JPH0476947A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0476947A
JPH0476947A JP2190272A JP19027290A JPH0476947A JP H0476947 A JPH0476947 A JP H0476947A JP 2190272 A JP2190272 A JP 2190272A JP 19027290 A JP19027290 A JP 19027290A JP H0476947 A JPH0476947 A JP H0476947A
Authority
JP
Japan
Prior art keywords
film
polycrystalline silicon
silicon film
insulating film
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2190272A
Other languages
Japanese (ja)
Inventor
Shuichi Enomoto
秀一 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2190272A priority Critical patent/JPH0476947A/en
Publication of JPH0476947A publication Critical patent/JPH0476947A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To elevate integration density by remarkably increasing effective surface area of a capacitor. CONSTITUTION:On a board is formed a multilayer film which comprises a first polycrystalline silicon film 104, an insulating film 105, and a second polycrystalline silicon film 106. The multilayer film is patterned into the specified shape, and a third polycrystalline silicon film 108 is formed, and the silicon film 104 and the silicon film 105 are connected, and then a storage contact hole 109 is made at one part of the silicon film 105 to expose the insulating film 105. This has the process of removing the insulating film 105 from the contact hole 109 and forming first electrodes 112-1-112-3, the process of forming a capacitor insulating film 110 at the surface of a first electrode, and the process of coating the insulating film 1110 with a conductive film and forming a second capacitor electrode 110.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は半導体装置の製造方法に関し、特に半導体集積
回路におけるキャパシタの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of manufacturing a semiconductor device, and particularly to a method of manufacturing a capacitor in a semiconductor integrated circuit.

〔従来の技術〕[Conventional technology]

従来、半導体装置に設けられているキャパシタは第3図
に示す構造のものか知られており、次の様な製造方法と
なっていた6すなわちP型シリコン基板1を酸化して表
面に素子分離酸化膜2を形成した後、素子分離酸化膜2
の一部をエツチングしてコンタクト孔3を開口したもの
を基板として、その上に、不純物としてホロンを含む多
結晶シリコン膜を成長し、コンタクト孔3を含む様にパ
ターニングしてストレージ電ff!12を形成する。そ
の際、多結晶シリコン膜中の不純物の一部はコンタクト
孔3を通してP型シリコン基板1中に拡散し不純物拡散
層7を形成するのでストレージ電極12はP型シリコン
基板と電気的に接続される。
Conventionally, a capacitor provided in a semiconductor device is known to have the structure shown in FIG. After forming the oxide film 2, the element isolation oxide film 2 is formed.
A polycrystalline silicon film containing holon as an impurity is grown on the substrate with a contact hole 3 etched in a part thereof, and is patterned to include the contact hole 3 to form a storage electrode ff! form 12. At this time, a part of the impurity in the polycrystalline silicon film diffuses into the P-type silicon substrate 1 through the contact hole 3 and forms an impurity diffusion layer 7, so that the storage electrode 12 is electrically connected to the P-type silicon substrate. .

