JPH0479233A - Manufacture device of compound semiconductor crystal - Google Patents

Manufacture device of compound semiconductor crystal

Info

Publication number
JPH0479233A
JPH0479233A JP19350890A JP19350890A JPH0479233A JP H0479233 A JPH0479233 A JP H0479233A JP 19350890 A JP19350890 A JP 19350890A JP 19350890 A JP19350890 A JP 19350890A JP H0479233 A JPH0479233 A JP H0479233A
Authority
JP
Japan
Prior art keywords
gas
substrate
concentration
raw material
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19350890A
Other languages
Japanese (ja)
Inventor
Tamotsu Yamamoto
保 山本
Kazuo Ozaki
尾崎 一男
Tetsuo Saito
哲男 齊藤
Kosaku Yamamoto
山本 功作
Hiroshi Takigawa
宏 瀧川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP19350890A priority Critical patent/JPH0479233A/en
Publication of JPH0479233A publication Critical patent/JPH0479233A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make raw gas concentration formed on a substrate uniform and to realize uniformity of composition and thickness by dividing a cross section of an introduction tube of gas supplied to a reaction tube into a plurality of regions and by supplying raw gas of different concentrations to an inside of the regions. CONSTITUTION:A gas introduction tube 5 connected to a reaction tube 1 is divided into a plurality of regions so that the upper the gas introduction tube is, that is, the farther from a substrate surface the gas introduction tube is, the higher a concentration of raw gas is supplied, and the lower the gas introduction tube is, that is, the nearer the substrate surface the gas introduction tube is, the lower a concentration of raw gas is supplied. A layer of uniform gas concentration formed by a gas flow of a layer flow, that is a concentration boundary layer 14 can be cut off to take in gas flowing outside the concentration boundary layer into a concentration boundary layer and a gas control board 12 can be attached to an area near substrate 3 by a proper jig by a substrate installation stand2. Since raw gas concentration in a substrate surface can be thereby controlled constant, a compound semiconductor crystal having stable film thickness and composition can be acquired.

Description

【発明の詳細な説明】 〔概 要] 化合物半導体結晶の製造装置に関し、 形成される化合物半導体結晶層の厚さ、および組成が安
定して得られるような装置の提供を目的とし、 反応管内の基板設置台に基板を設置し、該反応管内に導
入した原料ガスを加熱分解して基板上に原料ガス成分を
被着させる結晶の製造装置に於て、前記原料ガスを反応
管内に供給するガス導入管の断面を複数領域に仕切り、
該領域内にそれぞれ濃度の異なる原料ガスを供給するよ
うにして構成する。
[Detailed Description of the Invention] [Summary] The present invention relates to an apparatus for manufacturing compound semiconductor crystals, and aims to provide an apparatus in which the thickness and composition of the compound semiconductor crystal layer to be formed are stable. In a crystal manufacturing apparatus in which a substrate is placed on a substrate installation stand, a raw material gas introduced into the reaction tube is thermally decomposed, and raw material gas components are deposited on the substrate, a gas that supplies the raw material gas into the reaction tube. The cross section of the introduction pipe is divided into multiple regions,
The structure is such that raw material gases having different concentrations are supplied to each region.

〔産業上の利用分野〕[Industrial application field]

本発明は化合物半導体結晶の製造装置に関する。 The present invention relates to an apparatus for manufacturing compound semiconductor crystals.

光検知素子の形成材料としてエネルギーバンドギャップ
の狭い水銀・カドミウム・テルルのような化合物半導体
結晶が用いられている。
Compound semiconductor crystals such as mercury, cadmium, and tellurium, which have narrow energy band gaps, are used as materials for forming photodetecting elements.

このような化合物半導体結晶としては、素子形成に都合
が良いように大面積で薄層状態の結晶が望まれ、M O
CV D (Metal Organic Chell
ical Vapor Deposition)法等の
気相エピタキシャル成長方法が用いられている。
As such a compound semiconductor crystal, a crystal with a large area and a thin layer is desired for convenient device formation.
CV D (Metal Organic Chell)
A vapor phase epitaxial growth method such as a vapor deposition method is used.

