JPH06302516A - Vapor growth method - Google Patents

Vapor growth method

Info

Publication number
JPH06302516A
JPH06302516A JP8601893A JP8601893A JPH06302516A JP H06302516 A JPH06302516 A JP H06302516A JP 8601893 A JP8601893 A JP 8601893A JP 8601893 A JP8601893 A JP 8601893A JP H06302516 A JPH06302516 A JP H06302516A
Authority
JP
Japan
Prior art keywords
susceptor
thin film
film thickness
variation
vapor phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8601893A
Other languages
Japanese (ja)
Inventor
Hisataka Nagai
久隆 永井
Tadaitsu Tsuchiya
忠厳 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP8601893A priority Critical patent/JPH06302516A/en
Publication of JPH06302516A publication Critical patent/JPH06302516A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To uniform the thickness of thin films by specifying the total number of susceptor rotations. CONSTITUTION:A susceptor with a substrate held thereon is rotated, and further material gas is fed along the surface of the substrate to grow a crystal thin film. The total number R of susceptor rotations for a period from the start to the end of the growth of the crystal thin film is determined by an equation of R>=L/2x-0.5, where L (%) is the variability of the thickness of the thin film when the susceptor is at a standstill, and x (%) is the one when it is rotated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、サセプタを回転しつつ
基板上に薄膜を形成する気相成長法に係り、特に適切な
サセプタの総回転数を見出して薄膜特性を向上するもの
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vapor phase growth method for forming a thin film on a substrate while rotating a susceptor, and more particularly to finding a suitable total number of rotations of the susceptor to improve thin film characteristics.

【0002】[0002]

【従来の技術】気相成長法は、反応炉内のサセプタを回
転しつつ、これに支持した基板上に原料ガスを流して薄
膜を形成するものであり、GaAsやAlGaAsなど
の化合物半導体の薄膜単結晶を成長するのに好適であ
る。原料ガスとして、高純度の有機金属・水素化物・キ
ャリアガスを用いており、分子線エピタキシーのような
超高真空を必要としないので量産性に優れている。
2. Description of the Related Art The vapor phase growth method is a method of rotating a susceptor in a reaction furnace and flowing a source gas over a substrate supported by the susceptor to form a thin film, which is a thin film of a compound semiconductor such as GaAs or AlGaAs. Suitable for growing single crystals. High-purity organic metal, hydride, and carrier gas are used as the source gas, and it does not require ultra-high vacuum such as molecular beam epitaxy, so it is excellent in mass productivity.

【0003】典型的な横型気相成長装置にあっては、基
板を支持するサセプタを回転しつつ、基板と平行に原料
ガスを流して薄膜を形成する。サセプタを回転しつつ薄
膜を形成するのは、サセプタが静止していると、基板に
成長する結晶の膜厚が原料ガスの流れ方向にばらつきを
もつためであり、サセプタを回転して膜厚ばらつきを少
なくしている。
In a typical horizontal vapor phase growth apparatus, a raw material gas is flowed in parallel with a substrate to form a thin film while rotating a susceptor supporting the substrate. The reason why the thin film is formed while rotating the susceptor is that when the susceptor is stationary, the film thickness of the crystal growing on the substrate varies in the flow direction of the source gas. Is reduced.

【0004】[0004]

【発明が解決しようとする課題】上述したように従来の
横型気相成長装置では、サセプタが静止している場合に
は、基板に成長する結晶の膜厚は、原料ガスの流れ方向
にばらつきをもっている。そこで、サセプタを回転させ
て基板に成長する薄膜の膜厚分布を均一にしている。
As described above, in the conventional lateral vapor phase growth apparatus, when the susceptor is stationary, the film thickness of the crystal grown on the substrate varies in the flow direction of the source gas. There is. Therefore, the susceptor is rotated to make the film thickness distribution of the thin film grown on the substrate uniform.

