JPH02146725A - Organic metal vapor growth device - Google Patents

Organic metal vapor growth device

Info

Publication number
JPH02146725A
JPH02146725A JP30030688A JP30030688A JPH02146725A JP H02146725 A JPH02146725 A JP H02146725A JP 30030688 A JP30030688 A JP 30030688A JP 30030688 A JP30030688 A JP 30030688A JP H02146725 A JPH02146725 A JP H02146725A
Authority
JP
Japan
Prior art keywords
substrate holder
substrate
liner tube
tube
reaction tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30030688A
Other languages
Japanese (ja)
Inventor
Hidenori Kamei
英徳 亀井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP30030688A priority Critical patent/JPH02146725A/en
Publication of JPH02146725A publication Critical patent/JPH02146725A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make a thickness of a thin film acquired through vapor growth uniform by providing a liner tube which has an inner wall side formed almost similar to an outer periphery side of a substrate holder between a barrel type reaction tube and the substrate holder so that the inner wall side of the liner tube is in opposition to the outer periphery side of the substrate holder. CONSTITUTION:A substrate holder 14 having many sides in the outer periphery side thereof is provided to an inner side of a barrel type reaction tube 11, a plurality of substrates 16 are held on the many surfaces of the substrate holder 14, and a thin film is formed on a surface of the substrate 16 through vapor growth. In such a barrel type organic metal vapor growth device, a liner tube 17 which has an inner wall surface 17a formed almost similar to an outer periphery side 14a of said substrate holder 14 is provided between a barrel type reaction tube 11 and the substrate holder 14 so that the inner wall side 17a is in opposition to said outer periphery side 14a. Material gas is supplied to a clearance between the liner tube 17 and the substrate holder 14. A thin film is formed through vapor growth on a surface of the substrate 16 by supplying carrier gas to a clearance between the barrel type reaction tube 11 and the liner tube 17.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は有機金属気相成長装置に関し、特に気相成長さ
れる薄膜の膜厚を均一にさせるバレル形の有機金属気相
成長装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an organometallic vapor phase epitaxy apparatus, and more particularly to a barrel-shaped organometallic vapor phase epitaxy apparatus that makes the thickness of a thin film grown in a vapor phase uniform. It is.

〔従来の技術〕[Conventional technology]

従来この種のバレル形の有機金属気相成長装置としては
、例えば、第3図に示されるものがある。
A conventional barrel-shaped organometallic vapor phase growth apparatus of this type includes one shown in FIG. 3, for example.

同図において、回転対象形のバレル形反応管1の内部に
は基板ホルダー2が設置され、この基板ホルダー2は軸
3を中心として回転自在になっている。また、この基板
ホルダー2の外周面に形成された各面2aには複数の基
板4が保持されている。そして、バレル形反応管1の上
部に形成された流入口1aから原料ガスが内部に送りこ
まれ、各基板4が高周波加熱等によって加熱されること
により、各基板4の表面上で原料ガスが熱分解されて半
導体膜等の薄膜がエピタキシャル成長されるようになっ
ている。なお、原料ガスは図示の矢印のように送り込ま
れ、反応管1の下部に形成された排気口5から流出され
るものとなっている。
In the figure, a substrate holder 2 is installed inside a rotationally symmetrical barrel-shaped reaction tube 1, and this substrate holder 2 is rotatable about an axis 3. Further, a plurality of substrates 4 are held on each surface 2a formed on the outer peripheral surface of this substrate holder 2. Then, the raw material gas is fed into the inside from the inlet 1a formed at the upper part of the barrel-shaped reaction tube 1, and each substrate 4 is heated by high frequency heating etc., so that the raw material gas is heated on the surface of each substrate 4. After being decomposed, thin films such as semiconductor films are grown epitaxially. Note that the raw material gas is fed in as shown by the arrow in the figure, and is discharged from an exhaust port 5 formed at the bottom of the reaction tube 1.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら上記構造の従来の気相成長装置においては
、第4図の横断面図に示すように、各基板4の表面と反
応管1の内壁面との距離は基板4の表面の位置によって
異なる。これは、基板4の表面が平面的であるのに対し
、反応管1の内壁面が球面的であるためであるが、この
距離の相違によって各基板4の表面の位置によって各表
面上を通過する原料ガスの流速は相違する。つまり、基
板4の両端部4aにおける原料ガスの流速は距離L1が
短いため比較的速くなり、また、基板4の中央部4bに
おける原料ガスの流速は距離L2が長いため比較的遅く
なる。この結果、原料ガスが基板4表面上に吹き付けら
れる量は両端部4aで多くなり、中央部4bで少なくな
るため、よどみ層(拡散層)の厚さは両端部4aで厚く
なり、中央部4bで薄くなる。
However, in the conventional vapor phase growth apparatus having the above structure, the distance between the surface of each substrate 4 and the inner wall surface of the reaction tube 1 varies depending on the position of the surface of the substrate 4, as shown in the cross-sectional view of FIG. This is because the surface of the substrate 4 is flat, while the inner wall surface of the reaction tube 1 is spherical. Due to this difference in distance, the surface of each substrate 4 passes through the surface depending on the position of the surface. The flow rate of the raw material gas is different. That is, the flow rate of the source gas at both ends 4a of the substrate 4 is relatively fast because the distance L1 is short, and the flow rate of the source gas at the center portion 4b of the substrate 4 is relatively slow because the distance L2 is long. As a result, the amount of source gas blown onto the surface of the substrate 4 increases at both ends 4a and decreases at the center 4b, so the thickness of the stagnation layer (diffusion layer) becomes thicker at both ends 4a and at the center 4b. It becomes thinner.