そして上記反応管1に連なるガス導入管5より水銀、ジ
エチルテルル、ジメチルカドミウムを担持した水素ガス
、およびキャリアガスとしての水素ガスが原料ガスとし
て反応管1内に供給し、この供給された原料ガスを、基
板設置台2を加熱することで熱分解し、基板3上に原料
ガスの成分より成る水銀・カドミウム・テルル(Hg+
□CdXTe)の化合物半導体結晶を成長する。そして
成長に寄与しなかった残余の原料ガスはガス排出管6よ
り外部へ排気している。
Then, hydrogen gas carrying mercury, diethyl tellurium, and dimethyl cadmium, and hydrogen gas as a carrier gas are supplied into the reaction tube 1 as raw material gases from the gas introduction tube 5 connected to the reaction tube 1, and this supplied raw material gas is thermally decomposed by heating the substrate installation stand 2, and mercury, cadmium, tellurium (Hg+
□CdXTe) compound semiconductor crystal is grown. The remaining raw material gas that did not contribute to growth is exhausted to the outside through the gas exhaust pipe 6.

〔従来の技術] 従来の気相エピタキシャル成長方法を用いて化合物半導
体結晶を製造する場合に付いて第6図を用いて説明する
[Prior Art] The production of a compound semiconductor crystal using a conventional vapor phase epitaxial growth method will be described with reference to FIG.

第6図に示すように横型の反応管1内に、カーボン等の
基板設置台2にテルル化カドミウム(CdTe)のよう
なエピタキシャル成長用の基板3を設置し、該反応管の
周囲には高周波誘導コイルより成る加熱手段4を設ける
As shown in FIG. 6, a substrate 3 for epitaxial growth such as cadmium telluride (CdTe) is placed on a substrate mounting stand 2 made of carbon or the like in a horizontal reaction tube 1, and a high-frequency induction wave is placed around the reaction tube. A heating means 4 consisting of a coil is provided.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで従来の方法では、第7図の曲m7に示すように
エピタキシャル成長用の基板3上に於いては、矢印六方
向に示すように原料ガスの流れる方向に沿って基板上に
供給される原料ガスの濃度は徐々に減少する傾向にある
By the way, in the conventional method, on the substrate 3 for epitaxial growth, as shown in curve m7 in FIG. The concentration tends to gradually decrease.

これは初期濃度がC0の所定の濃度の原料ガスを、基板
上に供給してもエピタキシャル成長の過程で、ガスの移
動方向に沿って原料ガスがエピタキシャル成長のために
消費されるためである。
This is because even if a source gas with a predetermined initial concentration of C0 is supplied onto the substrate, the source gas is consumed for epitaxial growth along the direction of gas movement during the epitaxial growth process.

そのためエピタキシャル成長用の基板上に於ける原料ガ
スの濃度は曲線7に示すような濃度勾配を生じて変動し
、基板全体にわたって均一な濃度の原料ガスが供給され
ず、そのため、基板上に形成される化合物半導体結晶の
組成や厚さが均一と成らない問題がある。
Therefore, the concentration of the source gas on the substrate for epitaxial growth fluctuates, creating a concentration gradient as shown in curve 7, and a uniform concentration of the source gas is not supplied over the entire substrate. There is a problem that the composition and thickness of compound semiconductor crystals are not uniform.

このようなガスの供給は、ガスの流れが層流状態で供給
されるのが、形成される結晶の組成、厚さが均一に成る
ために必要で、この層流となるための条件はガスの流速
、ガスの粘度、ガスの密度、反応管の直径等で決まる。
This type of gas supply is necessary in order for the crystals to be formed to have a uniform composition and thickness, so that the gas flow is supplied in a laminar flow state.The conditions for this laminar flow are It is determined by the flow rate of the gas, the viscosity of the gas, the density of the gas, the diameter of the reaction tube, etc.

従来、前記した形成される結晶の組成や厚さを均一に得
るために第6図に示すように、前記した基板設置台2に
於けるエピタキシャル成長用の基板3の設置領域を選択
的に支持棒8を用いて回転する機構を設け、これによっ
て基板を回転することで基板に形成される結晶の組成、
厚さを均一に保とうと試みた。
Conventionally, in order to obtain a uniform composition and thickness of the crystal to be formed, as shown in FIG. 8 is used to provide a rotating mechanism, which rotates the substrate to determine the composition of the crystal formed on the substrate,
I tried to keep the thickness uniform.