つづいて熱酸化を行なってストレージ電極12表面にキ
ャパシタ絶縁膜10を形成し、全面に不純物を含む多結
晶シリコン膜からなるキャパシタ電極11を成長するこ
とでキャパシタが製造されていた。
A capacitor was manufactured by subsequently performing thermal oxidation to form a capacitor insulating film 10 on the surface of the storage electrode 12, and growing a capacitor electrode 11 made of a polycrystalline silicon film containing impurities over the entire surface.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の製造方法によるキャパシタの容量は単層
膜から成るストレージ電極の平面方向面積で主に決定さ
れているので、一定の容量を確保しながらキャパシタの
面積を小さくし集積度を高めるには困難なものしか得ら
れないという欠点がある。
The capacitance of a capacitor produced using the above-mentioned conventional manufacturing method is mainly determined by the area in the planar direction of the storage electrode made of a single-layer film, so in order to reduce the area of the capacitor and increase the degree of integration while ensuring a constant capacitance, it is necessary to The drawback is that you can only get things that are difficult to achieve.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体集積回路の製造方法は、基板上に第1の
多結晶シリコン膜、絶縁膜、第2の多結晶シリコン膜か
ら成る多層膜を形成し、前記多層膜を所定の形状にパタ
ーニングし、前記多層膜の側表面に第3の多結晶シリコ
ン膜を形成して前記第1の多結晶シリコン膜と第2の多
結晶シリコン膜を連結し、前記第2の多結晶シリコン膜
の一部に開口部を形成して前記絶縁膜を露出し、前記開
口部から前記絶縁膜を除去して第1の電極を形成する工
程と、前記第1の電極表面にキャパシタ絶縁膜を形成す
る工程と、前記キャパシタ絶縁膜を覆う導電膜を被着し
て第2の電極を形成する工程とを有するというものであ
る。
A method for manufacturing a semiconductor integrated circuit according to the present invention includes forming a multilayer film consisting of a first polycrystalline silicon film, an insulating film, and a second polycrystalline silicon film on a substrate, and patterning the multilayer film into a predetermined shape. , forming a third polycrystalline silicon film on a side surface of the multilayer film to connect the first polycrystalline silicon film and the second polycrystalline silicon film, and forming a part of the second polycrystalline silicon film. forming an opening to expose the insulating film, and removing the insulating film from the opening to form a first electrode; and forming a capacitor insulating film on the surface of the first electrode. , and forming a second electrode by depositing a conductive film covering the capacitor insulating film.

〔実施例〕〔Example〕

次に本発明について図面を委照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図(a)〜(d)は本発明の一実施例を説明するた
めの製造工程順に示す半導体チップの断面図である。
FIGS. 1(a) to 1(d) are cross-sectional views of a semiconductor chip shown in order of manufacturing steps to explain one embodiment of the present invention.

ます、第1図(a)に示す様に、P型シリコン基板10
1を熱酸化して表面に素子分離酸化膜102を成長する
。フォトエラチンクン技術にて素子分lIi!酸化膜1
02の一部をエツチングし、コンタクト孔103を形成
しP型シリコン基板101表面を露出する。こうして準
備された基板上に、つぎに不純物としてボロンを含む厚
さ0.3μmの第1の多結晶シリコン膜104、厚さ0
.3μmの窒化シリコン膜105、更に不純物としてボ
ロンを含む厚さ0.6μmの第2の多結晶シリコン膜1
05より成る多層膜を成長してからフォトエツチング技
術でコンタクト103を含む様に多層膜をエツチングす
る。なお第1の多結晶シリコン膜104中の不純物の一
部がコンタクト孔103を通してP型シリコン基板10
1中に拡散し不純物拡散層107を形成するので第1の
多結晶シリコン膜104は電気的にP型シリコン基板1
01と接続される。
First, as shown in FIG. 1(a), a P-type silicon substrate 10
1 is thermally oxidized to grow an element isolation oxide film 102 on the surface. Elements are made using photo erachinkun technology! Oxide film 1
02 is etched to form a contact hole 103 and expose the surface of the P-type silicon substrate 101. On the substrate thus prepared, a first polycrystalline silicon film 104 containing boron as an impurity and having a thickness of 0.3 μm is formed.
.. A 3 μm thick silicon nitride film 105 and a 0.6 μm thick second polycrystalline silicon film 1 further containing boron as an impurity.
After growing a multilayer film consisting of 05, the multilayer film is etched to include the contact 103 using a photo-etching technique. Note that some of the impurities in the first polycrystalline silicon film 104 pass through the contact hole 103 to the P-type silicon substrate 10.
1 to form an impurity diffusion layer 107, the first polycrystalline silicon film 104 is electrically connected to the P-type silicon substrate 1.
Connected to 01.

次に、全面に不純物としてボロンを含む厚さ0.3μm
の第3の多結晶シリコン膜108を成長した後、異方性
エツチングを行ない、第1図(b)に示す様に、第1の
多結晶シリコン膜104、窒化シリコン膜105、第2
の多結晶シリコン膜106の側表面に残す。この工程に
より窒化シリコン膜105は第1.第2.第3の多結晶
シリコン膜104,106,108で包み込まれた状態
となる。
Next, a thickness of 0.3 μm containing boron as an impurity is applied to the entire surface.
After growing the third polycrystalline silicon film 108, anisotropic etching is performed to form the first polycrystalline silicon film 104, the silicon nitride film 105, and the second polycrystalline silicon film 105, as shown in FIG.
is left on the side surface of the polycrystalline silicon film 106. Through this step, the silicon nitride film 105 is made into the first silicon nitride film 105. Second. It is in a state where it is surrounded by third polycrystalline silicon films 104, 106, and 108.

