JP2017098499A - Mim capacitor and method for manufacturing the same - Google Patents

Mim capacitor and method for manufacturing the same Download PDF

Info

Publication number
JP2017098499A
JP2017098499A JP2015231981A JP2015231981A JP2017098499A JP 2017098499 A JP2017098499 A JP 2017098499A JP 2015231981 A JP2015231981 A JP 2015231981A JP 2015231981 A JP2015231981 A JP 2015231981A JP 2017098499 A JP2017098499 A JP 2017098499A
Authority
JP
Japan
Prior art keywords
conductive film
film
mim capacitor
opening
semi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015231981A
Other languages
Japanese (ja)
Other versions
JP6458718B2 (en
Inventor
正裕 戸塚
Masahiro Totsuka
正裕 戸塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2015231981A priority Critical patent/JP6458718B2/en
Publication of JP2017098499A publication Critical patent/JP2017098499A/en
Application granted granted Critical
Publication of JP6458718B2 publication Critical patent/JP6458718B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor device capable of reducing an occupied area of an MIM capacitor, and a method for manufacturing the same.SOLUTION: A first conductive film 2 is formed on a substrate 1. A first insulating film 3 is formed on the first conductive film 2. A second conductive film 4 is formed on the first insulating film 3. The second conductive film 4 is connected to the first conductive film 2, and includes an opening 5. A trench structure 6 is formed in the first insulating film 3. The trench structure 6 is connected to the opening 5, and wider than the opening 5. A first dielectric film 7 and a third conductive film 8 are formed in this order on a floor and a sidewall of the trench structure 6, and on an inner wall including a ceiling.SELECTED DRAWING: Figure 1

Description

本発明は、占有面積を削減することができるMIMキャパシタ及びその製造方法に関する。   The present invention relates to an MIM capacitor capable of reducing an occupied area and a method for manufacturing the same.

MMIC(Microwave Monolithic IC)などの半導体装置の構成素子の1つとしてMIM(Metal Insulator Metal)キャパシタが用いられている(例えば、特許文献1参照)。   An MIM (Metal Insulator Metal) capacitor is used as one of constituent elements of a semiconductor device such as an MMIC (Microwave Monolithic IC) (see, for example, Patent Document 1).

特開2003−303896号公報JP 2003-303896 A

MIMキャパシタは半導体装置内で通常20〜30%を占め、占有面積が大きい。このため、半導体装置の面積縮小に対してMIMキャパシタが阻害要因となっている。半導体装置の面積縮小は製造コスト削減に大きく寄与するため、半導体装置におけるMIMキャパシタの占有面積を削減することが重要である。   MIM capacitors usually occupy 20 to 30% in a semiconductor device and occupy a large area. For this reason, the MIM capacitor is an obstacle to reducing the area of the semiconductor device. Since the reduction of the area of the semiconductor device greatly contributes to the reduction of the manufacturing cost, it is important to reduce the area occupied by the MIM capacitor in the semiconductor device.

本発明は、上述のような課題を解決するためになされたもので、その目的は占有面積を削減することができるMIMキャパシタ及びその製造方法を得るものである。   The present invention has been made to solve the above-described problems, and an object of the present invention is to obtain an MIM capacitor capable of reducing an occupied area and a method for manufacturing the same.

本発明に係るMIMキャパシタは、基板と、前記基板上に形成された第1の導電膜と、前記第1の導電膜上に形成された第1の絶縁膜と、前記第1の絶縁膜上に形成され、前記第1の導電膜に接続され、開口を有する第2の導電膜と、前記第1の絶縁膜内に形成され、前記開口に繋がり、前記開口よりも幅が広い掘り込み構造と、前記掘り込み構造の床、側壁及び天井を含む内壁に順に形成された第1の誘電膜及び第3の導電膜とを備えることを特徴とする。   The MIM capacitor according to the present invention includes a substrate, a first conductive film formed on the substrate, a first insulating film formed on the first conductive film, and on the first insulating film. A second conductive film connected to the first conductive film and having an opening; and a digging structure formed in the first insulating film, connected to the opening, and wider than the opening. And a first dielectric film and a third conductive film formed in order on the inner wall including the floor, side walls, and ceiling of the digging structure.