このように従来の気相成長装置はよどみ層の厚さが均一
に保てず、気相成長されて得られる薄膜の膜厚が均一に
ならないという課題を有していた。
As described above, the conventional vapor phase growth apparatus has the problem that the thickness of the stagnation layer cannot be maintained uniformly, and the thickness of the thin film obtained by vapor phase growth is not uniform.

〔課題を解決するための手段〕[Means to solve the problem]

本発明はこのような課題を解消するためになされたもの
で、基板ホルダーの外周面とほぼ相似するように形成さ
れた内壁面を有するライナー管をこの内壁面と基板ホル
ダーの外周面とが対峙するようにバレル形反応管と基板
ホルダーとの間に設けたものである。
The present invention has been made to solve these problems, and includes a liner tube having an inner wall surface formed to be substantially similar to the outer circumferential surface of the substrate holder, such that the inner wall surface and the outer circumferential surface of the substrate holder face each other. It is installed between the barrel-shaped reaction tube and the substrate holder so as to

〔作用〕[Effect]

各基板表面を通過する原料ガスの流速は各基板表面上の
位置にかかわらずほぼ一定となる。
The flow rate of the source gas passing through each substrate surface is approximately constant regardless of the position on each substrate surface.

〔実施例〕〔Example〕

次に本発明について図面を参照して以下に詳述する。 Next, the present invention will be described in detail below with reference to the drawings.

第1図は本発明の一実施例を表す断面図である。FIG. 1 is a sectional view showing one embodiment of the present invention.

同図において、内部が空洞に形成された円筒状の石英か
ら成るバレル形の反応管11は回転対称形になっており
、基台12にパツキン13を介して固定されている。ま
た、この反応管11の内部にはカーボンから成る基板ホ
ルダー14か設置され、このほぼ六角錐状の基板ホルダ
ー14は軸15に固定されている。この基板ホルダー1
4の外周に形成された六つの各面14aには基板16が
2枚づつ上下に保持され、基板ホルダー14の内部に構
成された加熱抵抗器もしくは加熱輻射器、または図示し
ないRFコイルによる高周波加熱器のいずれかにより各
基板16は加熱されるように構成されている。
In the figure, a barrel-shaped reaction tube 11 made of cylindrical quartz and having a hollow interior is rotationally symmetrical and is fixed to a base 12 via a packing 13. Further, a substrate holder 14 made of carbon is installed inside the reaction tube 11, and this substantially hexagonal pyramid-shaped substrate holder 14 is fixed to a shaft 15. This board holder 1
Two substrates 16 are held one above the other on each of the six surfaces 14a formed on the outer periphery of the substrate holder 14, and high-frequency heating is performed by a heating resistor or heating radiator configured inside the substrate holder 14, or an RF coil (not shown). Each substrate 16 is configured to be heated by one of the devices.

