JPH04107816A - Thin film forming apparatus - Google Patents

Thin film forming apparatus

Info

Publication number
JPH04107816A
JPH04107816A JP22420890A JP22420890A JPH04107816A JP H04107816 A JPH04107816 A JP H04107816A JP 22420890 A JP22420890 A JP 22420890A JP 22420890 A JP22420890 A JP 22420890A JP H04107816 A JPH04107816 A JP H04107816A
Authority
JP
Japan
Prior art keywords
thin film
film forming
susceptor
forming apparatus
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22420890A
Other languages
Japanese (ja)
Inventor
Hiroyuki Hirohane
広羽 弘行
Masaki Omura
大村 雅紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP22420890A priority Critical patent/JPH04107816A/en
Publication of JPH04107816A publication Critical patent/JPH04107816A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve heating efficiency at the central part of a susceptor or the like and to heat a large diameter wafer uniformly by providing a protrusion approximately in the center of the outer face of a supporting table at the opposite side to the non-supporting face of the supporting table. CONSTITUTION:A susceptor protrusion 10 made of graphite is provided approximately in the center of the outer face of a supporting table at the opposite side to the supporting table, i.e., a spot facing 8 of a susceptor 6, and coupled through a silicon section with a rotary shaft 5 comprising a stainless steel section. Heat is blocked by the silicon section and airtightness is established between the rotary shaft 5 and a reaction furnace 1 through a magnetic shield unit at the stainless steel section. Furthermore, inner face of the water-cooled reaction furnace 1 is mirror finished thus minimizing heat loss through radiation. According to the constitution, a high quality thin film having no slip and reduced number of particle can be obtained easily.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、半導体ウェハ(以下、単にウェハと記す)の
製造工程のおけるエピタキシャル単結晶成長等に好適な
薄膜形成装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a thin film forming apparatus suitable for epitaxial single crystal growth in the manufacturing process of semiconductor wafers (hereinafter simply referred to as wafers).

[従来の技術] 近年、半導体集積回路の高集積化、極微細化に伴って、
例えばウェハ上にエピタキシャル単結晶膜を形成ことが
行われている。このエピタキシャル膜は、ウェハが大口
径化するに伴って、薄膜化しており、膜厚分布や抵抗率
分布の均一性の確保、及び薄膜の高品質化に対応する要
望が厳しくなってきている。
[Conventional technology] In recent years, with the increasing integration and miniaturization of semiconductor integrated circuits,
For example, an epitaxial single crystal film is formed on a wafer. This epitaxial film is becoming thinner as the diameter of the wafer becomes larger, and demands for ensuring uniformity of film thickness distribution and resistivity distribution and for achieving higher quality thin films are becoming more severe.

従来、エピタキシャル成長炉としては、横形炉、縦方炉
及び、バレル炉と呼ばれるシリンダ炉の三種類が用いら
れている。横形炉は、初期のころがら主要な装置として
使用されてきた。しかし、横形炉は、膜厚、抵抗率の均
一性、結晶欠陥などの品質面や量産面で問題があった。
Conventionally, three types of epitaxial growth furnaces have been used: horizontal furnaces, vertical furnaces, and cylinder furnaces called barrel furnaces. Horizontal furnaces have been used as the primary equipment since the early days. However, horizontal furnaces have problems in terms of quality and mass production, such as film thickness, resistivity uniformity, and crystal defects.

現在では縦形炉及びバレル形炉が主として使用されてい
る。
Currently, vertical furnaces and barrel furnaces are mainly used.

縦形炉によるエピタキシャル成長方法は高周波加熱方式
を採る場合、ウェハの加熱がウエノ1を支持する基台す
なわちサセプタからの熱伝導による片面加熱方式となる
。このため、ウェハに反りを生じやすく、その結果、ウ
ェハ面内での温度不均一が生じ、エピタキシャル成長膜
にスリップが発生しやすい。また、ウェハが水平に置か
れるので、気相中からの異物が堆積しやすい問題がある
When the epitaxial growth method using a vertical furnace employs a high-frequency heating method, the wafer is heated by a single-sided heating method by heat conduction from a base that supports the wafer 1, that is, a susceptor. For this reason, the wafer is likely to warp, resulting in temperature non-uniformity within the wafer surface, and slips are likely to occur in the epitaxially grown film. Furthermore, since the wafer is placed horizontally, there is a problem in that foreign matter from the gas phase tends to accumulate.