然し、第7図の曲線7に示すように基板上に供給される
原料ガスの濃度は直線的に変動していないため、このよ
うに基板を回転しても、基板上の原料ガスの濃度は均一
にならない問題がある。
However, as shown by curve 7 in FIG. 7, the concentration of the source gas supplied onto the substrate does not vary linearly, so even if the substrate is rotated in this way, the concentration of the source gas on the substrate remains unchanged. There is a problem that it is not uniform.

本発明は上記した問題点を解決し、基板上に形成される
原料ガスの濃度が基板の全領域にわたって均一になるよ
うにし、組成、および厚さの均一な化合物半導体結晶が
製造できる装置の提供を目的とする。
The present invention solves the above-mentioned problems and provides an apparatus capable of manufacturing a compound semiconductor crystal having a uniform composition and thickness by making the concentration of the raw material gas formed on the substrate uniform over the entire region of the substrate. With the goal.

[課題を解決するための手段] 上記した目的は本発明の原料ガスを反応管内に供給する
ガス導入管の断面を複数領域に仕切り、該領域内にそれ
ぞれ濃度の異なる原料ガスを供給するようにした製造装
置で達成される。
[Means for Solving the Problems] The above-mentioned object is to divide the cross section of the gas introduction pipe for supplying the raw material gas into the reaction tube of the present invention into a plurality of regions, and to supply the raw material gas with different concentrations into each region. Achieved with advanced manufacturing equipment.

更に前記反応管内に導入された原料ガスの流れを切断し
、該原料ガスの流れを変動させるガス流制御板を前記基
板に近接して設ける。
Further, a gas flow control plate is provided close to the substrate to cut off the flow of the raw material gas introduced into the reaction tube and vary the flow of the raw material gas.

また前記ガス導入管と別個に、前記基板面に原料ガスが
供給されるような補助ガス導入管を設け、前記ガス導入
管および補助ガス導入管より原料ガスを反応管内に供給
する。
Further, an auxiliary gas introduction pipe is provided separately from the gas introduction pipe so that the raw material gas is supplied to the substrate surface, and the raw material gas is supplied into the reaction tube from the gas introduction pipe and the auxiliary gas introduction pipe.

〔作 用〕[For production]

第4図に基板上に供給される原料ガスのガス流の模式図
を示す。図示するように基板のガス流入側のa点より、
基板のガス流出側のd点に向かって基板上に層流状態の
ガスの濃度境界層14が形成されこの濃度境界層内では
ガスの濃度は一定の状態になる。
FIG. 4 shows a schematic diagram of the gas flow of the source gas supplied onto the substrate. As shown in the figure, from point a on the gas inflow side of the substrate,
A laminar gas concentration boundary layer 14 is formed on the substrate toward point d on the gas outflow side of the substrate, and the gas concentration remains constant within this concentration boundary layer.

また第5図(a)に、前記第4図に示した基板のガス流
入側に於ける基板のa点に於ける基板上の原料ガスの濃
度を示し、第5図(b)に前記第4図に示した基板のb
点近傍に於ける基板上の原料ガスの濃度を示し、第5図
(C)に前記第4図に示した基板のc、d点近傍に於け
る基板上の原料ガスの濃度を示す。第5図(a)、第5
図(b)、第5図(C)で縦軸は原料ガスの濃度を示し
、横軸は基板表面からの高さhを示す。
Further, FIG. 5(a) shows the concentration of the raw material gas on the substrate at point a on the substrate on the gas inflow side of the substrate shown in FIG. 4, and FIG. b of the board shown in Figure 4
FIG. 5C shows the concentration of the source gas on the substrate near points c and d of the substrate shown in FIG. 4. Figure 5(a), 5th
In FIGS. 5(b) and 5(c), the vertical axis indicates the concentration of the source gas, and the horizontal axis indicates the height h from the substrate surface.

第5図(a)に示すように基板のa点では、原料ガスの
濃度は基板表面より上部の高さ方向に沿って均一の濃度
C0を示すが、第5図(b)に示すように基板のb点で
は、エピタキシャル成長の過程で原料ガスが基板上で消
費されるので、基板表面より上部の高さが61の位置で
原料ガスの濃度が均一となり、第5図(C)に示すよう
に基板のc、d点では基板表面より上部の高さがδの位
置で原料ガスの濃度が均一となる。
As shown in FIG. 5(a), at point a of the substrate, the concentration of the source gas shows a uniform concentration C0 along the height direction above the substrate surface, but as shown in FIG. 5(b), At point b of the substrate, the source gas is consumed on the substrate during the epitaxial growth process, so the concentration of the source gas becomes uniform at a height of 61 above the substrate surface, as shown in Figure 5 (C). At points c and d of the substrate, the concentration of the raw material gas becomes uniform at a position where the height above the substrate surface is δ.

