JPH0478167A - Manufacture of semiconductor storage device - Google Patents

Manufacture of semiconductor storage device

Info

Publication number
JPH0478167A
JPH0478167A JP2191731A JP19173190A JPH0478167A JP H0478167 A JPH0478167 A JP H0478167A JP 2191731 A JP2191731 A JP 2191731A JP 19173190 A JP19173190 A JP 19173190A JP H0478167 A JPH0478167 A JP H0478167A
Authority
JP
Japan
Prior art keywords
region
gate electrode
mask
conductivity type
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2191731A
Other languages
Japanese (ja)
Inventor
Kazuhiro Tasaka
田坂 和弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2191731A priority Critical patent/JPH0478167A/en
Publication of JPH0478167A publication Critical patent/JPH0478167A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To prevent deterioration of a gate insulating film by carrying out thermal treatment after ion implantation of large diffusion coefficient of conductivity type opposite to that of a semiconductor substrate at a low energy using a gate electrode of a transistor to carry out data programming as a mask. CONSTITUTION:A resist film 111 which is provided with a contact hole 106 is applied to only a transistor part whereto data 'ON' is written. Then, a substrate of conductivity type opposite to that of a semiconductor substrate such as phosphorus whose thermal diffusion coefficient is larger than that of arsenic is injected at an energy of about 50 to 70 kev to form an N<->-region 207 using a gate electrode as a mask through a contact hole 106. After the resist film 111 is removed, thermal treatment of 850 to 900 deg.C is carried out. Thereby, a source region and a drain region are connected by the N<->-region 207 or they come so near each other as to shortcircuit by punch-through, if apart, by a drain voltage which is applied in a use state, and at least, shortcircuiting becomes possible.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体記憶装置の製造方法に関し、特にサブミ
クロンのゲート電極を有するマスクROMのイオン注入
によるデータ・プログラム方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a semiconductor memory device, and more particularly to a method of data programming by ion implantation of a mask ROM having a submicron gate electrode.

〔従来の技術〕[Conventional technology]

従来、NAND型マスクROMの製造工程におけるデー
タ・プログラム方法には、イオン注入プログラム方法が
用いられてきた。以下、第2図(a)〜(c)を用いて
説明する。
Conventionally, an ion implantation programming method has been used as a data programming method in the manufacturing process of a NAND mask ROM. This will be explained below using FIGS. 2(a) to 2(c).

まず第2図(a>に示す様にP型シリコン基板201を
選択酸化し、素子分離領域にフィールド酸化膜202、
素子領域にゲート酸化膜203を形成する。次に全体に
多結晶シリコン膜を堆積し、レジスト膜をマスクにして
エツチングし、ゲート電極204を形成する。その後、
ゲート電極204をマスクにイオン注入し、ソース・ド
レイン領域205くソース領域及びトレイン領域を総称
していう)を形成する。
First, a P-type silicon substrate 201 is selectively oxidized as shown in FIG.
A gate oxide film 203 is formed in the element region. Next, a polycrystalline silicon film is deposited over the entire surface and etched using the resist film as a mask to form a gate electrode 204. after that,
Using the gate electrode 204 as a mask, ions are implanted to form a source/drain region 205 (hereinafter collectively referred to as a source region and a train region).