【0005】サセプタを回転させる場合、サセプタを一
定速度で回転させていると、基板に成長する結晶の薄膜
は、その膜厚が厚ければ、その成長開始時点から終了時
点までに要する時間が大きいので、サセプタの総回転数
は多くなる。逆に膜厚が薄ければ総回転数は少なくな
る。また、基板に薄膜を成長している間のサセプタの総
回転数が多いときは、膜厚が厚いのでばらつきの影響は
少ないが、サセプタの総回転数が少ないときは、膜厚が
薄いので膜厚に対するばらつきの影響が大きくなる。
When rotating the susceptor, if the susceptor is rotated at a constant speed, a thin crystal thin film that grows on the substrate requires a long time from the growth start time to the growth end time if the film thickness is large. Therefore, the total number of rotations of the susceptor increases. On the contrary, if the film thickness is thin, the total number of rotations is small. Also, when the total number of rotations of the susceptor during the growth of the thin film on the substrate is large, the film thickness is large and the influence of the variation is small, but when the total number of rotations of the susceptor is small, the film thickness is thin. The influence of the variation on the thickness becomes large.

【0006】この点で、従来では、サセプタの総回転数
が少なく膜厚の薄いときでも、厚いときと区別すること
なく、サセプタを定速回転していたため、結晶層の成長
開始から終了までのサセプタの総回転数Rが整数でない
ときには、その結晶層の膜厚が基板内で不均一になると
いう問題があり、各種半導体素子の性能や歩留まりの低
下を招いていた。この問題は、薄膜の膜厚が薄くなれば
成るほど顕著になる。
In this respect, in the past, even when the total number of revolutions of the susceptor is small and the film thickness is thin, the susceptor is rotated at a constant speed without being distinguished from when it is thick. When the total number of revolutions R of the susceptor is not an integer, there is a problem that the film thickness of the crystal layer becomes non-uniform within the substrate, resulting in a decrease in performance and yield of various semiconductor elements. This problem becomes more remarkable as the thickness of the thin film becomes smaller.

【0007】本発明の目的は、サセプタの総回転数を規
定することによって、前記した従来技術の欠点を解消
し、薄膜の膜厚を均一化することができる気相成長法を
提供することにある。
An object of the present invention is to provide a vapor phase growth method capable of eliminating the above-mentioned drawbacks of the prior art and making the thickness of a thin film uniform by defining the total number of revolutions of the susceptor. is there.

【0008】[0008]

【課題を解決するための手段】本発明の気相成長法は、
反応炉に原料ガスを導入し、その反応炉内のサセプタを
回転しつつサセプタに支持した基板上に薄膜を形成する
気相成長法において、サセプタが静止しているときの薄
膜の膜厚ばらつきをL(%)、サセプタを回転して薄膜
を成長した時の薄膜の成長開始から終了までのサセプタ
総回転数をR(回)、サセプタを回転した時の薄膜の膜
厚ばらつきをx(%)とすると、 R≧L/2x−0.5 の関係を満たすようにしたものである。ここでサセプタ
の総回転数Rは、回転速度ではなく、薄膜を成長してい
る間に実際にサセプタが何回回転したかを示す回数を意
味し、単位は回である。
The vapor phase growth method of the present invention comprises:
In the vapor phase epitaxy method in which a source gas is introduced into a reaction furnace and a thin film is formed on a substrate supported by the susceptor while rotating the susceptor in the reaction furnace, the film thickness variation of the thin film when the susceptor is stationary is measured. L (%), the total number of rotations of the susceptor from the start to the end of thin film growth when the susceptor is rotated to grow a thin film is R (times), and the film thickness variation of the thin film when the susceptor is rotated is x (%). Then, the relationship of R ≧ L / 2x−0.5 is satisfied. Here, the total rotation speed R of the susceptor means not the rotation speed but the number of times the susceptor actually rotates during the growth of the thin film, and the unit is times.

【0009】この場合において、薄膜の均一性をさらに
向上させるために、サセプタの総回転数Rを整数とする
ことが好ましい。また、本発明方法が対象とする好適な
薄膜は化合物半導体の単層のみならず多層の薄膜であっ
てもよい。
In this case, in order to further improve the uniformity of the thin film, it is preferable that the total rotational speed R of the susceptor be an integer. Further, a suitable thin film targeted by the method of the present invention may be not only a single layer of a compound semiconductor but also a multi-layered thin film.

