-A-Sho);
53-135898) and (2) a method of mixing activated alumina powder, a binder component, and water to form a slurry (Special Publication No. 1987-
13500, Special Publication No. 55-1818, Special Publication No. 50-9749)
It is. In addition, conventional methods for incorporating rare earth metals etc. that have a cocatalyst effect include (a) using a complex oxide of alumina and rare earth metals with a high specific surface area, as shown in the example of JP-A-53-135898; A method in which the slurry obtained by forming a slurry with acid and water and further pulverizing it with a ball mill is attached to a carrier and drying and baking; A method of preparing a slurry with alumina, a binder component such as alumina sol, and water, adhering the slurry to a carrier, drying and firing, impregnating it with a rare earth metal salt aqueous solution, drying and firing to support it, and (c) a special method. As disclosed in Japanese Patent Publication No. 122044/1984, there is a method in which a slurry is prepared from activated alumina, a water-soluble aluminum salt, lanthanum carbonate, and water, and the slurry is adhered to a carrier and dried and fired. [Problems to be Solved by the Invention] The conventional method for forming an activated alumina film has the following problems. In other words, (1) the method of finely pulverizing a mixture of activated alumina powder and acidic aqueous solution produces thixotropy;
Furthermore, since the viscosity increases, the solid content can only be reduced to about 20 to 50% by weight (preferably 35 to 45% by weight), resulting in a film with weak strength.
In addition, (2) in the method of mixing activated alumina powder, a binder component, and water to form a slurry, if a large amount of the binder component is used, the catalyst performance deteriorates and this also does not give good results. Furthermore, the conventional method of incorporating rare earth metals and the like has the following problems. In other words, in conventional technology (a), since there is no binder component in the slurry, wet pulverization is performed to maintain the film strength, but the strength is insufficient as a catalyst for purifying automobile exhaust gas used at high gas flow rates. It is enough. In addition, in the technique (b), since the slurry contains a binder component, the coating strength is sufficient, but this has a negative effect on the catalyst performance. This is because alumina hydrate, which is a binder component, becomes alumina after calcination, but its activity is lower than that of γ-alumina, which is a so-called alumina powder, and its dispersibility when supporting a catalyst metal is poor. Moreover, since the process requires two steps, it is also disadvantageous in terms of cost. On the other hand, although technology (c) is good in that it improves the drawbacks of (a) and (b), it still has poor catalyst performance because it uses a water-soluble aluminum salt as a binder component. It's not good for Therefore, there has been a desire for a method of forming an alumina coating containing rare earth metals by a simple process that does not use a binder component, has sufficient coating strength, and has sufficient coating strength. [Means for Solving the Problems] The present invention solves the problems of the prior art described above, and aims to obtain a catalyst carrier with excellent catalytic activity and sufficient film strength by a novel method for forming an activated alumina film. The present invention provides a method for manufacturing. Therefore, the method of the present invention involves mixing activated alumina powder with an average particle size of 20 μm or less and an acidic aqueous solution of at least one metal salt selected from rare earth metal salts, cobalt salts, and zirconium salts. The resulting slurry is applied to a monolithic structural support and then calcined to form a catalyst support having a coating consisting of 50-99% by weight of activated alumina and 1-50% by weight of oxide of at least one of the metals mentioned above. It is characterized by manufacturing. The activated alumina powder used in the method of this invention must have an average particle size of 20 μm or less in order to improve the stability of the slurry and prevent sedimentation. In addition, the specific surface area of activated alumina is 75% in order to improve the heat resistance of the catalyst carrier.