次に第2図(b)に示す様にデータ“’ ON ”を書
込みたいトランジスタ部にのみコンタクトホール206
を開孔したレジストM211を被着する。そして、レジ
スト膜211をマスクにリンをゲート電極204を貫通
する様に高エネルギーでイオン注入し、チャネル部にN
−領域を形成するにれにより、デイプリージョン型MO
S)−ランジスタが得られ、データ゛○N”が書込まれ
た二とになる6 次に第2図(c)に示す様に、PSGなどを堆積し眉間
!208を形成した後ディジット線コンタクト209を
開孔し、アルミニウム膜を用いてデイジット線210を
形成するとマスクROMの半導体装置が得られる。
Next, as shown in FIG. 2(b), a contact hole 206 is formed only in the transistor part where data "'ON" is to be written.
A resist M211 with holes is applied. Then, using the resist film 211 as a mask, phosphorous is ion-implanted with high energy so as to penetrate through the gate electrode 204, and N is implanted into the channel region.
- Due to the area forming area, depletion type MO
S) - A transistor is obtained, and it becomes a diagonal with the data ゛○N'' written in it.6 Next, as shown in Fig. 2(c), after depositing PSG etc. and forming the glabella!208, the digit line contact is made. A mask ROM semiconductor device is obtained by opening holes 209 and forming digit lines 210 using an aluminum film.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来のゲート電極を除いてリンを注入し、チャ
ネルを形成することにより、” ON ”ビットを書込
む方法では高エネルギーで注入しているので、ゲート絶
縁膜の膜質の劣化を引きおこすという欠点がある。
In the conventional method of writing an "ON" bit by implanting phosphorus except for the gate electrode to form a channel, high energy is implanted, which has the disadvantage of causing deterioration of the film quality of the gate insulating film. There is.

〔課題を解決するための手段ご 本発明の半導体装置の製造方法は、半導体基板の素子領
域上にゲート絶縁膜を介して選択的にケート電極を形成
する工程と、前記ゲート電極をマスクとして前記半導体
基板と逆導電型の第1のイオンを注入してソース・トレ
イン領域を形成しトランジスタを形成する工程と、所望
の前記トランジスタ以外をレジスト膜で選択的にマスク
した後前記第1のイオンと同一導電型てかつ前記第1の
イオンより熱拡散係数の大きい第2のイオンを前記所望
のトランジスタのゲート電極をマスクにして前記ソース
・ドレイン領域に注入する工程と、熱処理を行ない前記
所望のトランジスタのソース領域とドレイン領域間を少
なくとも短絡可能な状態とする工程とを含んで精成され
る。
[Means for Solving the Problems] The method for manufacturing a semiconductor device of the present invention includes a step of selectively forming a gate electrode on an element region of a semiconductor substrate via a gate insulating film, and a step of forming a gate electrode using the gate electrode as a mask. a step of implanting first ions of a conductivity type opposite to that of the semiconductor substrate to form a source/train region to form a transistor; and a step of selectively masking regions other than the desired transistor with a resist film and then implanting the first ions. implanting second ions of the same conductivity type and having a higher thermal diffusion coefficient than the first ions into the source/drain region using the gate electrode of the desired transistor as a mask; and performing heat treatment to form the desired transistor. The process includes a step of making at least a short circuit possible between the source region and the drain region.

〔実施例〕〔Example〕

次に本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図(a)〜<c)は本発明の一実施例を説明するた
めの工程順に示した断面図である。
FIGS. 1(a) to 1(c) are cross-sectional views shown in the order of steps for explaining an embodiment of the present invention.

まず第1図(a>に示す様に、P型シリコン基板101
を選択酸化し、素子分離領域にフィールド酸化膜102
を6000〜8000λ程度、また素子領域にゲート酸
化膜103を150〜300人程度形成する。その後多
結晶シリコン膜を堆積し、レジスト膜をマスクにエツチ
ングし、グー1〜電極104を形成する。この際ゲート
長は0.6〜0.8μmのサブミクロンのものを用いる
ことが重要である。次にソース・ドレイン領域105を
形成するために半導体基板と逆導電型物質、例えばヒ素
をゲート電極104をマスクに。
First, as shown in FIG. 1 (a), a P-type silicon substrate 101
is selectively oxidized to form a field oxide film 102 in the element isolation region.
A gate oxide film 103 is formed to a thickness of about 6,000 to 8,000 λ, and a gate oxide film 103 of about 150 to 300 is formed in the element region. Thereafter, a polycrystalline silicon film is deposited and etched using a resist film as a mask to form electrodes 1 to 104. At this time, it is important to use a submicron gate length of 0.6 to 0.8 μm. Next, in order to form source/drain regions 105, a material of the opposite conductivity type to the semiconductor substrate, such as arsenic, is applied using the gate electrode 104 as a mask.