反応管11の開口した上部にはガス分離供給装置19が
パツキン20を介して固定され、流入口19゛aから供
給された原料ガスはライナー管17と基板ホルダー14
との間隙に導かれ、流入口1’9bから供給されたキャ
リアガスはドーナツ状の空洞部1’9Cを経て反応管1
1とライナー管17との間隙に導かれる構造になってい
る。そして、供給された各ガスは図面の上方から下方に
流れ、基台12に形成された排気口12aへ排出される
A gas separation and supply device 19 is fixed to the open upper part of the reaction tube 11 via a packing 20, and the raw material gas supplied from the inlet 19a is passed through the liner tube 17 and the substrate holder 14.
The carrier gas supplied from the inlet 1'9b passes through the donut-shaped cavity 1'9C and enters the reaction tube 1.
1 and the liner pipe 17. Each of the supplied gases flows downward from the top of the drawing and is discharged to an exhaust port 12a formed in the base 12.

反応管11と基板ホルダー14との間には石英から成る
ライナー管17が配置され、このライナー管17の内壁
面17aは、基板ホルダー14のほぼ六角錐状の外周面
とほぼ相似する六角錐状に形成されている。このため、
本装置を基台12に対して水平な平面により切断して得
られる第2図の横断面図に示されるように、基板ホルダ
ー14の各面14aからライナー管17の内壁面17a
までの水平距離はどこの位置においてもほぼ等しくなり
、各面14a上に保持された各基板16の表面から内壁
面17aまでの距離りは、基板16の表面の位置にかか
わらずほぼ一定のものに設定される。このため、ライナ
ー管17の内壁面17aと基板ホルダー14の外周面と
の間に形成される各空間体積は、基板ホルダー14の外
周に沿ってほぼ等しくなり、基板ホルダー14の外周に
沿う各位置におけるガスの流速はほぼ等しくなる。
A liner tube 17 made of quartz is arranged between the reaction tube 11 and the substrate holder 14, and the inner wall surface 17a of the liner tube 17 has a hexagonal pyramidal shape that is almost similar to the approximately hexagonal pyramidal outer peripheral surface of the substrate holder 14. is formed. For this reason,
As shown in the cross-sectional view of FIG. 2 obtained by cutting this device along a plane horizontal to the base 12, from each surface 14a of the substrate holder 14 to the inner wall surface 17a of the liner tube 17.
The horizontal distance from the surface of each substrate 16 held on each surface 14a to the inner wall surface 17a is approximately constant regardless of the position of the surface of the substrate 16. is set to Therefore, each space volume formed between the inner wall surface 17a of the liner tube 17 and the outer circumferential surface of the substrate holder 14 is approximately equal along the outer circumference of the substrate holder 14, and at each position along the outer circumference of the substrate holder 14. The gas flow velocities at are approximately equal.

また、本装置を基台12に対して垂直な平面により切断
して得られる、基板ホルダー14の表面からライナー管
17の内壁面17aまでの距離は、第1図に示されるよ
うに、基板ホルダー14の上部位置における距離H1が
この下部位置における距離H2よりも多少長くなる(H
l>H2)ように形成されている。このため、ライナー
管17の内壁面17aと基板ホルダー14の外周面との
間に形成される空間体積は、基板ホルダー14の上部周
辺の短い外周に沿った空間体積と下部周辺の長い外周に
沿った空間体積とがほぼ等しくなり、基板ホルダー14
の上下方向に沿うガスの流速はほぼ等しくなる。
Furthermore, the distance from the surface of the substrate holder 14 to the inner wall surface 17a of the liner tube 17, which is obtained by cutting this device along a plane perpendicular to the base 12, is as shown in FIG. The distance H1 at the upper position of No. 14 is somewhat longer than the distance H2 at the lower position (H
l>H2). Therefore, the space volume formed between the inner wall surface 17a of the liner tube 17 and the outer circumference surface of the substrate holder 14 is divided into the space volume formed along the short outer circumference around the upper part of the substrate holder 14 and the space volume formed along the long outer circumference around the lower part of the substrate holder 14. The spatial volume of the substrate holder 14 becomes almost equal.
The gas flow velocity along the vertical direction is almost equal.