【0010】[0010]

【作用】サセプタの回転数Rは、基板上に形成される薄
膜の膜厚を均一化するために行われるため、サセプタが
静止しているときの薄膜の膜厚ばらつきLと密接な関係
がある。本発明はそのRとLとの関係を見出したもので
ある。
Since the rotation speed R of the susceptor is performed to make the film thickness of the thin film formed on the substrate uniform, it is closely related to the film thickness variation L of the thin film when the susceptor is stationary. . The present invention has found the relationship between R and L.

【0011】R≧L/2x−0.5の定性的な説明をす
る。サセプタを回転した時の薄膜の膜厚ばらつきxを改
善してある所定値に抑え込むためには、サセプタが静止
しているときの薄膜の膜厚ばらつきLが大きい場合に
は、そのばらつきを均一化するために総回転数を上げる
必要がある。逆にLが小さい場合には総回転数は小さく
てもよい。
A qualitative explanation of R ≧ L / 2 × −0.5 will be given. In order to improve the film thickness variation x of the thin film when the susceptor is rotated to be suppressed to a predetermined value, if the film thickness variation L of the thin film when the susceptor is stationary is large, the variation is uniformized. In order to do so, it is necessary to increase the total number of rotations. Conversely, when L is small, the total number of rotations may be small.

【0012】このようにxが所定値に抑え込まれるよう
に、サセプタの総回転数の下限を規定したので、結晶薄
膜の成長開始から終了までのサセプタの総回転数Rが整
数でないときでも、その結晶薄膜の膜厚の基板内での均
一化が図れる。
Since the lower limit of the total rotation speed of the susceptor is defined so that x can be suppressed to a predetermined value, even when the total rotation speed R of the susceptor from the start to the end of the growth of the crystal thin film is not an integer, The thickness of the crystal thin film can be made uniform within the substrate.

【0013】[0013]

【実施例】図3は、本発明の気相成長法を実施するため
の横型気相成長装置の一実施例を示す縦断面図である。
一端にガス導入管2、他端にガス排気管3を備えた横型
反応炉1の中央に、炉内と連通するチャンバ8を備え
る。そのチャンバ8内にサセプタ5により1枚の基板4
を、基板表面を上にして炉軸と平行に支持する。サセプ
タ5は、サセプタ支持軸7を介してモータ9により回転
自在に支持される。基板4はヒータ6によりサセプタ5
を介して加熱される。
EXAMPLE FIG. 3 is a vertical sectional view showing an example of a horizontal vapor phase growth apparatus for carrying out the vapor phase growth method of the present invention.
A chamber 8 communicating with the inside of the furnace is provided at the center of the horizontal reactor 1 having a gas introduction pipe 2 at one end and a gas exhaust pipe 3 at the other end. One substrate 4 is placed in the chamber 8 by the susceptor 5.
Are supported parallel to the furnace axis with the substrate surface facing up. The susceptor 5 is rotatably supported by a motor 9 via a susceptor support shaft 7. Substrate 4 is susceptor 5 by heater 6.
Is heated through.

【0014】このような横型気相成長装置では、原料の
有機金属(例えば、トリメチルガリウム:Ga(C
3 3 、トリメチルアルミニウム:Al(C
3 3 )、水素化物(例えば、アルシン;AsH3
)、およびキャリアガス(例えば水素H2 )をガス導
入管2から反応炉1に導入する。導入された原料は熱分
解して、ヒータ6により加熱されたサセプタ5上の基板
4に化合物半導体結晶(例えば、GaAs、AlGaA
s)が成長する。なお、反応したガスはガス排気管9か
ら排出する。
In such a horizontal vapor phase growth apparatus, a raw material organic metal (for example, trimethylgallium: Ga (C
H 3 ) 3 , trimethylaluminum: Al (C
H 3) 3), hydrides (e.g., arsine; AsH3
) And a carrier gas (for example, hydrogen H2) are introduced into the reaction furnace 1 through the gas introduction pipe 2. The introduced raw material is thermally decomposed, and a compound semiconductor crystal (eg, GaAs, AlGaA) is formed on the substrate 4 on the susceptor 5 heated by the heater 6.
s) grows. The reacted gas is discharged from the gas exhaust pipe 9.