本発明では、掘り込み構造の内壁に形成された第1の誘電膜及び第3の導電膜とその周囲の第1及び第2の導電膜によりMIMキャパシタが構成される。このように掘り込み構造の内壁の面積を有効利用することでMIMキャパシタの表面積が拡大される。これにより、半導体装置内におけるMIMキャパシタの占有面積を削減することができる。   In the present invention, the MIM capacitor is constituted by the first dielectric film and the third conductive film formed on the inner wall of the digging structure and the first and second conductive films around the first dielectric film and the third conductive film. Thus, the surface area of the MIM capacitor is expanded by effectively utilizing the area of the inner wall of the digging structure. Thereby, the area occupied by the MIM capacitor in the semiconductor device can be reduced.

本発明の実施の形態1に係るMIMキャパシタを示す断面図である。It is sectional drawing which shows the MIM capacitor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るMIMキャパシタの製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the MIM capacitor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るMIMキャパシタの製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the MIM capacitor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るMIMキャパシタの製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the MIM capacitor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るMIMキャパシタの製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the MIM capacitor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るMIMキャパシタの製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the MIM capacitor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るMIMキャパシタの製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the MIM capacitor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るMIMキャパシタの製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the MIM capacitor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るMIMキャパシタの製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the MIM capacitor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るMIMキャパシタの製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the MIM capacitor which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係るMIMキャパシタを示す断面図である。It is sectional drawing which shows the MIM capacitor which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係るMIMキャパシタを示す断面図である。It is sectional drawing which shows the MIM capacitor which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係るMIMキャパシタを示す断面図である。It is sectional drawing which shows the MIM capacitor which concerns on Embodiment 4 of this invention. 本発明の実施の形態5に係るMIMキャパシタを示す断面図である。It is sectional drawing which shows the MIM capacitor which concerns on Embodiment 5 of this invention. 本発明の実施の形態5に係るMIMキャパシタの製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the MIM capacitor which concerns on Embodiment 5 of this invention. 本発明の実施の形態5に係るMIMキャパシタの製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the MIM capacitor which concerns on Embodiment 5 of this invention.

本発明の実施の形態に係る半導体装置及びその製造方法について図面を参照して説明する。同じ又は対応する構成要素には同じ符号を付し、説明の繰り返しを省略する場合がある。   A semiconductor device and a manufacturing method thereof according to an embodiment of the present invention will be described with reference to the drawings. The same or corresponding components are denoted by the same reference numerals, and repeated description may be omitted.

実施の形態1.
図1は、本発明の実施の形態1に係るMIMキャパシタを示す断面図である。半絶縁性基板1上に導電膜2が形成されている。導電膜2上に絶縁膜3が形成されている。絶縁膜3上に導電膜4が形成されている。導電膜4は導電膜2に接続され、開口5を有する。
Embodiment 1 FIG.
FIG. 1 is a cross-sectional view showing an MIM capacitor according to Embodiment 1 of the present invention. A conductive film 2 is formed on the semi-insulating substrate 1. An insulating film 3 is formed on the conductive film 2. A conductive film 4 is formed on the insulating film 3. The conductive film 4 is connected to the conductive film 2 and has an opening 5.