つづいて第1図(C)に示す様に、フォトエツチング技
術により第2の多結晶シリコン膜106にストレージコ
ンタクト孔109を開口してから等方性エツチングによ
り窒化シリコン膜105を除去する。
Subsequently, as shown in FIG. 1C, a storage contact hole 109 is opened in the second polycrystalline silicon film 106 by photoetching, and then the silicon nitride film 105 is removed by isotropic etching.

その後、第1図(d)に示すように、熱酸化を行なって
多結晶シリコン膜表面にキャパシタ絶縁膜110として
酸化シリコン膜を形成する。このようにしてキャパシタ
の第1の電極(ストレージ電極112−1〜112−3
)、キャパシタ絶縁膜110を形成することができる。
Thereafter, as shown in FIG. 1(d), thermal oxidation is performed to form a silicon oxide film as a capacitor insulating film 110 on the surface of the polycrystalline silicon film. In this way, the first electrodes (storage electrodes 112-1 to 112-3) of the capacitor
), a capacitor insulating film 110 can be formed.

次に、不純物としてボロンを含む多結晶シリコン膜を減
圧CVD法で成長してキャパシタ電4fllO(第2の
電極)とし、キャパシタの形成が完了する。
Next, a polycrystalline silicon film containing boron as an impurity is grown by low pressure CVD to form a capacitor electrode 4fllO (second electrode), completing the formation of the capacitor.

比較的ポピユラーな製造技術を組合せて多層構造のキャ
パシタを製造することかできる。
Multilayer capacitors can be manufactured by combining relatively popular manufacturing techniques.

第211(a)〜(c)は本発明をダイナミック・ラン
ダム・アクセス・メモリの構造に応用した例を説明する
ための製造工程順に示した半導体チップの断面図である
211(a) to 211(c) are cross-sectional views of a semiconductor chip shown in the order of manufacturing steps for explaining an example in which the present invention is applied to the structure of a dynamic random access memory.

まず、第2図(a)に示す様にP型シリコン基板201
上にLOCOS酸化法で素子分M酸化膜202を成長し
てから素子形成領域にはゲート酸化膜21.3−1,2
13−2を下層に有すゲート電極216−1.216−
4を形成する。なお、素子分離酸化膜202上に他のゲ
ート電極216−2.2]、6−3を形成する。この後
全面にヒ素イオン注入を行なうと、ゲート電!21.6
−1216−.4の両側にそれぞれ拡散層214−12
15−1.214−2,215−2が形成される。つづ
いて全面に酸化シリコン膜を成長して第1層間絶縁膜2
17としてから拡散層2151.215−2上にそれぞ
れ第1コンタクト孔218−1,21.8−2を開口す
る。その後−実施例と同じく不純物としてリンを含む第
1の多結晶シリコン膜204.窒化シリコン膜205.
不純物としてリンを含む第2の多結晶シリコン膜206
の3層膜を成長してからフォトエツチング技術にてパタ
ーニングする6更に全面に不純物としてリンを含む第3
の多結晶シリコン膜208を成長する。
First, as shown in FIG. 2(a), a P-type silicon substrate 201
After a device-sized M oxide film 202 is grown on top using the LOCOS oxidation method, gate oxide films 21.3-1, 2 are formed in the device formation region.
Gate electrode 216-1.216- with 13-2 in the lower layer
form 4. Note that other gate electrodes 216-2.2] and 6-3 are formed on the element isolation oxide film 202. After this, when arsenic ions are implanted over the entire surface, the gate voltage! 21.6
-1216-. Diffusion layers 214-12 on both sides of 4.
15-1, 214-2, 215-2 are formed. Next, a silicon oxide film is grown on the entire surface to form a first interlayer insulating film 2.
17, first contact holes 218-1 and 21.8-2 are opened on the diffusion layers 2151 and 215-2, respectively. After that, a first polycrystalline silicon film 204 containing phosphorus as an impurity is formed as in the embodiment. Silicon nitride film 205.
Second polycrystalline silicon film 206 containing phosphorus as an impurity
After growing a three-layer film, it is patterned using photo-etching technology.
A polycrystalline silicon film 208 is grown.