一方、バレル炉は、サセプタのウエノ\取付面がほぼ垂
直になっている。このため、気相からの異物の堆積は抑
制されるが、ガスの流れの上流と下流で薄膜の成長条件
が異なり、ウニI\間で膜厚、抵抗率の分布が不均一に
なる問題があだ。
On the other hand, in a barrel furnace, the mounting surface of the susceptor is almost vertical. For this reason, the accumulation of foreign matter from the gas phase is suppressed, but the thin film growth conditions differ between upstream and downstream of the gas flow, leading to the problem of uneven film thickness and resistivity distribution between the sea urchins. Ada.

特開昭63−36519号には、縦形炉とバレル形炉の
利点のみを組み合わせたエピタキシャル成長装置が開示
されている。第2図は、このエピタキシャル成長装置の
一例を示す要部の説明図である。図中1は、反応炉であ
る。反応炉1には、流入口2か設けらている。流入口2
は原料ガス3およびその他の使用ガスを反応炉1内に流
入させたものである。また、反応炉1には原料ガス3お
よびその他の使用ガスを反応炉1外へ流出させる排出口
が設けられている。反応炉1には、回転軸5に取付けら
れた円板状のグラファイト製サセプタ6が設けられてい
る。つまり、外部から回転軸5を回転させることにより
、サセプタ6をほぼ鉛直方向に回転可能な構造になって
いる。被処理体のウェハは一対のサセプタ6の対向面に
形成された複数個の円形ザク98の中に装填されている
JP-A-63-36519 discloses an epitaxial growth apparatus that combines only the advantages of a vertical furnace and a barrel furnace. FIG. 2 is an explanatory diagram of essential parts showing an example of this epitaxial growth apparatus. 1 in the figure is a reactor. The reactor 1 is also provided with an inlet 2 . Inlet 2
In this figure, the raw material gas 3 and other gases to be used are introduced into the reactor 1. Further, the reactor 1 is provided with an outlet through which the raw material gas 3 and other gases to be used flow out of the reactor 1. The reactor 1 is provided with a disc-shaped graphite susceptor 6 attached to a rotating shaft 5. In other words, the structure is such that the susceptor 6 can be rotated substantially vertically by rotating the rotating shaft 5 from the outside. Wafers to be processed are loaded into a plurality of circular grooves 98 formed on opposing surfaces of a pair of susceptors 6.

つまり、円形ザク98は、ウェハ7の支持用として用い
られている。そして、サセプタ6の回転軸5の取付面の
近傍に設けられた高周波加熱コイル9に高周波を通電す
ることにより、サセプタ6を介してウェハ7を加熱する
ようになっている。なお、一般には円形ザグリ8を含め
サセプタ6面上にはSiCの薄膜などが被覆されて使用
されている。
In other words, the circular notch 98 is used to support the wafer 7. The wafer 7 is heated through the susceptor 6 by applying high frequency current to a high frequency heating coil 9 provided near the mounting surface of the rotating shaft 5 of the susceptor 6. In general, the surface of the susceptor 6 including the circular counterbore 8 is coated with a thin film of SiC or the like.