絶縁膜3内に掘り込み構造6が形成されている。掘り込み構造6は開口5に繋がり、開口5よりも幅が広い。掘り込み構造6の床、側壁及び天井を含む内壁に誘電膜7及び導電膜8が順に形成されている。誘電膜7及び導電膜8は導電膜4上にも形成されている。これらを覆うように誘電膜9が形成されている。下部電極10が導電膜2,4に接続され、上部電極11が導電膜8に接続されている。   A digging structure 6 is formed in the insulating film 3. The digging structure 6 is connected to the opening 5 and is wider than the opening 5. A dielectric film 7 and a conductive film 8 are sequentially formed on the inner wall including the floor, side walls, and ceiling of the digging structure 6. The dielectric film 7 and the conductive film 8 are also formed on the conductive film 4. A dielectric film 9 is formed so as to cover them. The lower electrode 10 is connected to the conductive films 2 and 4, and the upper electrode 11 is connected to the conductive film 8.

続いて、本実施の形態に係るMIMキャパシタの製造方法を説明する。図2から図11は、本発明の実施の形態1に係るMIMキャパシタの製造方法を示す断面図である。まず、図2に示すように、半絶縁性基板1上に導電膜2を蒸着法又はスパッタ法により形成し、リフトオフ法によりパターニングする。   Next, a method for manufacturing the MIM capacitor according to the present embodiment will be described. 2 to 11 are cross-sectional views showing a method for manufacturing the MIM capacitor according to the first embodiment of the present invention. First, as shown in FIG. 2, a conductive film 2 is formed on a semi-insulating substrate 1 by vapor deposition or sputtering, and patterned by lift-off.

次に、図3に示すように、導電膜2上に絶縁膜3をCVD(Chemical Vapor Deposition)法又はスパッタ法により形成する。次に、図4に示すように、絶縁膜3にコンタクトホール12をドライエッチャ等により形成する。   Next, as shown in FIG. 3, an insulating film 3 is formed on the conductive film 2 by a CVD (Chemical Vapor Deposition) method or a sputtering method. Next, as shown in FIG. 4, a contact hole 12 is formed in the insulating film 3 by a dry etcher or the like.

次に、図5に示すように、絶縁膜3上及びコンタクトホール12内に導電膜4を蒸着法又はスパッタ法により形成する。導電膜4はコンタクトホール12を介して導電膜2に接続される。導電膜4をリフト法によりパターニングして開口5を形成する。   Next, as shown in FIG. 5, a conductive film 4 is formed on the insulating film 3 and in the contact hole 12 by vapor deposition or sputtering. The conductive film 4 is connected to the conductive film 2 through the contact hole 12. The conductive film 4 is patterned by a lift method to form an opening 5.

次に、図6に示すように、開口5周辺以外をレジスト13で覆う。そして、フッ酸又はバッファードフッ酸等の薬液を用いたウェットエッチングにより、開口5から絶縁膜3をサイドエッチングして、開口5よりも幅が広い掘り込み構造6を形成する。その後、レジスト13を除去する。なお、図6ではサイドエッチングを途中で止めているが、絶縁膜3を完全にエッチングしてもよい。   Next, as shown in FIG. 6, a portion other than the periphery of the opening 5 is covered with a resist 13. Then, the insulating film 3 is side-etched from the opening 5 by wet etching using a chemical solution such as hydrofluoric acid or buffered hydrofluoric acid, so that the digging structure 6 wider than the opening 5 is formed. Thereafter, the resist 13 is removed. In FIG. 6, the side etching is stopped halfway, but the insulating film 3 may be completely etched.

次に、図7に示すように、掘り込み構造6の床、側壁及び天井を含む内壁、開口5の側壁及び導電膜4上に、誘電膜7及び導電膜8を順に原子層堆積(ALD: Atomic Layer Deposition)法により形成する。次に、図8に示すように、導電膜4上の誘電膜7及び導電膜8をドライエッチャ等によりパターニングする。   Next, as shown in FIG. 7, the dielectric film 7 and the conductive film 8 are sequentially deposited on the inner wall including the floor, the side wall, and the ceiling of the digging structure 6, the side wall of the opening 5, and the conductive film 4. It is formed by the Atomic Layer Deposition method. Next, as shown in FIG. 8, the dielectric film 7 and the conductive film 8 on the conductive film 4 are patterned by a dry etcher or the like.