It is preferable that it is below m2 /g. The content of the metal oxide having a promoter effect in the film of the catalyst carrier obtained by the method of this invention is 1 to 50% by weight, and the content of activated alumina is 1 to 50% by weight.
50-99% by weight. Metal oxide content is 50
This is because if the amount exceeds % by weight, the amount of activated alumina decreases, making it impossible to secure the specific surface area necessary to improve the dispersibility on the carrier surface when supporting the catalyst metal. Furthermore, if the content of the metal oxide is less than 1% by weight, the stability and dispersibility of the slurry cannot be ensured, and the promoter effect cannot be exhibited. Furthermore, the slurry used in the method of this invention has a pH of 3 to 5.5 and a solid content of 50% by weight.
The above are preferred in order to obtain a stable and highly dispersible slurry. The firing temperature after adhering the slurry to the monolithic carrier and drying it is preferably 250°C to 800°C. The rare earth metal salts used in the method of this invention include cerium nitrate, lanthanum nitrate, praseodymium nitrate, neodymium nitrate, yttrium nitrate, samarium nitrate, gadolinium nitrate, ytterbium nitrate, dysprosium nitrate, erbium nitrate,
Holmium nitrate, terbium nitrate, etc. are suitable. The catalyst metal supported on the catalyst carrier obtained by the method of the present invention is preferably platinum, palladium, or rhodium. [Function] In the method of the present invention, at least one metal salt selected from rare earth metal salts, cobalt salts, and zirconium salts is contained in the slurry to ensure the stability and dispersibility of the slurry and improve the coating strength. In addition to improving the performance, it also acts as a co-catalyst. In addition, in this invention method, the average particle size is 20 μm.
By using the following alumina powder, the stability and dispersibility of the slurry are improved and the strength of the coating is improved. By using a slurry with a pH of 3 to 5.5 and a solid content of 50% by weight or more, the slurry can be made more stable and more dispersible, and the strength of the coating can be further improved. Furthermore, as activated alumina powder, the specific surface area is 75
When using a catalyst carrier with a specific surface area of 75 m 2 /g or less, it is stable even when exposed to high heat because it has been sintered in advance to a specific surface area of 75 m 2 /g or less, making it a heat-resistant catalyst carrier. becomes possible. Note that if γ-alumina is previously calcined at a temperature of 900°C or higher and transformed into δ-, θ-, and alumina and used as the activated alumina, a catalyst carrier with even better high-temperature durability can be obtained. [Example] Example 1 510 g of previously calcined activated alumina powder with a specific surface area of 56 m 2 /g and an average particle size of 9.3 μm was added to 500 ml of an aqueous solution of 0.64 mol/cerium nitrate and stirred for 1 hour using a Yamato lab stirrer. A slurry for coating was prepared by mixing and stirring. The solid content of this slurry was 56.4%, the pH was 3.35, and the viscosity was 540 cps. A porous, water-permeable cordierite monolith carrier (manufactured by Nippon Glass Co., Ltd., diameter 93 mm, length 100 mm) with 300 cells per square inch is immersed in water to absorb sufficient water, then taken out and air-filled. After blowing off the water remaining in the cell with a stream (5 kg/cm 2 ), the cell was immersed in the slurry prepared earlier for 15 minutes. The carrier is then removed, excess slurry remaining in the cell is blown away with a stream of air, and the carrier is removed.
Dry with ventilation at 110℃ for 30 minutes, then heat in air using an electric furnace.
The mixture was fired at 700°C for 1 hour to form a film on the carrier to obtain a catalyst carrier. The weight increase due to the formed film is
It was 76g. Next, this catalyst carrier is immersed in a platinum ammine aqueous solution to adsorb the catalytic metal platinum onto the catalyst carrier, and then washed with water and subsequently immersed in a rhodium chloride aqueous solution to support the catalytic metal rhodium on the catalyst carrier. After drying at 100℃, 30 at 500℃
A catalyst for purifying automobile exhaust gas was obtained by firing for a minute.