また、ライナー管17の底部に固定されたライナー支持
枠18は軸15に固定されているため、図示しないモー
タによって軸15が回転されることにより、基板ホルダ
ー14とライナー管17とは、面14aと内壁面17a
との相対位置を一定に保ちながら一体となって回転する
Further, since the liner support frame 18 fixed to the bottom of the liner tube 17 is fixed to the shaft 15, when the shaft 15 is rotated by a motor (not shown), the substrate holder 14 and the liner tube 17 are separated from each other by the surface 14a. and inner wall surface 17a
It rotates as one while keeping the relative position constant.

このような構造において、基板ホルダー14およびライ
ナー管17は図示の矢印の向きに回転され、流入口19
aにはトリメチルガリウムやトリエチルガリウム等の原
料ガスが送り込まれ、流入口19bには高純度水素等の
キャリアガスが送り込まれる。流入口19aに入った原
料ガスは、ライナー管17と基板ホルダー14との間隙
に導かれ、基板ホルダー14の外表面に拡散される。こ
の際、送入された原料ガスは、基板ホルダー14および
ライナー管17とが一体となって回転されているため、
基板ホルダ−14外周の特定部分にのみへ流入するとい
ったことは無く、基板ホルダー14の外周に均一に流れ
込む。
In such a structure, the substrate holder 14 and the liner tube 17 are rotated in the direction of the illustrated arrow, and the inlet 19
A raw material gas such as trimethyl gallium or triethyl gallium is fed into the inlet 19b, and a carrier gas such as high-purity hydrogen is fed into the inlet 19b. The raw material gas that has entered the inlet 19a is guided into the gap between the liner pipe 17 and the substrate holder 14, and is diffused onto the outer surface of the substrate holder 14. At this time, the supplied raw material gas is rotated together with the substrate holder 14 and the liner tube 17, so that
The water does not flow only into a specific part of the outer periphery of the substrate holder 14, but flows uniformly around the outer periphery of the substrate holder 14.

また、原料ガスは、流入口19cに常時送入されるキャ
リアガスと共に排気口12aへ排出されるため、基板ホ
ルダー14の下部付近に原料ガスが澱むこと無く、従っ
て、エピタキシャル成長させる薄膜の種類を異ならせる
ために種類の違った原料ガスを流入口19aに送入して
も、異種原料ガスが混ざり合うということは無い。
Further, since the raw material gas is discharged to the exhaust port 12a together with the carrier gas that is constantly fed into the inlet 19c, the raw material gas does not accumulate near the bottom of the substrate holder 14, and therefore the type of thin film to be epitaxially grown can be changed. Even if different kinds of raw material gases are fed into the inlet 19a in order to increase the temperature, the different kinds of raw material gases will not mix.

さらに、原料ガスの流速は、前述したように基板ホルダ
−14外周のあらゆる位置においてほぼ等しくなるため
、基板ホルダー14の各面14aに保持された各基板1
6表面にはほぼ等量の原料ガスが吹き付けられる。また
、各基板16は加熱抵抗器等により加熱され、各基板1
6上において原料ガスが熱分解され、各基板16上には
ガリウム砒素等の有機金属の薄膜が均一の厚さになって
エピタキシャル成長される。
Furthermore, since the flow velocity of the raw material gas is approximately equal at all positions on the outer circumference of the substrate holder 14 as described above, each substrate 1 held on each surface 14a of the substrate holder 14
6. Approximately equal amounts of raw material gas are blown onto the surface. Further, each substrate 16 is heated by a heating resistor or the like, and each substrate 16 is heated by a heating resistor or the like.
The source gas is thermally decomposed on each substrate 16, and a thin film of an organic metal such as gallium arsenide is epitaxially grown to a uniform thickness on each substrate 16.