この基板のc、d点に於けるガスの濃度は、エピタキシ
ャル成長が定常状態と成った濃度であるので、基板上に
於けるガスの濃度が第5図(C)の状態に、基板の全領
域上にわたって実現することが望まれる。
The gas concentration at points c and d on the substrate is the concentration at which the epitaxial growth reaches a steady state, so the gas concentration on the substrate reaches the state shown in FIG. 5(C) over the entire area of the substrate. It is hoped that this will be achieved across the board.

第5図(C)に於いては、基板の表面程ガスの濃度が低
く、基板の表面より上部方向に隔たるにつれてガスの濃
度が高くなっているので、この状態を実現するためには
、反応管内においてこの状態と間し濃度勾配を有するよ
うに原料ガスを供給すると良い。
In FIG. 5(C), the gas concentration is lower at the surface of the substrate, and the gas concentration increases as you move upwards from the surface of the substrate, so in order to achieve this state, It is preferable to supply the raw material gas so that it has a concentration gradient between this state and the inside of the reaction tube.

そのために第1図(a)および第1図(b)に示すよう
に反応管1に連なるガス導入管5を複数の領域に区分し
て該ガスの導入管の上部程、つまり基板表面より上部に
到る程、濃度の高い原料ガスを供給し、ガス導入管の下
部程、つまり基板の表面側に到る程濃度の低い原料ガス
を供給するようにする。
For this purpose, as shown in FIG. 1(a) and FIG. 1(b), the gas introduction tube 5 connected to the reaction tube 1 is divided into a plurality of regions, and the upper part of the gas introduction tube, that is, the upper part from the substrate surface. A source gas with a high concentration is supplied toward the bottom of the gas introduction pipe, and a source gas with a low concentration is supplied toward the bottom of the gas introduction pipe, that is, toward the surface of the substrate.

また第2図に示すように基板3の近傍に層流のガスの流
れに依って形成されるガス濃度が均一な層、つまり濃度
境界層14を切断し、濃度境界層の外部を流れるガスを
濃度境界層内に取り込んでガスの濃度を均一にするガス
流制御板12を、前記基板設置台2より適当な治具に依
って基板の近傍に取りつけても良い。
In addition, as shown in FIG. 2, a layer with a uniform gas concentration formed by the laminar gas flow near the substrate 3, that is, a concentration boundary layer 14, is cut, and the gas flowing outside the concentration boundary layer is cut. A gas flow control plate 12 that is taken into the concentration boundary layer to make the gas concentration uniform may be attached near the substrate from the substrate installation stand 2 using a suitable jig.

また第3図に示すように基板3の表面に直接原料ガスが
供給できるように、補助ガス導入管15を基板表面近傍
に設置して前記した第5図(C)の原料ガスの濃度勾配
の状態を実現しても良い。この補助ガス導入管は複数本
設けても良く、またこの補助ガス導入管に導入する原料
ガスは混合しても、或いは混合せずに単独で供給しても
良い。
In addition, as shown in FIG. 3, an auxiliary gas introduction pipe 15 is installed near the substrate surface so that the source gas can be directly supplied to the surface of the substrate 3, so that the concentration gradient of the source gas shown in FIG. The state may be realized. A plurality of these auxiliary gas introduction pipes may be provided, and the raw material gases introduced into this auxiliary gas introduction pipe may be mixed or may be supplied alone without being mixed.

〔実 施 例〕〔Example〕

以下、図面を用いて本発明の実施例につき詳細に説明す
る。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図(a)および第1図(b)は本発明の装置の模式
図で、第1図(b)は第1図(a)のガス導入管のlI
’線に沿った断面図である。
FIG. 1(a) and FIG. 1(b) are schematic diagrams of the apparatus of the present invention, and FIG. 1(b) is the lI of the gas introduction pipe of FIG. 1(a).
FIG.