Chemical analysis of the amount of noble metal supported on this catalyst revealed that the amount of platinum supported was 1.0 g/-catalyst and the amount of rhodium supported was 0.1 g/-catalyst. Examples 2 to 6 Using the preparation method of Example 1, instead of the dispersion liquid in which activated alumina powder is dispersed (cerium nitrate aqueous solution in Example 1), yttrium nitrate aqueous solution (Example 2), zirconium nitrate aqueous solution (Example 2), zirconium nitrate aqueous solution Example 3),
Aqueous cobalt nitrate solution (Example 4) A catalyst carrier was obtained in the same manner as in Example 1, except that an aqueous lanthanum nitrate solution (Example 5) and an aqueous praseodymium nitrate solution (Example 6) were used. A catalyst metal was further supported on this catalyst carrier in the same manner as in Example 1 to obtain a catalyst for purifying automobile exhaust gas. Comparative Example 1 1000 g of previously calcined activated alumina powder with an average particle diameter of 25.1 μm and a specific surface area of 154 m 2 /g, 1800 g of water, and 80 g of nitric acid were mixed and stirred for 1 hour using a Yamato lab stirrer, and then placed in a pole mill. Utsushi was wet-milled for 17 hours. The slurry thus prepared had a solid content of 34.7%, a pH of 2.82, and a viscosity of 1100 cps. Porous, water-permeable cordierite monolith carrier with 300 cells per square inch (manufactured by Nippon Glass Co., Ltd., diameter 93 mm, length 100 mm, volume
0.679) in water and let it absorb enough water,
Remove the water remaining in the cell with air flow (5 kg/
cm2 ). The imbibed carrier was immersed in the previously prepared slurry for 15 minutes, removed, and the excess slurry remaining in the cell was blown away using a stream of air. After drying the carrier to which the activated alumina slurry was attached in this way at 110°C for 1 hour,
Baked in air at 700℃ for 1 hour using an electric furnace, 43.2g
A catalyst carrier was obtained by forming an activated alumina film on the carrier. Next, this catalyst carrier is immersed in a platinum ammine aqueous solution to adsorb the catalytic metal platinum onto the catalyst carrier, and then washed with water and subsequently immersed in a rhodium chloride aqueous solution to cause the catalytic metal rhodium to be supported on the catalyst carrier. After drying at 100°C, it was calcined at 500°C for 30 minutes to obtain a catalyst for purifying automobile exhaust gas. Chemical analysis of the amount of noble metal supported on this catalyst revealed that the amount of platinum supported was 1.0 g/-catalyst and the amount of rhodium supported was 0.1 g/-catalyst. Examples 7 to 8 and Comparative Examples 2 to 3 The catalyst supports obtained in Example 1 and Comparative Example 1 were impregnated with an aqueous palladium chloride solution and further subjected to a reduction treatment with sodium borohydride. A catalyst was obtained by supporting the catalyst metal with rhodium. Supported amount is palladium 0.5g/-catalyst, platinum 0.5g/-catalyst rhodium
It was 0.1g/-catalyst. (Example 7 and Comparative Example 2) Catalysts carrying 1 g/- of palladium and 0.1 g/- of rhodium were also prepared in the same manner as the above catalyst preparation method. (Example 8 and Comparative Example 3) Performance Evaluation Test Results Performance evaluation tests were conducted on the catalysts obtained in Examples 1 to 6 and Comparative Example 1. Performance evaluation was carried out by two types: a peel test using air flow (5 kg/cm 2 ) and a catalyst durability test. The peeling test conditions were as follows: spraying air flow (5 kg/m 2 ) onto the new catalyst coating using an air gun for 10 minutes;
The peeled amount of the coat layer was determined in weight % and was defined as the peeling rate. The catalyst durability performance test conditions are as shown below. In other words, the durability test conditions were an engine with a displacement of 3400 c.c., a rotation speed of 3600 rpm, and a boost of -300 mm.
Hg, catalyst inlet gas temperature 750℃, air fuel ratio (A/F)
14.8, the catalyst is exposed to exhaust gas for 50 hours. The performance of the durable catalyst was evaluated using an engine with a displacement of 1600 c.c.
2600rpm, boost - 360mmHg, catalyst inlet gas temperature
This is done by passing exhaust gas through the catalyst after durability at 460℃ and A/F 14.5, and calculating the purification rate for hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NO x ). Ta. These results are shown in Table 1.