このように構成された従来の装置によるエピタキシャル
成長方法は、まず、ウェハ7を円形ザグリ8内に装填す
る。そして、原料ガス3とキャリアガスとを流入口2か
ら反応炉1内に導入し、排出口4から排出させながらサ
セプタ6を回転させる。原料ガス3とキャリアガスは、
例えばSiのエピタキシャル成長の場合、5iH2CJ
2、とH2ガスが用いられる。次いで、高周波加熱コイ
ル9を作動して、所定の成長温度に設定することにより
、CVD法によってエピタキシャル成長膜をウェハ7上
に形成する。この場合、温度調整として、所定のスケジ
ュールによって昇温(加熱)および降温(冷却)されて
行うようになっている。
In the epitaxial growth method using the conventional apparatus configured as described above, first, the wafer 7 is loaded into the circular counterbore 8 . Then, the raw material gas 3 and the carrier gas are introduced into the reactor 1 from the inlet 2 and are discharged from the outlet 4 while the susceptor 6 is rotated. Raw material gas 3 and carrier gas are
For example, in the case of Si epitaxial growth, 5iH2CJ
2, and H2 gas is used. Next, the high-frequency heating coil 9 is operated and set at a predetermined growth temperature, thereby forming an epitaxially grown film on the wafer 7 by the CVD method. In this case, temperature adjustment is performed by increasing (heating) and decreasing (cooling) the temperature according to a predetermined schedule.

[発明が解決しようとする課題] しかしながら、このような従来の薄膜成長装置によりエ
ピタキシャル成長を行うとスリップの内均−な膜質の薄
膜を得ることが可能であるが、実際には回転軸の位置す
るサセプタ中心部は加熱されに(<、表面温度が周囲よ
りも低くなる傾向があった。このため、ウェハをサセプ
タの中心を外して載置する必要があったし、また、大口
径ウェハ向けの枚様式の(両側−枚づつの)コンパクト
な反応装置が実現しにくい問題があった。
[Problems to be Solved by the Invention] However, when epitaxial growth is performed using such a conventional thin film growth apparatus, it is possible to obtain a thin film with uniform film quality within slip. The center of the susceptor was heated and the surface temperature tended to be lower than the surrounding area.For this reason, it was necessary to place the wafer off the center of the susceptor, and There was a problem in that it was difficult to realize a compact reactor of sheet type (one sheet on each side).

本発明は、かかる点に鑑みてなされたものであり、サセ
プタ等の中心部の加熱効率を高め、大口径ウェハを均等
に加熱することができる薄膜形成装置を提供するもので
ある。
The present invention has been made in view of these points, and provides a thin film forming apparatus that can increase the heating efficiency of the central portion of a susceptor and the like, and can evenly heat a large diameter wafer.

[課題を解決するための手段] 本発明は、反応流体の流入口及び流出口を有する反応炉
と、該反応炉内に略平行にして所定の対向間隔を設けて
回転自在に立設され、夫々の対向面に被処理体の支持部
を有する一対の支持台と、該支持台を囲撓するようにし
て前記反応炉内に設けられた高周波コイルとを具備する
薄膜形成装置において、支持台の被処理体支持面と反対
側の支持台外面の略中心部に凸部を設けたことを特徴と
する薄膜形成装置である。
[Means for Solving the Problems] The present invention provides a reactor having an inlet and an outlet for a reaction fluid, and a reactor which is rotatably installed substantially parallel to the reactor with a predetermined facing interval, A thin film forming apparatus comprising a pair of support stands having supporting parts for the object to be processed on opposing surfaces thereof, and a high-frequency coil provided in the reactor so as to surround the support stands. This thin film forming apparatus is characterized in that a convex portion is provided at approximately the center of the outer surface of the support base on the opposite side to the support surface of the object to be processed.

ここで、凸部は、その先端部に向かって支持台の回転軸
と略同径の大きさまで尖鋭にし、かつ、先端部を支持台
外面に垂直な方向に沿う線上であって高周波コイルの最
小内径部よりも反応炉の内壁面側に位置付けるのが好ま
しい。
Here, the convex portion should be sharpened toward its tip to have a diameter that is approximately the same as the rotation axis of the support base, and the tip should be located on a line perpendicular to the outer surface of the support base and at the minimum height of the high-frequency coil. It is preferable to position it closer to the inner wall surface of the reactor than the inner diameter portion.

また、高周波コイルには、金メッキを施すのが好ましい
Moreover, it is preferable to plate the high frequency coil with gold.