【0015】ところで、サセプタが静止した状態では、
膜厚は、原料ガスの流れ方向にあるばらつきL(%)を
もって不均一になることは既述したところである。図4
は、そのようなサセプタが静止した状態での薄膜の膜厚
分布を示す。サセプタ5を回転することにより、膜厚を
均一にすることができるが、薄膜が極めて薄かったり、
あるいはばらつきLが大きかったりすると、その薄膜の
成長開始から終了までの間のサセプタ5の総回転数Rが
整数ではないときには、膜厚が不均一になる可能性があ
る。すなわち、サセプタが1回転し終わると膜厚は均一
になるが、半回転止りのときはばらつきを吸収できない
ため、膜厚が不均一になる。
By the way, when the susceptor is stationary,
It has already been described that the film thickness becomes non-uniform with some variation L (%) in the flow direction of the source gas. Figure 4
Shows the film thickness distribution of the thin film when such a susceptor is stationary. Although the film thickness can be made uniform by rotating the susceptor 5, the thin film is extremely thin,
Alternatively, if the variation L is large, the film thickness may become non-uniform when the total number of rotations R of the susceptor 5 from the start to the end of growth of the thin film is not an integer. That is, the film thickness becomes uniform after the susceptor completes one rotation, but when the rotation is stopped for half a rotation, the variation cannot be absorbed, so that the film thickness becomes uneven.

【0016】例えば、サセプタ5が1回転する間に結晶
が厚さdだけ成長すると仮定すると、その結晶は、サセ
プタ5がR回だけ回転したとき、厚さはdRになる。特
に、サセプタ5が半回転だけ回転したときの厚さはd/
2になる。サセプタ5が半回転したことによる膜厚のば
らつきは、おおよそ (d/2)(L/100)=dL/200 (1) になることが分かっている。つまり、結晶の膜厚d(R
+0.5)に対して x=(dL/200)×100/d(R+0.5) =L/2(R+0.5)(%) (2) のばらつきが発生する。
For example, assuming that a crystal grows by a thickness d during one rotation of the susceptor 5, the crystal has a thickness dR when the susceptor 5 rotates R times. In particular, the thickness when the susceptor 5 is rotated half a turn is d /
It becomes 2. It is known that the variation in the film thickness due to the half rotation of the susceptor 5 is approximately (d / 2) (L / 100) = dL / 200 (1). That is, the film thickness d (R
With respect to +0.5, x = (dL / 200) × 100 / d (R + 0.5) = L / 2 (R + 0.5) (%) (2) occurs.

【0017】したがって、膜厚分布を均一にするために
は、式(2)サセプタ5の総回転数Rを、 R≧L/(2x−0.5) (3) にする必要がある。
Therefore, in order to make the film thickness distribution uniform, it is necessary to set the total rotational speed R of the susceptor 5 of the formula (2) to R ≧ L / (2x−0.5) (3).

【0018】この式(3)で、サセプタ5を回転したと
きのばらつきをx=1(%)にしたときのLとRの関係
をグラフ化して示すと図1のようになる。なお、同図
中、L=1(%)のときは、回転しなくてもx=1
(%)を確保できることを意味する。
In this equation (3), the relationship between L and R when the variation when the susceptor 5 is rotated is set to x = 1 (%) is shown in the form of a graph in FIG. In the figure, when L = 1 (%), x = 1 without rotation.
(%) Means that it can be secured.

【0019】本実施例によれば、サセプタの総回転数
を、式(3)を満たすようなRとすることにより、薄膜
が極めて薄かったり、あるいはばらつきLが大きかった
りした場合において、結晶層の成長開始から終了までの
サセプタの総回転数Rが整数でないときでも、その結晶
層の膜厚が基板内での均一化が図れる。
According to the present embodiment, the total number of rotations of the susceptor is set to R so as to satisfy the expression (3), so that when the thin film is extremely thin or the variation L is large, the crystal layer Even if the total rotation speed R of the susceptor from the start to the end of growth is not an integer, the film thickness of the crystal layer can be made uniform in the substrate.