次に、図9に示すように、掘り込み構造6内を含む全面に誘電膜9をALD法により形成する。この誘電膜9は掘り込み構造6内部の保護膜としても用いる。なお、掘り込み構造6内部の保護が不要であれば、誘電膜9をCVD法又はスパッタ法で形成してもよい。次に、図10に示すように、誘電膜9にコンタクトホール14をドライエッチャ等により形成する。   Next, as shown in FIG. 9, a dielectric film 9 is formed on the entire surface including the inside of the digging structure 6 by the ALD method. This dielectric film 9 is also used as a protective film inside the digging structure 6. If protection inside the digging structure 6 is unnecessary, the dielectric film 9 may be formed by CVD or sputtering. Next, as shown in FIG. 10, a contact hole 14 is formed in the dielectric film 9 by a dry etcher or the like.

次に、図1に示すように、導電膜を蒸着法又はスパッタ法により形成し、リフトオフ法によりパターニングすることで、基板上面側に引き出された下部電極10及び上部電極11を形成する。以上の工程により本実施の形態に係るMIMキャパシタが製造される。   Next, as shown in FIG. 1, a conductive film is formed by a vapor deposition method or a sputtering method, and patterned by a lift-off method, thereby forming a lower electrode 10 and an upper electrode 11 drawn to the upper surface side of the substrate. The MIM capacitor according to the present embodiment is manufactured through the above steps.

以上説明したように、本実施の形態では、掘り込み構造6の内壁に形成された誘電膜7及び導電膜8とその周囲の導電膜2,4によりMIMキャパシタが構成される。このように掘り込み構造6の内壁の面積を有効利用することでMIMキャパシタの表面積が拡大される。これにより、半導体装置内におけるMIMキャパシタの占有面積を削減することができる。   As described above, in this embodiment, the dielectric film 7 and the conductive film 8 formed on the inner wall of the digging structure 6 and the surrounding conductive films 2 and 4 constitute an MIM capacitor. Thus, the surface area of the MIM capacitor is increased by effectively using the area of the inner wall of the digging structure 6. Thereby, the area occupied by the MIM capacitor in the semiconductor device can be reduced.

また、誘電膜7及び導電膜8は導電膜4上にも形成されている。これらの導電膜4、誘電膜7及び導電膜8によりMIMキャパシタが構成される。このように掘り込み構造6以外の領域も利用することでMIMキャパシタの表面積が更に拡大される。   The dielectric film 7 and the conductive film 8 are also formed on the conductive film 4. These conductive film 4, dielectric film 7 and conductive film 8 constitute an MIM capacitor. In this way, the surface area of the MIM capacitor is further expanded by using the region other than the digging structure 6.

また、掘り込み構造6に繋がる開口5は狭いため、一般的なスパッタ法、CVD法、及び蒸着法では掘り込み構造6の内壁に薄膜を殆ど成膜できない。特に、導電膜4の膜厚はMIM容量値に直接影響するため致命的である。そこで、極めてカバレッジの良い成膜法であるALD法を用いることで、掘り込み構造6の内壁に誘電膜7及び導電膜8を形成することができる。   In addition, since the opening 5 connected to the digging structure 6 is narrow, a general thin film cannot be formed on the inner wall of the digging structure 6 by a general sputtering method, CVD method, or vapor deposition method. In particular, the thickness of the conductive film 4 is fatal because it directly affects the MIM capacitance value. Therefore, the dielectric film 7 and the conductive film 8 can be formed on the inner wall of the digging structure 6 by using the ALD method which is a film forming method with extremely good coverage.