第1図(a)および第1図(b)に図示するように、反
応管に連なるガス導入管5は拡大されて複数の領域5A
、5B、5C,5Dに区別されている。
As shown in FIG. 1(a) and FIG. 1(b), the gas introduction pipe 5 connected to the reaction tube is enlarged to form a plurality of regions 5A.
, 5B, 5C, and 5D.

そしてこの本発明のガス導入管の最上部の領域5八には
、キャリアガスとしての水素ガスを642/min、原
料ガスとしてジエチルテルルガスの分圧が2.4XIO
−’気圧、ジメチルカドミウムガスの分圧が5.0XI
O−5気圧、水銀ガスの分圧が6.0 Xl0−’気圧
となるようにして導入する。
In the uppermost region 58 of the gas introduction pipe of the present invention, hydrogen gas is supplied as a carrier gas at a rate of 642/min, and diethyl tellurium gas is supplied at a partial pressure of 2.4XIO as a raw material gas.
-' Atmospheric pressure, the partial pressure of dimethyl cadmium gas is 5.0XI
The pressure of mercury gas is 0-5 atm and the partial pressure of mercury gas is 6.0 Xl0-' atm.

また領域5Bには、キャリアガスとしての水素ガスを6
127m1n、原料ガスとして領域5Aに供給したガス
濃度の40%のジエチルテルルガスの分圧が0.4X2
.4 Xl0−’気圧、ジメチルカドミウムガスの分圧
が0.4 X5.OxlO−5気圧、水銀ガスの分圧が
0.4X6.OXl0−’気圧となるようにして導入す
る。
Further, hydrogen gas as a carrier gas is added to the region 5B.
127mln, the partial pressure of diethyl tellurium gas at 40% of the gas concentration supplied to area 5A as raw material gas is 0.4X2
.. 4 Xl0-' atmospheric pressure, the partial pressure of dimethyl cadmium gas is 0.4 X5. OxlO-5 atmospheres, partial pressure of mercury gas is 0.4X6. The mixture is introduced so that the pressure is OXl0-'atmospheric pressure.

また領域5Cには、キャリアガスとしての水素ガスを6
42/min、原料ガスとして領域5Aに供給したガス
濃度の20%のジエチルテルルガスの分圧が0.2X2
.4 Xl0−’気圧、ジメチルカドミウムガスの分圧
が0.2 x5.OxlO−5気圧、水銀ガスの分圧が
0.2X6.OXl0−’気圧となるようにして導入す
る。
In addition, hydrogen gas as a carrier gas is added to the region 5C.
42/min, the partial pressure of diethyl tellurium gas at 20% of the gas concentration supplied to region 5A as a raw material gas is 0.2X2
.. 4 Xl0-' atmospheric pressure, the partial pressure of dimethyl cadmium gas is 0.2 x5. OxlO-5 atmospheres, partial pressure of mercury gas is 0.2X6. The mixture is introduced so that the pressure is OXl0-'atmospheric pressure.

またガス導入管の最下部の領域5Dには、キャリアガス
としての水素ガスを61 /min、原料ガスとして領
域5Aに供給したガス濃度の15%のジエチルテルルガ
スの分圧が0.15X2.4 Xl0−’気圧、ジメチ
ルカドミウムガスの分圧が0.15X5.OXl0−’
気圧、水銀ガスの分圧が0.15X6.OXl0−’気
圧となるようにして導入する。
Further, in the region 5D at the bottom of the gas introduction pipe, hydrogen gas was supplied as a carrier gas at 61/min, and a partial pressure of diethyl tellurium gas at a concentration of 15% of the gas supplied to the region 5A as a raw material gas was 0.15×2.4. Xl0-' atmospheric pressure, the partial pressure of dimethyl cadmium gas is 0.15X5. OXl0-'
The atmospheric pressure and partial pressure of mercury gas are 0.15X6. The mixture is introduced so that the pressure is OXl0-'atmospheric pressure.

このようにすれば、前記した第5図(C)に示すような
基板上での原料ガスの濃度分布が得られ、組成および厚
さの均一な化合物半導体結晶が得られる。
In this way, the concentration distribution of the raw material gas on the substrate as shown in FIG. 5(C) described above can be obtained, and a compound semiconductor crystal having a uniform composition and thickness can be obtained.