【0020】さて次に、実際に上式(3)が正しいこと
を確認するために、図3の横型気相成長装置を用いてH
EMT(High Electron Mobility Transistor )構造の
薄膜結晶を気相成長して、その電気特性を調べた。サセ
プタ5を静止したときの薄膜の膜厚ばらつきはL=20
(%)であった。従って、サセプタ5を回転したときの
薄膜の膜厚ばらつきがx=1(%)になるサセプタ5の
総回転数Rは、式(3)から計算上、R≧9.5となる
はずである。
Next, in order to confirm that the above equation (3) is actually correct, H is measured by using the horizontal vapor phase growth apparatus of FIG.
A thin film crystal having an EMT (High Electron Mobility Transistor) structure was vapor-grown and its electrical characteristics were examined. The thickness variation of the thin film when the susceptor 5 is stationary is L = 20
(%)Met. Therefore, the total number of revolutions R of the susceptor 5 in which the variation in the film thickness of the thin film when the susceptor 5 is rotated is x = 1 (%) should be R ≧ 9.5 in the calculation from the equation (3). .

【0021】そこで、HEMT構造結晶の薄膜で最も薄
い薄膜(スペーサ層)を成長させるときのサセプタ総回
転数Rを、上記計算結果も含まれるように、次のように
変えて、電気特性のばらつき、すなわち膜厚ばらつきに
対応するシートキャリア濃度ns のばらつきΔn(%)
を調べた。
Therefore, the total rotational speed R of the susceptor when the thinnest thin film (spacer layer) of the HEMT structure crystal is grown is changed as follows so as to include the above calculation result, and the variation of the electrical characteristics is changed. , That is, the variation Δn (%) in the sheet carrier concentration n s corresponding to the variation in film thickness
I checked.

【0022】R=2.5、R=5.0、R=9.5 R=2.5のとき△n=4.5(%)、R=5.0のと
き△n=1.1(%)、R=9.5のとき△n=1.2
(%)となった。
R = 2.5, R = 5.0, R = 9.5 When R = 2.5, Δn = 4.5 (%), When R = 5.0, Δn = 1.1 (%), When R = 9.5 Δn = 1.2
It became (%).

【0023】計算通りR=9.5で△nは小さくなって
いる。R=2.5では総回転数Rが小さいために△nは
大きくなっている。なお、R=5.0では、R≧9.5
を満たしていないが、Rが整数であるため△nは小さく
なっている。
As calculated, Δn is small at R = 9.5. At R = 2.5, Δn is large because the total rotational speed R is small. When R = 5.0, R ≧ 9.5
However, Δn is small because R is an integer.

【0024】このように本具体例において式(3)が正
しいことが立証され、所望する薄膜の膜厚ばらつきを得
るためのサセプタの総回転数を式(3)から決定するこ
とにより、HEMT構造結晶の電気特性のばらつきを小
さくして、歩留まりを向上することができた。
Thus, in this example, it was proved that the equation (3) was correct, and by determining the total number of revolutions of the susceptor for obtaining the desired thin film thickness variation from the equation (3), the HEMT structure was obtained. The yield could be improved by reducing the variation in the electrical characteristics of the crystal.

【0025】なお、上記実施例では、サセプタに支持す
る基板が1枚である場合について説明したが、本発明は
これに限定されるものではなく、図2に示す変形例のよ
うに、サセプタ15上に複数の基板4をセットしてもよ
い。この場合にも、サセプタの総回転数を式(3)を満
たすように規定すれば、サセプタ15にセットされた全
ての基板4の薄層の膜厚分布を同じにすることができ
る。また、本発明を、基板を下向きに支持する気相成長
法にも適用できることは勿論である。
In the above embodiment, the case where the number of substrates supported by the susceptor is one has been described, but the present invention is not limited to this, and as in the modification shown in FIG. A plurality of substrates 4 may be set on top. Also in this case, if the total number of rotations of the susceptor is defined so as to satisfy the expression (3), the film thickness distribution of the thin layers of all the substrates 4 set on the susceptor 15 can be made the same. Further, it is needless to say that the present invention can be applied to a vapor phase growth method in which a substrate is supported downward.