つづいて、第2図(b)に示すように、異方性シリコン
エツチングを行ない第3の多結晶シリコン膜208を第
1の多結晶シリコンM2O4,窒化シリコン膜205.
第2の多結晶シリコン膜206の側面に残し、つづいて
フオトエ・・ノチング技術てケート電極216−2.2
16−3間上の第2の多結晶シリコン膜206.窒化レ
リコン膜205 第1の多結晶シリコン膜204を工・
・ノチングする。その後残りの窒化シリコン膜205を
等方性エツチングにて除去した後熱酸化を行なって第1
〜第3の多結晶シリコン膜表面にキャパシタ絶縁膜21
0a、210bを形成する。こうして2つのキャパシタ
のストレージ電極211−1a〜212−3a、212
−1b〜212−3bと、それぞれのキャパシタ絶縁膜
210a、210bを形成することができる。
Subsequently, as shown in FIG. 2(b), anisotropic silicon etching is performed to separate the third polycrystalline silicon film 208 from the first polycrystalline silicon M2O4, silicon nitride film 205.
A gate electrode 216-2.2 is left on the side surface of the second polycrystalline silicon film 206, and then a photonotching technique is applied to the gate electrode 216-2.2.
16-3 on the second polycrystalline silicon film 206. Nitride relicon film 205 Processing the first polycrystalline silicon film 204
・Notching. Thereafter, the remaining silicon nitride film 205 is removed by isotropic etching, and then thermal oxidation is performed to remove the first silicon nitride film 205.
-Capacitor insulating film 21 on the surface of the third polycrystalline silicon film
0a and 210b are formed. In this way, the storage electrodes 211-1a to 212-3a, 212 of the two capacitors
-1b to 212-3b, and the respective capacitor insulating films 210a and 210b can be formed.

ひきつづいて第2図(c)に示すように、キャパシタ絶
縁膜210a、210bを覆う様にキャパシタ電極21
1としてリンを不純物として含む多結晶シリコン膜を成
長、パターニングした後全面にBPSG成長を行なって
第2層間絶縁g!219としてから、拡散層214−1
.214−2上の第2層間絶縁膜219をエツチングし
て第2コンタクト孔220−1,220−2を開口し、
Aρをスパッタ、パターニングすることでデイジット線
221を形成することによりダイナミ・lり・ランタム
 アクセス・メモリか製造できる。
Subsequently, as shown in FIG. 2(c), a capacitor electrode 21 is formed so as to cover the capacitor insulating films 210a and 210b.
1, a polycrystalline silicon film containing phosphorus as an impurity is grown and patterned, and then BPSG is grown on the entire surface to form a second interlayer insulation g! 219, then the diffusion layer 214-1
.. Etching the second interlayer insulating film 219 on 214-2 to open second contact holes 220-1 and 220-2;
By sputtering and patterning Aρ to form the digit line 221, a dynamic, low-power, random access memory can be manufactured.