このように本実施例によれば、基板ホルダ14の外周に
沿う各位置からライナー管17の内壁面17aまでの距
離を等しくしたため、基板ホルダー14の同一外周上に
置かれた各基板16、つまり、面14aの上部に保持さ
れた各基板16、並びに面14aの下部に保持された各
基板16の表面上には、均一な厚さの有機金属の薄膜が
エピタキシャル成長されるはものとなる。さらに、基板
ホルダー14の各面14aの上下方向に沿う各位置から
ライナー管17の内壁面17aまでの距離を、基板ホル
ダ−14上部の距離H1が下部の距離H2よりも長くし
たため、各面14aの上下方向に2組の基板16を置い
ても、これら各基板16表面上にエピタキシャル成長さ
れる膜厚は均一なものとなる。
As described above, according to this embodiment, since the distances from each position along the outer circumference of the substrate holder 14 to the inner wall surface 17a of the liner tube 17 are made equal, each substrate 16 placed on the same outer circumference of the substrate holder 14, that is, A thin organometallic film of uniform thickness is epitaxially grown on the surface of each substrate 16 held above surface 14a and on the surface of each substrate 16 held below surface 14a. Furthermore, since the distance from each position along the vertical direction of each surface 14a of the substrate holder 14 to the inner wall surface 17a of the liner tube 17 is made longer than the distance H1 at the upper part of the substrate holder 14 than the distance H2 at the lower part, each surface 14a Even if two sets of substrates 16 are placed vertically, the thickness of the film epitaxially grown on the surface of each substrate 16 will be uniform.

従って、従来より多数の基板16について均一の厚さの
有機金属薄膜を同時に形成させることが可能となり、製
造過程における歩留まり性は向上して生産性は上がり、
製造コストは低減される。
Therefore, it is now possible to form organic metal thin films of uniform thickness on a larger number of substrates 16 at the same time than ever before, and the yield in the manufacturing process is improved, increasing productivity.
Manufacturing costs are reduced.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、基板ホルダーの外周面と
ほぼ相似するように形成された内壁面を有するライナー
管をこの内壁面一と基板ホルダーの外周面とが対峙する
ようにバレル形反応管と基板ホルダーとの間に設けたこ
とにより、各基板表面を通過する原料ガスの流速は各基
板表面上の位置にかかわらずほぼ一定となる。
As explained above, the present invention provides a barrel-shaped reaction tube in which a liner tube having an inner wall surface formed to be substantially similar to the outer circumferential surface of a substrate holder is arranged in a barrel-shaped reaction tube such that the inner wall surface faces the outer circumferential surface of the substrate holder. By providing the source gas between the substrate holder and the substrate holder, the flow rate of the raw material gas passing through the surface of each substrate is almost constant regardless of the position on the surface of each substrate.

このため、各基板表面に吹き付けられる原料ガスの量は
等しくなり、気相成長されて得られる薄膜の厚さは均一
になり、薄膜の製造過程における歩留まり性は向上して
生産性は上がり、製造コストは低減されるという効果を
有する。
Therefore, the amount of raw material gas sprayed onto the surface of each substrate becomes equal, the thickness of the thin film obtained by vapor phase growth becomes uniform, and the yield in the thin film manufacturing process improves, productivity increases, and This has the effect of reducing costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例を表す装置の縦断面図、第
2図は、この実施例の装置の横断面図、第3図は、従来
の装置の縦断面図、第4図は、従来の装置の横断面図で
ある。 11・・・石英バレル形反応管、12・・・基台、14
・・・基板ホルダー 15・・・軸、16・・・基板、
17・・・石英ライナー管、18・・・ライナー管支持
枠、19・・・ガス分離供給装置。 特許出願人  住友電気工業株式会社 代理人弁理士   長谷用  芳  樹X発明の一実先
例の縦断面図 第1図
FIG. 1 is a longitudinal cross-sectional view of a device representing an embodiment of the present invention, FIG. 2 is a cross-sectional view of the device of this embodiment, FIG. 3 is a vertical cross-sectional view of a conventional device, and FIG. 1 is a cross-sectional view of a conventional device. 11... Quartz barrel-shaped reaction tube, 12... Base, 14
... Board holder 15... Axis, 16... Board,
17... Quartz liner tube, 18... Liner tube support frame, 19... Gas separation supply device. Patent Applicant Sumitomo Electric Industries Co., Ltd. Representative Patent Attorney Yoshiki Hase

Claims (1)