また第2図に示すように基板3に近接して石英、或いは
カーボンよりなるガス流制御板12を、基板設置台2の
側方より伸びる治具13等を用いて取りつける。そして
基板上に原料ガスを層流状態で供給することで基板上に
形成されるガス濃度の均一な領域、つまり原料ガスの濃
度境界層14を、このガス流量制御板12で切断して、
濃度境界層14の外部よりガス流が流入するようにして
、ガスの濃度が基板上の全領域で一定に成るようにする
か、或いは基板上でガスの濃度が直線的に変化するよう
にしても良い。このガス流制御板は1枚でも、或いは複
数枚でも良い。
Further, as shown in FIG. 2, a gas flow control plate 12 made of quartz or carbon is attached close to the substrate 3 using a jig 13 or the like extending from the side of the substrate installation stand 2. Then, by supplying the raw material gas onto the substrate in a laminar flow state, a region with a uniform gas concentration is formed on the substrate, that is, a concentration boundary layer 14 of the raw material gas is cut by the gas flow rate control plate 12.
The gas flow may be introduced from outside the concentration boundary layer 14 so that the gas concentration is constant over the entire area on the substrate, or the gas concentration may vary linearly on the substrate. Also good. The number of gas flow control plates may be one or more.

またその他の実施例として第3図に示すようにエピタキ
シャル成長用の基板3上に原料ガスが直接供給されるよ
うに補助ガス導入管15を設け、前記したガス導入管5
より原料ガスを導入するとともに、この補助ガス導入管
15より単独の原料ガスか、或いは混合した原料ガスを
供給し、前記補助ガス導入管より反応管内に導入される
原料ガス濃度を基板表面のガス濃度が一定になるか、或
いは直線的に低下するようにして、ガス導入管、並びに
補助ガス導入管より原料ガスを供給しても良い。
As another example, as shown in FIG. 3, an auxiliary gas introduction pipe 15 is provided so that the raw material gas is directly supplied onto the substrate 3 for epitaxial growth.
At the same time, a single raw material gas or a mixture of raw material gases is supplied from this auxiliary gas introduction pipe 15, and the concentration of the raw material gas introduced into the reaction tube from the auxiliary gas introduction pipe is adjusted to the concentration of the gas on the substrate surface. The raw material gas may be supplied from the gas introduction pipe and the auxiliary gas introduction pipe so that the concentration remains constant or decreases linearly.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように本発明によれば、基板表
面に於ける原料ガス濃度を一定に制御できるため、膜厚
、および組成が安定した化合物半導体結晶が得られる効
果がある。
As is clear from the above description, according to the present invention, the concentration of the source gas on the substrate surface can be controlled to a constant level, so that a compound semiconductor crystal having a stable film thickness and composition can be obtained.

図において、 1は反応管、2は基板設置台、3は基板、5はガス導入
管、12はガス流制御板、13は治具、14は濃度境界
層、15は補助ガス導入管を示す。
In the figure, 1 is a reaction tube, 2 is a substrate installation stand, 3 is a substrate, 5 is a gas introduction tube, 12 is a gas flow control plate, 13 is a jig, 14 is a concentration boundary layer, and 15 is an auxiliary gas introduction tube. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)および第1図(b)は本発明の装置の模式
第2図は本発明の装置に用いるガス流制御板の説明図、 第3図は本発明の装置に用いる補助ガス導入管の説明図
、 第4図は基板上の原料ガス流の模式図、第5図(a)、
第5図(b)および第5図(C)は基板上の各位置に於
けるガス濃度分布図、 第6図は従来の方法に用いる装置の模式図、第7図は従
来の方法に於ける基板上のガス濃度分布図である。
Figures 1(a) and 1(b) are schematic diagrams of the device of the present invention; Figure 2 is an explanatory diagram of the gas flow control plate used in the device of the present invention; and Figure 3 is an illustration of the auxiliary gas used in the device of the present invention. An explanatory diagram of the introduction pipe, Figure 4 is a schematic diagram of the raw material gas flow on the substrate, Figure 5 (a),
Figures 5(b) and 5(C) are gas concentration distribution diagrams at various positions on the substrate, Figure 6 is a schematic diagram of the apparatus used in the conventional method, and Figure 7 is the diagram of the gas concentration distribution at each position on the substrate. FIG. 3 is a gas concentration distribution diagram on a substrate.