なお、以上の説明では第1の多結晶シリコン膜上に窒化
シリコン膜を用いたが、酸化シリコン膜であっても可能
であり、また窒化シリコン膜を除去するために第2の多
結晶シリコン膜に複数の穴を設けてから窒化シリコン膜
を除去してもよいことは言うまでもない。
In the above explanation, a silicon nitride film is used on the first polycrystalline silicon film, but a silicon oxide film may also be used, and in order to remove the silicon nitride film, a second polycrystalline silicon film is used. Needless to say, the silicon nitride film may be removed after providing a plurality of holes.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は第1の多結晶シリコン膜、
絶縁膜、第2の多結晶シリコン膜より成る多層膜を基板
上に成長し、フォトエツチング技術で所定形状にパター
ニングした後、第3の多結晶シリコン膜をパターニング
された多層膜側面に形成する。つまり絶縁膜を第1の多
結晶シリコン膜、第2の多結晶シリコン膜、第3の多結
晶シリコン嗅で覆った状態で、第2の多結晶シリコン嗅
の一部を開口し、絶縁膜を除去する。更に第1の多結晶
シリコン膜、第2の多結晶シリコン膜、第3の多結晶シ
リコン膜表面にキャパシタ絶縁膜を介して導電膜を成長
しキャパシタを形成することにより、キャパシタ実効表
面積を著しく増大させ、集積密度を高めることかできる
効果かある。
As explained above, the present invention provides a first polycrystalline silicon film,
A multilayer film consisting of an insulating film and a second polycrystalline silicon film is grown on a substrate and patterned into a predetermined shape using a photoetching technique, and then a third polycrystalline silicon film is formed on the side surface of the patterned multilayer film. In other words, with the insulating film covered with the first polycrystalline silicon film, the second polycrystalline silicon film, and the third polycrystalline silicon film, a part of the second polycrystalline silicon film is opened, and the insulating film is covered with Remove. Furthermore, by forming a capacitor by growing a conductive film on the surfaces of the first polycrystalline silicon film, the second polycrystalline silicon film, and the third polycrystalline silicon film via a capacitor insulating film, the effective surface area of the capacitor is significantly increased. This has the effect of increasing the integration density.

また発明によりダイナミック ランタム・アクセス・メ
モリのキャパシタを形成すれはソフトエラーか低く、動
作マージンの広いデバイスを実現できる。
Furthermore, by forming a capacitor in a dynamic random access memory according to the present invention, a device with low soft errors and a wide operating margin can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(d)は本発明の一実施例を説明するた
め製造工程順に示した縦断面図、第2図(a)〜(c)
は本発明の詳細な説明するだめの製造工程順に示した縦
断面図、第3図は従来例を説明するための縦断面図であ
る。 1.101,201・・・P型シリコン基板、2102
.202・・素子分M酸化膜、3.1C)3・コンタク
ト孔、104,204・・・第1の多結晶シリコン膜、
105.205・・・窒化シリコン膜、106.206
・・・第2の多結晶シリコン膜、7゜107・・・不純
物拡散層、108,208・・・第3の多結晶シリコン
膜、109・・・ストレージコンタクト孔、10,11
0.210a、210b−キャパシタ絶縁膜、11,1
11,211・・・キャパシタ電極、12,112−1
〜112−3,212−Ia 〜212−3a、212
−1b 〜2123b・・・ストレージ電極、213−
1,213−2・・・ゲート酸化膜、214−1,21
4−2215−1,215−2・・・拡散層、216−
1〜216−4・・・ゲート電極、217・・・第1層
間絶縁膜、218=1,218−2・・・第1コンタク
ト孔、219・・・第2層間絶縁膜、220−1.22
0〜2・・・第2コンタクト孔、221・・・デイジッ
ト線。
FIGS. 1(a) to (d) are vertical sectional views shown in the order of manufacturing steps to explain one embodiment of the present invention, and FIGS. 2(a) to (c)
FIG. 3 is a vertical cross-sectional view showing the manufacturing process in order to explain the present invention in detail, and FIG. 3 is a vertical cross-sectional view for explaining a conventional example. 1.101,201...P-type silicon substrate, 2102
.. 202...Element M oxide film, 3.1C)3.Contact hole, 104,204...First polycrystalline silicon film,
105.205...Silicon nitride film, 106.206
...Second polycrystalline silicon film, 7°107...Impurity diffusion layer, 108,208...Third polycrystalline silicon film, 109...Storage contact hole, 10,11
0.210a, 210b-capacitor insulating film, 11,1
11,211...Capacitor electrode, 12,112-1
~112-3, 212-Ia ~212-3a, 212
-1b to 2123b...storage electrode, 213-
1,213-2...gate oxide film, 214-1,21
4-2215-1, 215-2...diffusion layer, 216-
1 to 216-4... Gate electrode, 217... First interlayer insulating film, 218=1,218-2... First contact hole, 219... Second interlayer insulating film, 220-1. 22
0 to 2... second contact hole, 221... digit line.