【表】 さらに実施例7〜8ならびに比較例2〜3で得
られた触媒につき、上記と同様にして耐久後の触
媒の性能評価をおこないその結果を第2表に示し
た。
[Table] Furthermore, the catalysts obtained in Examples 7 and 8 and Comparative Examples 2 and 3 were evaluated for their performance after durability in the same manner as above, and the results are shown in Table 2.

〔発明の効果〕〔Effect of the invention〕

以上の結果から明白のように、この出願の発明
方法は被膜強度が強く、かつ触媒活性に秀れた触
媒担体を提供することができる。
As is clear from the above results, the inventive method of this application can provide a catalyst carrier with strong coating strength and excellent catalytic activity.

Claims (1)

【特許請求の範囲】 1 平均粒径が20μm以下である活性アルミナ粉
末と、希土類金属塩、コバルト塩およびジルコニ
ウム塩から選ばれた少くとも1種の金属塩の酸性
水溶液とを混合して得られたスラリーを、一体型
構造担体に付着させたのち、焼成することからな
る活性アルミナ50〜99重量%および上記の少くと
も1種の金属の酸化物1〜50重量%からなる被膜
を有する触媒担体の製造方法。 2 活性アルミナの比表面積が75m2/g以下であ
る特許請求の範囲第1項記載の触媒担体の製造方
法。 3 スラリーのPHが3〜5.5である特許請求の範
囲第1項記載の触媒担体の製造方法。 4 スラリーの固形分が50重量%以上である特許
請求の範囲第1項記載の触媒担体の製造方法。
[Claims] 1. A powder obtained by mixing activated alumina powder with an average particle size of 20 μm or less and an acidic aqueous solution of at least one metal salt selected from rare earth metal salts, cobalt salts, and zirconium salts. A catalyst support having a coating consisting of 50 to 99% by weight of activated alumina and 1 to 50% by weight of an oxide of at least one of the above-mentioned metals, which is obtained by depositing a slurry on an integral structural support and then sintering the slurry. manufacturing method. 2. The method for producing a catalyst carrier according to claim 1, wherein the activated alumina has a specific surface area of 75 m 2 /g or less. 3. The method for producing a catalyst carrier according to claim 1, wherein the slurry has a pH of 3 to 5.5. 4. The method for producing a catalyst carrier according to claim 1, wherein the solid content of the slurry is 50% by weight or more.
JP60095215A 1985-05-02 1985-05-02 Preparation of catalyst carrier Granted JPS61254251A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60095215A JPS61254251A (en) 1985-05-02 1985-05-02 Preparation of catalyst carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60095215A JPS61254251A (en) 1985-05-02 1985-05-02 Preparation of catalyst carrier

Publications (2)

Publication Number Publication Date
JPS61254251A JPS61254251A (en) 1986-11-12
JPH0480737B2 true JPH0480737B2 (en) 1992-12-21

Family

ID=14131525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60095215A Granted JPS61254251A (en) 1985-05-02 1985-05-02 Preparation of catalyst carrier

Country Status (1)

Country Link
JP (1) JPS61254251A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10906816B2 (en) 2016-07-29 2021-02-02 Sumitomo Chemical Company, Limited Alumina and method for producing automotive catalyst using same

Also Published As

Publication number Publication date
JPS61254251A (en) 1986-11-12

Similar Documents

Publication Publication Date Title
EP1740307B1 (en) Metal oxide particle, production process thereof and exhaust gas purifying catalyst
US6069111A (en) Catalysts for the purification of exhaust gas and method of manufacturing thereof
JPS6377543A (en) Catalyst for purifying exhaust gas
JP2002518171A (en) Exhaust gas catalyst containing rhodium, zirconia and rare earth oxide
EP1771383A2 (en) Zirconia core particles coated with ceria particles, production process thereof and exhaust gas purifying catalyst
EP1742733B1 (en) Production process for an exhaust gas purifying catalyst
KR20010043393A (en) Catalytic Material Having Improved Conversion Performance
EP3271070A1 (en) Automotive catalysts with palladium supported in an alumina-free layer
JPS63205141A (en) Catalyst for purifying exhaust gas
JPH05237390A (en) Catalyst for purification of exhaust gas
JPH06114264A (en) Production of catalyst for purification of exhaust gas
JPS62241552A (en) Monolithic catalyst carrier for purifying exhaust gas
JPH0480736B2 (en)
JPH10277389A (en) Catalyst for cleaning exhaust gas
JPH0480737B2 (en)
JP2001079405A (en) Exhaust gas cleaning catalyst, exhaust gas cleaning catalyst carrying honeycomb structure and exhaust gas cleaning method
JPH0424099B2 (en)
JP3309711B2 (en) Exhaust gas purification catalyst and method for producing the same
JP4380880B2 (en) Exhaust gas purification catalyst
JP3878766B2 (en) Catalyst carrier and exhaust gas purification catalyst
JPS61209045A (en) Catalyst for purifying exhaust gas
JP3156577B2 (en) Material for exhaust gas purification catalyst and method for producing the same
JP3314301B2 (en) Method for producing palladium (Pd) three-way catalyst
JPH09206599A (en) Catalyst for purification of exhaust gas
JPH1085604A (en) Catalyst for cleaning of exhaust gas

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term