【0026】[0026]

【発明の効果】【The invention's effect】

(1)請求項1に記載の気相成長法によれば、サセプタ
静止時のばらつきと、目標とする回転時のばらつきとか
らサセプタの総回転数を規定するようにしたので、サセ
プタを定速回転していた従来の場合と異なり、結晶薄膜
の成長開始から終了までのサセプタの総回転数が整数で
ないときでも、基板内の膜厚を均一化できる。この膜厚
の均一化により、素子の歩留まりの向上を図ることがで
きる。特に、本発明はHEMT構造結晶のスペーサ層の
ような極端に薄い結晶薄膜を成長させるような時に有効
になる。
(1) According to the vapor phase growth method of claim 1, the total number of revolutions of the susceptor is specified based on the variation when the susceptor is stationary and the variation when the susceptor is stationary. Unlike the conventional case of rotating, the film thickness in the substrate can be made uniform even when the total number of rotations of the susceptor from the start to the end of growth of the crystal thin film is not an integer. By making the film thickness uniform, the yield of the device can be improved. In particular, the present invention is effective when growing an extremely thin crystal thin film such as a spacer layer of a HEMT structure crystal.

【0027】(2)請求項2に記載の気相成長法によれ
ば、規定されたサセプタの総回転数を特に整数としたの
で、基板内の膜厚を大幅に均一化できる。
(2) According to the vapor phase growth method of the second aspect, since the specified total number of revolutions of the susceptor is set to be an integer, the film thickness in the substrate can be made largely uniform.

【0028】(3)請求項3に記載の気相成長法によれ
ば、化合物半導体の薄膜に適用したので、化合物半導体
からなる各種半導体素子の性能や歩留まりの向上を図る
こと。
(3) Since the vapor phase growth method according to the third aspect is applied to a thin film of a compound semiconductor, the performance and the yield of various semiconductor devices made of the compound semiconductor should be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例によるサセプタの回転による膜
厚のバラツキを1%にしたときに、サセプタを静止した
時の膜厚のばらつきの大きさLと、サセプタの総回転数
Rとの関係を示す特性図。
FIG. 1 is a graph showing the magnitude L of variation in film thickness when the susceptor is stationary and the total number of revolutions R of the susceptor when the variation in film thickness due to rotation of the susceptor according to the embodiment of the present invention is set to 1%. The characteristic diagram which shows a relationship.

【図2】本発明の変形例を示す複数の基板を支持するサ
セプタの平面図。
FIG. 2 is a plan view of a susceptor that supports a plurality of substrates according to a modification of the present invention.

【図3】本発明方法を実施するための横型気相成長装置
の一実施例を示す縦断面図。
FIG. 3 is a vertical sectional view showing an embodiment of a horizontal vapor phase growth apparatus for carrying out the method of the present invention.

【図4】サセプタが静止した時の原料ガスの流れ方向の
基板内の膜厚分布を示す特性図。
FIG. 4 is a characteristic diagram showing the film thickness distribution in the substrate in the flow direction of the source gas when the susceptor is stationary.

【符号の説明】[Explanation of symbols]

1 反応炉 2 ガス導入管 3 ガス排気管 4 基板 5 サセプタ 6 ヒータ 7 サセプタ支持軸 8 チャンバ 9 モータ 1 Reactor 2 Gas Inlet Pipe 3 Gas Exhaust Pipe 4 Substrate 5 Susceptor 6 Heater 7 Susceptor Support Shaft 8 Chamber 9 Motor