Claims (1)

【特許請求の範囲】[Claims]  基板上に第1の多結晶シリコン膜、絶縁膜、第2の多
結晶シリコン膜から成る多層膜を形成し、前記多層膜を
所定の形状にパターニングし、前記多層膜の側表面に第
3の多結晶シリコン膜を形成して前記第1の多結晶シリ
コン膜と第2の多結晶シリコン膜を連結し、前記第2の
多結晶シリコン膜の一部に開口部を形成して前記絶縁膜
を露出し、前記開口部から前記絶縁膜を除去して第1の
電極を形成する工程と、前記第1の電極表面にキャパシ
タ絶縁膜を形成する工程と、前記キャパシタ絶縁膜を覆
う導電膜を被着して第2の電極を形成する工程とを有す
ることを特徴とする半導体装置の製造方法。
A multilayer film consisting of a first polycrystalline silicon film, an insulating film, and a second polycrystalline silicon film is formed on a substrate, the multilayer film is patterned into a predetermined shape, and a third film is formed on the side surface of the multilayer film. A polycrystalline silicon film is formed to connect the first polycrystalline silicon film and a second polycrystalline silicon film, and an opening is formed in a portion of the second polycrystalline silicon film to close the insulating film. forming a first electrode by exposing and removing the insulating film from the opening; forming a capacitor insulating film on the surface of the first electrode; and covering the capacitor insulating film with a conductive film. 1. A method of manufacturing a semiconductor device, comprising the steps of: forming a second electrode by attaching the second electrode to the second electrode;
JP2190272A 1990-07-18 1990-07-18 Manufacture of semiconductor device Pending JPH0476947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2190272A JPH0476947A (en) 1990-07-18 1990-07-18 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2190272A JPH0476947A (en) 1990-07-18 1990-07-18 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0476947A true JPH0476947A (en) 1992-03-11

Family

ID=16255395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2190272A Pending JPH0476947A (en) 1990-07-18 1990-07-18 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0476947A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05275615A (en) * 1992-03-27 1993-10-22 Mitsubishi Electric Corp Semiconductor device and manufacture thereof
KR100236072B1 (en) * 1996-09-11 1999-12-15 김영환 Structure of capacitor for semiconductor device and manufacturing method thereof
JP2017098499A (en) * 2015-11-27 2017-06-01 三菱電機株式会社 Mim capacitor and method for manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05275615A (en) * 1992-03-27 1993-10-22 Mitsubishi Electric Corp Semiconductor device and manufacture thereof
KR100236072B1 (en) * 1996-09-11 1999-12-15 김영환 Structure of capacitor for semiconductor device and manufacturing method thereof
JP2017098499A (en) * 2015-11-27 2017-06-01 三菱電機株式会社 Mim capacitor and method for manufacturing the same

Similar Documents

Publication Publication Date Title
GB2244861A (en) Integrated circuit capacitor
JP2865155B2 (en) Semiconductor device and manufacturing method thereof
JP2894740B2 (en) MOS type semiconductor device
JP3344786B2 (en) Method for manufacturing capacitor electrode of semiconductor memory cell
JPS6156445A (en) Semiconductor device
JPH02219264A (en) Dram cell and its manufacture
JPH0476947A (en) Manufacture of semiconductor device
JPH02143456A (en) Manufacture of lamination type memory cell
JP2503661B2 (en) Semiconductor memory device and manufacturing method thereof
JP2572864B2 (en) Method for manufacturing semiconductor device
JP2671466B2 (en) Semiconductor device and manufacturing method thereof
JP2689682B2 (en) Method for manufacturing semiconductor memory cell
JP2773613B2 (en) Method for manufacturing semiconductor device
JPS63226955A (en) Manufacture of capacitive element
JPH0382155A (en) Semiconductor memory cell and manufacture thereof
JPH01270343A (en) Manufacture of semiconductor device
JPH03148860A (en) Semiconductor memory and manufacture thereof
JP2950550B2 (en) Method for manufacturing semiconductor memory device
JP2956234B2 (en) Semiconductor memory device and manufacturing method thereof
JPS62156856A (en) Dynamic memory cell and manufacture thereof
JP2848135B2 (en) Method for manufacturing semiconductor memory device
JP3079558B2 (en) Method of forming semiconductor memory cell
JP2901367B2 (en) Semiconductor memory device
JPH03205861A (en) Semiconductor device
JPH04216666A (en) Semiconductor device and its manufacture