[作用] 本発明に係る薄膜形成装置によれば、サセプタの中心部
から高周波コイル側に向かって凸部を設けているので、
高周波コイルに近づいたグラファイト製サセプタの凸部
が誘導加熱を受けて凸部からの伝導伝熱によりサセプタ
中心部表面も、その周囲と同程度に加熱される。
[Function] According to the thin film forming apparatus according to the present invention, since the convex portion is provided from the center of the susceptor toward the high-frequency coil side,
The convex portion of the graphite susceptor that approaches the high-frequency coil receives induction heating, and due to conductive heat transfer from the convex portion, the surface of the central portion of the susceptor is heated to the same extent as the surrounding area.

[実施例] 実施例1 以下、一実施例を第1図の薄膜形成装置により説明する
。なお、第3図と同一部分は、同符号を付して説明を略
す。この実施例の薄膜形成装置では、支持台であるサセ
プタ6の円形ザグリ8と反対側の支持台外面の略中心部
に、グラファイト製のサセプタ凸部10が設けられてい
る。サセプタ凸部10は、石英部を介してステンレス部
からなら回転軸5に接続されている。石英部により熱を
遮断し、ステンレス部で磁気シールドユニ、ソト(図示
せず)によって回転軸5と反応炉1との気密性が保持さ
れる構造になっている。また、この薄膜形成袋ばては、
水冷の反応炉1の内面を鏡面仕上げにして、放射による
熱損失を最小限に抑さえるようになっている。
[Example] Example 1 An example will be described below using the thin film forming apparatus shown in FIG. 1. Note that the same parts as in FIG. 3 are designated by the same reference numerals and the description thereof will be omitted. In the thin film forming apparatus of this embodiment, a susceptor convex portion 10 made of graphite is provided approximately at the center of the outer surface of the susceptor 6, which is a support base, on the side opposite to the circular counterbore 8. If the susceptor convex portion 10 is made of a stainless steel portion, it is connected to the rotating shaft 5 via a quartz portion. The quartz part blocks heat, and the stainless steel part maintains airtightness between the rotating shaft 5 and the reactor 1 by means of a magnetic shield (not shown). In addition, this thin film forming bag is
The inner surface of the water-cooled reactor 1 is mirror-finished to minimize heat loss due to radiation.

このように構成された薄膜形成装置の使用時におけるサ
セプタ6上の位置と温度分布の関係を調べたところ、第
2図に特性線Iにて示す如く、サセプタ6の中心から外
周端に亘るほぼ全域で約1150℃に設定されているこ
とが確認された。これに対して第3図に示した従来の薄
膜形成装置の場合には、第2図に特性線■にて示した通
り、サセプタ6の中心部である回転軸5の近傍部分でサ
セプタ6の温度降下が生じていることが確認された。
When we investigated the relationship between the position on the susceptor 6 and the temperature distribution when using the thin film forming apparatus configured as described above, we found that as shown by characteristic line I in FIG. It was confirmed that the temperature was set at approximately 1150°C throughout the entire area. On the other hand, in the case of the conventional thin film forming apparatus shown in FIG. 3, as shown by the characteristic line ■ in FIG. It was confirmed that a temperature drop was occurring.

実施例2 サセプタ凸部10の形状を、高周波コイル9の最小内径
に対応する部分から高周波コイル9側に向かってその先
端部が回転軸5と略同径の大きさまで尖鋭にした点以外
は、実施例1と同様にして薄膜形成装置を構成した。
Example 2 The shape of the susceptor convex portion 10 is sharpened from the portion corresponding to the minimum inner diameter of the high-frequency coil 9 toward the high-frequency coil 9 side until the tip thereof has approximately the same diameter as the rotating shaft 5. A thin film forming apparatus was constructed in the same manner as in Example 1.