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】反応炉に原料ガスを導入し、その反応炉内
のサセプタを回転しつつサセプタに支持した基板上に薄
膜を形成する気相成長法において、サセプタが静止して
いるときの薄膜の膜厚ばらつきをL(%)、サセプタを
回転しつつ薄膜を成長した時の薄膜の成長開始から終了
までのサセプタの総回転数をR(回)、サセプタを回転
した時の薄膜の膜厚ばらつきをx(%)とすると、 R≧L/2x−0.5 の関係を満たすことを特徴とする気相成長法。
1. A vapor phase growth method in which a raw material gas is introduced into a reaction furnace and a thin film is formed on a substrate supported by the susceptor while rotating the susceptor in the reaction furnace, when the susceptor is stationary. Is L (%), the total number of rotations of the susceptor from the start to the end of thin film growth when the thin film is grown while rotating the susceptor is R (times), and the thin film thickness when the susceptor is rotated A vapor phase growth method characterized in that the relation of R ≧ L / 2x−0.5 is satisfied, where the variation is x (%).
【請求項2】上記サセプタの総回転数Rが整数である請
求項1に記載の気相成長法。
2. The vapor phase growth method according to claim 1, wherein the total rotational speed R of the susceptor is an integer.
【請求項3】上記薄膜が化合物半導体の単層または多層
の薄膜である請求項1または2に記載の気相成長法。
3. The vapor phase growth method according to claim 1, wherein the thin film is a single-layer or multi-layer thin film of a compound semiconductor.
JP8601893A 1993-04-13 1993-04-13 Vapor growth method Pending JPH06302516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8601893A JPH06302516A (en) 1993-04-13 1993-04-13 Vapor growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8601893A JPH06302516A (en) 1993-04-13 1993-04-13 Vapor growth method

Publications (1)

Publication Number Publication Date
JPH06302516A true JPH06302516A (en) 1994-10-28

Family

ID=13874935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8601893A Pending JPH06302516A (en) 1993-04-13 1993-04-13 Vapor growth method

Country Status (1)

Country Link
JP (1) JPH06302516A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009157341A1 (en) * 2008-06-25 2009-12-30 キヤノンアネルバ株式会社 Sputtering device and recording medium whereon a control program thereof is recorded
KR101439096B1 (en) * 2013-10-18 2014-09-12 주식회사 테스 Substrate processing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009157341A1 (en) * 2008-06-25 2009-12-30 キヤノンアネルバ株式会社 Sputtering device and recording medium whereon a control program thereof is recorded
JP5209717B2 (en) * 2008-06-25 2013-06-12 キヤノンアネルバ株式会社 Sputtering apparatus and recording medium recording control program thereof
US10378100B2 (en) 2008-06-25 2019-08-13 Canon Anelva Corporation Sputtering apparatus and recording medium for recording control program thereof
KR101439096B1 (en) * 2013-10-18 2014-09-12 주식회사 테스 Substrate processing method

Similar Documents

Publication Publication Date Title
JPS6042823A (en) Method for forming thin film
JP2668687B2 (en) CVD device
JPS6054919B2 (en) low pressure reactor
JPH06302516A (en) Vapor growth method
JPH0779088B2 (en) Semiconductor thin film vapor phase growth equipment
JP2000031064A (en) Method and device for horizontal vapor phase epitaxial growth
JPH04122020A (en) Vapor phase epitaxy method
JPS58151397A (en) Production of vapor phase epitaxial crystal
JP3214750B2 (en) Vapor phase growth equipment
JPH06349748A (en) Vapor growth device for semiconductor
JPH02126632A (en) Vapor phase epitaxy for compound semiconductor crystal layer and reaction tube therefor
SU1074161A1 (en) Device for gas epitaxy of semiconductor connections
JPS6153197A (en) Crystal growth device
JPH04338636A (en) Semiconductor vapor growth device
JP2003142416A (en) Vapor growth method and device thereof
JPS612318A (en) Semiconductor growing device
JP3112796B2 (en) Chemical vapor deposition method
JPS62182196A (en) Vapor growth apparatus
JPH1167670A (en) Vapor phase growth apparatus
JPH04280418A (en) Vapor growth device
JPH02146725A (en) Organic metal vapor growth device
JPH11214314A (en) Method and apparatus for vapor-phase epitaxial growth
JPH01294598A (en) Vapor growth unit
JPS61242998A (en) Production of semiconductor single crystal of silicon carbide
JPH02297924A (en) Metal organic vapor growth method for compound semiconductor