50〜70 k e v程度のエネルギーで3X101
5〜5XIO”cm−2程度のドーズ量で注入する6次
に第1図(b)に示すように、データ゛’ON”を書込
みたいトランジスタ部のみにコンタクトホール106を
開孔したレジストM111を被着する。次いで、コンタ
クトホール106を介してゲート電極をマスクに半導体
基板と逆導電型物質でかつヒ素より熱拡散係数の大きい
例えばリンを50〜70kev程度のエネルギーで8X
1012〜3X10”cm−2で程度のドーズ量で注入
しN−m域107を形成する。
3X101 with an energy of about 50 to 70 kev
6. Next, as shown in FIG. 1(b), a resist M111 is covered with a contact hole 106 formed only in the transistor part where data "ON" is to be written. wear. Next, using the gate electrode as a mask through the contact hole 106, for example, phosphorus, which is a material of the opposite conductivity type to the semiconductor substrate and has a higher thermal diffusion coefficient than arsenic, is heated 8X at an energy of about 50 to 70 keV.
A N-m region 107 is formed by implanting at a dose of 1012 to 3×10” cm −2 .

次にレジストM111を除去したのち、850〜900
℃、30分〜1時間の熱処理を行なう。
Next, after removing resist M111, 850 to 900
Heat treatment is performed at ℃ for 30 minutes to 1 hour.

そうすると、N−領域207によりソース領域とトレイ
ン領域が接続されるか、あるいは図示のように離れても
使用状態で印加されるトレイン電圧によりソース、ドレ
イン領域間がパンチスルーして短絡する程度に近接する
。いいかえると少なくとも短絡可能な状態になっている
Then, the source region and the train region are connected by the N- region 207, or even if they are separated as shown in the figure, the source and drain regions are close enough to each other to punch through and short circuit due to the train voltage applied during use. do. In other words, it is at least short-circuitable.

次に第1図(C)に示すように、PSGなどを堆積し層
間膜108を形成したのちトレイン領域にディジット線
コンタクト109を開孔し、アルミニウム等を用いてデ
イジット線110を形成すると、ゲート電極長がサブミ
クロンで容易に短絡可能な状態とすることによりONビ
ットを書込む方式のNAND型マスクROMの半導体装
置が得られる。
Next, as shown in FIG. 1C, after depositing PSG or the like to form an interlayer film 108, a digit line contact 109 is opened in the train region, and a digit line 110 is formed using aluminum or the like. By making the electrode length submicron and easily short-circuitable, a NAND mask ROM semiconductor device in which an ON bit is written can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、データ・プログラミング
をしたいトランジスタのゲート電極をマスクに半導体基
板と逆導電型で拡散C系数の大きいイオンを低エネルギ
ーで注入したのち熱処理3行なうことにより、実質的に
デイプリージョン型のトランジスタを得ることかできる
ので、データプログラミング時にゲート絶縁膜の劣化を
ひきおこすことなく半導体記憶装置を製造できる効果か
ある。
As explained above, in the present invention, using the gate electrode of the transistor for which data programming is desired as a mask, ions of a conductivity type opposite to that of the semiconductor substrate and having a large diffusion C series are implanted at low energy, and then three heat treatments are performed. Since a depletion type transistor can be obtained, it is possible to manufacture semiconductor memory devices without causing deterioration of the gate insulating film during data programming.

108.208・・・層間膜、109.209・・ティ
ジット線コンタクト、110,210・・ティシント線
、111.211・・・レジスト膜。
108.208...Interlayer film, 109.209...Tissint line contact, 110,210...Tissint line, 111.211...Resist film.

Claims (1)