この薄膜形成装置について実施例1と同様にサセプタ6
上の位置と温度分布の関係を調べたところ、第2図に特
性線Hにて示す結果を得た。特性線■から明らかなよう
に、この薄膜形成装置ではサセプタ6の中心部から外周
端に亘って±10℃の範囲でサセプタ6の温度が恒温に
保たれていることが確認された。この結果、第3図に示
した従来の薄膜形成装置の場合には不可能であった回転
軸5上に載置したウェハ7にもエピタキシャル成長を施
すことができることも確認された。
Regarding this thin film forming apparatus, as in Example 1, the susceptor 6
When the relationship between the upper position and the temperature distribution was investigated, the results shown by characteristic line H in FIG. 2 were obtained. As is clear from the characteristic line (3), it was confirmed that in this thin film forming apparatus, the temperature of the susceptor 6 was kept constant within a range of ±10° C. from the center of the susceptor 6 to the outer peripheral edge. As a result, it was also confirmed that epitaxial growth could be performed on the wafer 7 placed on the rotating shaft 5, which was impossible with the conventional thin film forming apparatus shown in FIG.

実施例3 高周波コイル9に金メッキを施した点以外は、実施例1
と同様にして薄膜形成装置を構成した。
Example 3 Example 1 except that the high frequency coil 9 was plated with gold.
A thin film forming apparatus was constructed in the same manner as described above.

この薄膜形成装置について実施例1と同様にサセプタ6
上の位置と温度分布の関係を調べたところ、第2図に特
性線■にて示す結果を得た。特性線■から明らかなよう
に、この薄膜形成装置では実施例1薄膜形成装置よりも
更に優れた温度特性が得られることを確認した。
Regarding this thin film forming apparatus, as in Example 1, the susceptor 6
When we investigated the relationship between the upper position and the temperature distribution, we obtained the results shown by the characteristic line ■ in FIG. As is clear from the characteristic line (2), it was confirmed that this thin film forming apparatus provided even better temperature characteristics than the thin film forming apparatus of Example 1.

[発明の効果] 以上説明した如く、本発明に係る薄膜形成装置によれば
、スリップが無くパーティクルの少ない高品質の薄膜を
容易に得ることができるものである。
[Effects of the Invention] As explained above, according to the thin film forming apparatus according to the present invention, it is possible to easily obtain a high quality thin film with no slip and few particles.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例の薄膜形成装置の要部を示
す説明図、第2図は、サセプタ上の位置と温度分布の関
係を示す特性図、第3図は、従来の改良バレル炉の薄膜
形成装置の説明図である。 1019反応炉、2・・・流入口、3・・・原料ガス、
4・・・排出口、5・・・回転軸、6・・・サセプタ、
7・・・ウエノ1.8・・・円形ザグリ、9・・・高周
波加熱コイル、10・・・サセプタ凸部。
Fig. 1 is an explanatory diagram showing the main parts of a thin film forming apparatus according to an embodiment of the present invention, Fig. 2 is a characteristic diagram showing the relationship between the position on the susceptor and temperature distribution, and Fig. 3 is a conventional improvement. FIG. 2 is an explanatory diagram of a barrel furnace thin film forming apparatus. 1019 reactor, 2... inlet, 3... raw material gas,
4... Discharge port, 5... Rotating shaft, 6... Susceptor,
7... Ueno 1.8... Circular counterbore, 9... High frequency heating coil, 10... Susceptor convex portion.

Claims (3)