【特許請求の範囲】 1、外周面に多面が形成された基板ホルダーをバレル形
反応管の内部に備え、この基板ホルダーの多面上に複数
の基板を保持させ、この基板表面上に薄膜を気相成長さ
せるバレル形の有機金属気相成長装置において、 前記基板ホルダーの外周面とほぼ相似するように形成さ
れた内壁面を有するライナー管をこの内壁面と前記外周
面とが対峙するように前記バレル形反応管と基板ホルダ
ーとの間に設け、このライナー管と基板ホルダーとの間
隙に原料ガスを供給し、前記バレル形反応管とこのライ
ナー管との間隙にキャリアガスを供給することにより、
前記基板表面に薄膜を気相成長させることを特徴とする
有機金属気相成長装置。 2、基板ホルダーとライナー管とは基板ホルダーの外周
面とライナー管の内壁面との相対位置を保持しながら同
一回転速度で回転されることを特徴とする請求項1記載
の有機金属気相成長装置。
[Claims] 1. A substrate holder with multiple surfaces formed on the outer peripheral surface is provided inside the barrel-shaped reaction tube, a plurality of substrates are held on the multiple surfaces of the substrate holder, and a thin film is deposited on the surface of the substrate. In a barrel-shaped organometallic vapor phase epitaxy apparatus for phase growth, a liner tube having an inner wall surface formed to be substantially similar to the outer circumferential surface of the substrate holder is arranged so that the inner wall surface and the outer circumferential surface face each other. By providing a material gas between the barrel-shaped reaction tube and the substrate holder, supplying a raw material gas to the gap between the liner tube and the substrate holder, and supplying a carrier gas to the gap between the barrel-shaped reaction tube and the liner tube,
A metal organic vapor phase epitaxy apparatus characterized in that a thin film is grown in a vapor phase on the surface of the substrate. 2. The organic metal vapor phase growth method according to claim 1, wherein the substrate holder and the liner tube are rotated at the same rotational speed while maintaining the relative positions of the outer peripheral surface of the substrate holder and the inner wall surface of the liner tube. Device.
JP30030688A 1988-11-28 1988-11-28 Organic metal vapor growth device Pending JPH02146725A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30030688A JPH02146725A (en) 1988-11-28 1988-11-28 Organic metal vapor growth device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30030688A JPH02146725A (en) 1988-11-28 1988-11-28 Organic metal vapor growth device

Publications (1)

Publication Number Publication Date
JPH02146725A true JPH02146725A (en) 1990-06-05

Family

ID=17883189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30030688A Pending JPH02146725A (en) 1988-11-28 1988-11-28 Organic metal vapor growth device

Country Status (1)

Country Link
JP (1) JPH02146725A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5833754A (en) * 1990-11-09 1998-11-10 Fujitsu Limited Deposition apparatus for growing a material with reduced hazard
US10453735B2 (en) * 2017-09-26 2019-10-22 Kokusai Electric Corporation Substrate processing apparatus, reaction tube, semiconductor device manufacturing method, and recording medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5833754A (en) * 1990-11-09 1998-11-10 Fujitsu Limited Deposition apparatus for growing a material with reduced hazard
US10453735B2 (en) * 2017-09-26 2019-10-22 Kokusai Electric Corporation Substrate processing apparatus, reaction tube, semiconductor device manufacturing method, and recording medium

Similar Documents

Publication Publication Date Title
JPH07100861B2 (en) Method and apparatus for performing chemical vapor deposition using an axisymmetric flow of gas
KR940011099B1 (en) Vapour deposition apparatus
JPS6090894A (en) Vapor phase growing apparatus
JPH02146725A (en) Organic metal vapor growth device
JPH0246558B2 (en)
JPS59207622A (en) Semiconductor thin film vapor phase growth apparatus
JPH06349748A (en) Vapor growth device for semiconductor
JPH02212393A (en) Vapor growth method and its device
JPS6252200A (en) Device for gaseous-phase epitaxial growth
JPS62252931A (en) Vapor growth apparatus for compound semiconductor
JPH0527503Y2 (en)
JPH0551294A (en) Vapor growth device
JPH0544178B2 (en)
JPH06302516A (en) Vapor growth method
JPH0562915A (en) Thin film growth device
JPS5877224A (en) Method for vapor growth
JPH0722318A (en) Vertical vapor epitaxial growing device
JP2775837B2 (en) Chemical vapor deposition equipment
JPH0778771A (en) Semiconductor thin film vapor growth method and device
JPS63208212A (en) Vapor phase epitaxy apparatus
JPS61248518A (en) Manufacturing equipment for compound semiconductor thin film
JPH04357825A (en) Organic metal vapor growing device
JPS61184819A (en) Vapor phase epitaxy method
JPS603122A (en) Vapor growth device
JPH04107816A (en) Thin film forming apparatus