Claims (3)

【特許請求の範囲】[Claims] (1)反応管(1)内の基板設置台(2)にエピタキシ
ャル成長用の基板(3)を設置し、該反応管(1)内に
導入した原料ガスを加熱分解して前記基板上に原料ガス
成分を被着させる結晶の装置に於て、前記原料ガスを反
応管内に供給するガス導入管(5)の断面を複数領域に
仕切り、該領域内にそれぞれ濃度の異なる原料ガスを供
給するようにしたことを特徴とする化合物半導体結晶の
製造装置。
(1) A substrate (3) for epitaxial growth is installed on the substrate installation stand (2) in the reaction tube (1), and the raw material gas introduced into the reaction tube (1) is thermally decomposed to form the raw material on the substrate. In the crystal device for depositing gas components, the cross section of the gas introduction pipe (5) for supplying the raw material gas into the reaction tube is partitioned into a plurality of regions, and raw material gas with different concentrations is supplied to each region. A compound semiconductor crystal manufacturing device characterized by:
(2)前記反応管(1)内に導入された原料ガスの流れ
を切断し、該原料ガスの流れを変動させ、基板上に形成
されたガスの濃度境界層(14)にガスの流れを取り込
むガス流制御板(12)を前記基板に近接して設けたこ
とを特徴とする請求項(1)記載の化合物半導体結晶の
製造装置。
(2) Cut off the flow of the raw material gas introduced into the reaction tube (1), vary the flow of the raw material gas, and direct the gas flow to the gas concentration boundary layer (14) formed on the substrate. 2. The compound semiconductor crystal manufacturing apparatus according to claim 1, wherein a gas flow control plate (12) to be taken in is provided close to the substrate.
(3)前記ガス導入管(5)と別個に、前記基板表面に
原料ガスが直接供給されるような補助ガス導入管(15
)を設け、前記ガス導入管(5)および補助ガス導入管
(15)より原料ガスを反応管内に供給することを特徴
とする請求項(1)記載の化合物半導体結晶の製造装置
(3) Separately from the gas introduction pipe (5), an auxiliary gas introduction pipe (15
), and the raw material gas is supplied into the reaction tube from the gas introduction pipe (5) and the auxiliary gas introduction pipe (15).
JP19350890A 1990-07-20 1990-07-20 Manufacture device of compound semiconductor crystal Pending JPH0479233A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19350890A JPH0479233A (en) 1990-07-20 1990-07-20 Manufacture device of compound semiconductor crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19350890A JPH0479233A (en) 1990-07-20 1990-07-20 Manufacture device of compound semiconductor crystal

Publications (1)

Publication Number Publication Date
JPH0479233A true JPH0479233A (en) 1992-03-12

Family

ID=16309225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19350890A Pending JPH0479233A (en) 1990-07-20 1990-07-20 Manufacture device of compound semiconductor crystal

Country Status (1)

Country Link
JP (1) JPH0479233A (en)

Similar Documents

Publication Publication Date Title
JP2668687B2 (en) CVD device
JPH0479233A (en) Manufacture device of compound semiconductor crystal
EP0311446A2 (en) Apparatus for producing compound semiconductor
JPH0547669A (en) Vapor growth apparatus
JPH05251359A (en) Vapor silicon epitaxial growth device
JP2008506617A (en) Method for depositing a film containing Si and Ge
JPH08250429A (en) Vapor growth method for semiconductor and its equipment
JPH0888187A (en) Equipment and method for vapor growth of semiconductor
JPH08236458A (en) Manufacture of semiconductor substrate
JPH0296324A (en) Manufacture of semiconductor device and vapor growth device used for it
JPH02296799A (en) Method for growing silicon carbide
EP0757117B1 (en) Method and apparatus for deposition of material on a semiconductor wafer
JP2002261021A (en) Apparatus and method for vapor-phase growth
SU1074161A1 (en) Device for gas epitaxy of semiconductor connections
JPH07142406A (en) Method and system for semiconductor vapor phase epitaxial growth
JPH04338636A (en) Semiconductor vapor growth device
JPH09260291A (en) Vapor growth equipment and method therefor
JPH07193003A (en) Vapor growth device and vapor growth method
JPS6060715A (en) Vapor growth method
JPH04337627A (en) Vapor growth device
JPS603122A (en) Vapor growth device
JPH02181938A (en) Vapor phase epitaxial growth apparatus
JPH06302516A (en) Vapor growth method
JPS6353160B2 (en)
JPH02219246A (en) Vapor epitaxial growth method