【特許請求の範囲】[Claims] (1)反応流体の流入口及び流出口を有する反応炉と、
該反応炉内に略平行にして所定の対向間隔を設けて回転
自在に立設され、夫々の対向面に被処理体の支持部を有
する一対の支持台と、該支持台を囲撓するようにして前
記反応炉内に設けられた高周波コイルとを具備する薄膜
形成装置において、支持台の被処理体支持面と反対側の
支持台外面の略中心部に凸部を設けたことを特徴とする
薄膜形成装置。
(1) A reactor having an inlet and an outlet for a reaction fluid;
A pair of support stands which are rotatably installed in the reactor in substantially parallel relation to each other with a predetermined facing interval, each having a support portion for the object to be processed on opposing surfaces thereof; and a high-frequency coil provided in the reactor, characterized in that a convex portion is provided at approximately the center of the outer surface of the support base on the opposite side to the surface of the support base that supports the object to be processed. Thin film forming equipment.
(2)凸部は、その先端部に向かって支持台の回転軸と
略同径の大きさまで尖鋭になり、かつ、該先端部を支持
台外面に垂直な方向に沿う線上であって高周波コイルの
最小内径部よりも反応炉の内壁面側に位置付けしている
請求項第1項記載の薄膜形成装置。
(2) The convex portion becomes sharp toward its tip to a size that is approximately the same diameter as the rotation axis of the support, and the tip is located on a line perpendicular to the outer surface of the support and is connected to a high-frequency coil. 2. The thin film forming apparatus according to claim 1, wherein the thin film forming apparatus is located closer to the inner wall surface of the reactor than the smallest inner diameter part of the reactor.
(3)高周波コイルは、金メッキが施されている請求項
第1項記載の薄膜形成装置。
(3) The thin film forming apparatus according to claim 1, wherein the high frequency coil is plated with gold.
JP22420890A 1990-08-28 1990-08-28 Thin film forming apparatus Pending JPH04107816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22420890A JPH04107816A (en) 1990-08-28 1990-08-28 Thin film forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22420890A JPH04107816A (en) 1990-08-28 1990-08-28 Thin film forming apparatus

Publications (1)

Publication Number Publication Date
JPH04107816A true JPH04107816A (en) 1992-04-09

Family

ID=16810218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22420890A Pending JPH04107816A (en) 1990-08-28 1990-08-28 Thin film forming apparatus

Country Status (1)

Country Link
JP (1) JPH04107816A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5253324A (en) * 1992-09-29 1993-10-12 North Carolina State University Conical rapid thermal processing apparatus
JP2008244396A (en) * 2007-03-29 2008-10-09 Furukawa Co Ltd Vapor phase growth device and substrate supporting member thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5253324A (en) * 1992-09-29 1993-10-12 North Carolina State University Conical rapid thermal processing apparatus
JP2008244396A (en) * 2007-03-29 2008-10-09 Furukawa Co Ltd Vapor phase growth device and substrate supporting member thereof

Similar Documents

Publication Publication Date Title
US4846102A (en) Reaction chambers for CVD systems
EP2741317B1 (en) Epitaxial wafer manufacturing device and manufacturing method
TW200845145A (en) Microbatch deposition chamber with radiant heating
JPH09330884A (en) Epitaxial growth device
JP2009164162A (en) Vapor growth device and growing method of single-crystal thin film
KR101030422B1 (en) Susceptor
US5244694A (en) Apparatus for improving the reactant gas flow in a reaction chamber
JP2008034780A (en) METHOD FOR MANUFACTURING SEMICONDUCTOR SiC SUBSTRATE WITH EPITAXIAL SiC FILM, AND ITS EPITAXIAL SiC FILM-FORMING DEVICE
TW200905776A (en) Vapor phase growth apparatus and vapor phase growth method
EP0164928A2 (en) Vertical hot wall CVD reactor
JPH0758040A (en) Susceptor for phase growth apparatus
US20010052324A1 (en) Device for producing and processing semiconductor substrates
JP2003507319A (en) Method and apparatus for depositing materials having a wide electronic bandgap and high binding energy
JPS6090894A (en) Vapor phase growing apparatus
JP3788836B2 (en) Vapor growth susceptor and manufacturing method thereof
JPH04107816A (en) Thin film forming apparatus
JP2020191346A (en) Susceptor and epitaxial growth device
CN216338069U (en) Fixing device for wafer film forming
JPH0864544A (en) Vapor growing method
JPH0722342A (en) Vapor growth device
JP3113478B2 (en) Semiconductor manufacturing equipment
JPH0727870B2 (en) Low pressure vapor deposition method
JPH03228319A (en) Thin film forming device
JP2021031336A (en) SiC CHEMICAL VAPOR DEPOSITION APPARATUS
JPS60152675A (en) Vertical diffusion furnace type vapor growth device