【特許請求の範囲】[Claims]  半導体基板の素子領域上にゲート絶縁膜を介して選択
的にゲート電極を形成する工程と、前記ゲート電極をマ
スクとして前記半導体基板と逆導電型の第1のイオンを
注入してソース・ドレイン領域を形成しトランジスタを
形成する工程と、所望の前記トランジスタ以外をレジス
ト膜で選択的にマスクした後前記第1のイオンと同一導
電型でかつ前記第1のイオンより熱拡散係数の大きい第
2のイオンを前記所望のトランジスタのゲート電極をマ
スクにして前記ソース・ドレイン領域に注入する工程と
、熱処理を行ない前記所望のトランジスタのソース領域
とドレイン領域間を少なくとも短絡可能な状態とする工
程とを含むことを特徴とする半導体記憶装置の製造方法
A step of selectively forming a gate electrode on an element region of a semiconductor substrate via a gate insulating film, and a step of implanting first ions of a conductivity type opposite to that of the semiconductor substrate using the gate electrode as a mask to form a source/drain region. After selectively masking other than the desired transistor with a resist film, a second ion having the same conductivity type as the first ion and having a larger thermal diffusion coefficient than the first ion is formed. The method includes a step of implanting ions into the source/drain region using the gate electrode of the desired transistor as a mask, and a step of performing heat treatment to make at least a short circuit possible between the source region and the drain region of the desired transistor. A method of manufacturing a semiconductor memory device, characterized in that:
JP2191731A 1990-07-19 1990-07-19 Manufacture of semiconductor storage device Pending JPH0478167A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2191731A JPH0478167A (en) 1990-07-19 1990-07-19 Manufacture of semiconductor storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2191731A JPH0478167A (en) 1990-07-19 1990-07-19 Manufacture of semiconductor storage device

Publications (1)

Publication Number Publication Date
JPH0478167A true JPH0478167A (en) 1992-03-12

Family

ID=16279557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2191731A Pending JPH0478167A (en) 1990-07-19 1990-07-19 Manufacture of semiconductor storage device

Country Status (1)

Country Link
JP (1) JPH0478167A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4311705A1 (en) * 1992-04-13 1993-10-14 Mitsubishi Electric Corp NOR or NAND type mask ROM - has two transistors of high and low threshold respectively, with two impurity atom regions and common impurity atom region, all of opposite conductivity to that of substrate
DE19929675A1 (en) * 1999-06-28 2001-04-12 Infineon Technologies Ag Process for the production of ROM memory cells

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4311705A1 (en) * 1992-04-13 1993-10-14 Mitsubishi Electric Corp NOR or NAND type mask ROM - has two transistors of high and low threshold respectively, with two impurity atom regions and common impurity atom region, all of opposite conductivity to that of substrate
DE4311705C2 (en) * 1992-04-13 2001-04-19 Mitsubishi Electric Corp Mask ROM semiconductor devices with impurity regions for controlling a transistor threshold voltage and method for their production
DE19929675A1 (en) * 1999-06-28 2001-04-12 Infineon Technologies Ag Process for the production of ROM memory cells

Similar Documents

Publication Publication Date Title
US6647542B2 (en) Efficient fabrication process for dual well type structures
JPH0361338B2 (en)
US5397727A (en) Method of forming a floating gate programmable read only memory cell transistor
JPS63305546A (en) Manufacture of semiconductor integrated circuit device
JPS60117765A (en) Manufacture of semiconductor device
KR100221059B1 (en) A fabrication method of semiconductor device
JPH0478167A (en) Manufacture of semiconductor storage device
JP2859332B2 (en) Method for manufacturing semiconductor device
JP3181773B2 (en) Method for manufacturing semiconductor device
JPH0434942A (en) Manufacture of semiconductor device
JPS6074663A (en) Manufacture of complementary type semiconductor device
KR0136532B1 (en) Thin film transistor
JP2569809B2 (en) Method for manufacturing semiconductor device
JPH0964193A (en) Manufacture of semiconductor device
JP2004534401A (en) Method of manufacturing semiconductor device having a plurality of MOS transistors having gate oxides of different thickness
JPS63302562A (en) Manufacture of mos type semiconductor device
JP3120428B2 (en) Method for manufacturing MOS type semiconductor device
JPS6251248A (en) Manufacture of semiconductor device
JPS6142960A (en) Manufacture of semiconductor device
JPS61292318A (en) Manufacture of semiconductor device
KR100370118B1 (en) Method for manufacturing well in semiconductor device
JPH0479336A (en) Production of semiconductor device
JPS63144573A (en) Manufacture of mos type transistor
JPH0428246A (en) Semiconductor device and manufacture thereof
JPH10163490A (en) Manufacture of transistor