実施の形態2.
図11は、本発明の実施の形態2に係るMIMキャパシタを示す断面図である。実施の形態1の構成に加えて、導電膜4の上方において導電膜8、誘電膜9及び下部電極10が積層されている。これらの層によりMIMキャパシタが構成される。これにより、MIMキャパシタの表面積が実施の形態1よりも更に拡大される。
Embodiment 2. FIG.
FIG. 11 is a cross-sectional view showing an MIM capacitor according to Embodiment 2 of the present invention. In addition to the configuration of the first embodiment, a conductive film 8, a dielectric film 9, and a lower electrode 10 are stacked above the conductive film 4. These layers constitute an MIM capacitor. Thereby, the surface area of the MIM capacitor is further expanded as compared with the first embodiment.

実施の形態3.
図12は、本発明の実施の形態3に係るMIMキャパシタを示す断面図である。実施の形態1,2では半絶縁性基板1を用いていたが、本実施の形態では半導体基板15を用いる。半導体基板15と導電膜2の間に絶縁膜16がCVD又はスパッタにより形成されている。絶縁膜16により半導体基板15との絶縁性が高まるため、基板経由のリーク電流を抑制することができる。
Embodiment 3 FIG.
FIG. 12 is a sectional view showing an MIM capacitor according to the third embodiment of the present invention. Although the semi-insulating substrate 1 is used in the first and second embodiments, the semiconductor substrate 15 is used in the present embodiment. An insulating film 16 is formed between the semiconductor substrate 15 and the conductive film 2 by CVD or sputtering. Since the insulating film 16 increases the insulation from the semiconductor substrate 15, leakage current through the substrate can be suppressed.

実施の形態4.
図13は、本発明の実施の形態4に係るMIMキャパシタを示す断面図である。本実施の形態では、掘り込み構造6が2個形成されている。その他の構成は実施の形態1と同様である。これに限らず、実施の形態1〜3の構造において掘り込み構造6を複数形成すればよい。これにより、個々の掘り込み構造6のサイドエッチング量を小さくできるため、掘り込み構造6の天井側の導電膜8のたわみの影響を小さくできる。
Embodiment 4 FIG.
FIG. 13 is a cross-sectional view showing an MIM capacitor according to Embodiment 4 of the present invention. In the present embodiment, two digging structures 6 are formed. Other configurations are the same as those of the first embodiment. Not only this but the digging structure 6 should just be formed in multiple numbers in the structure of Embodiment 1-3. Thereby, since the amount of side etching of each digging structure 6 can be reduced, the influence of the deflection of the conductive film 8 on the ceiling side of the digging structure 6 can be reduced.

実施の形態5.
図14は、本発明の実施の形態5に係るMIMキャパシタを示す断面図である。半絶縁性基板17内に掘り込み構造18が形成されている。掘り込み構造18は、半絶縁性基板17の上面に開口を有し、半絶縁性基板17の内部において開口よりも幅が広くなっている。導電膜19、誘電膜20及び導電膜21が掘り込み構造18の内壁に順に形成されている。
Embodiment 5. FIG.
FIG. 14 is a cross-sectional view showing an MIM capacitor according to the fifth embodiment of the present invention. A digging structure 18 is formed in the semi-insulating substrate 17. The digging structure 18 has an opening on the upper surface of the semi-insulating substrate 17, and the width inside the semi-insulating substrate 17 is wider than the opening. A conductive film 19, a dielectric film 20 and a conductive film 21 are sequentially formed on the inner wall of the digging structure 18.

導電膜19、誘電膜20及び導電膜21は半絶縁性基板17の上面にも形成されている。これらを覆うように半導体基板15の上面に絶縁膜22が形成されている。上部電極23が絶縁膜22上に形成され、絶縁膜22を貫通して導電膜21に接続されている。下部電極24が半導体基板15の下面に形成されている。掘り込み構造18は半絶縁性基板17を貫通している。導電膜19は下部電極24に接続されている。   The conductive film 19, the dielectric film 20, and the conductive film 21 are also formed on the upper surface of the semi-insulating substrate 17. An insulating film 22 is formed on the upper surface of the semiconductor substrate 15 so as to cover them. An upper electrode 23 is formed on the insulating film 22 and penetrates the insulating film 22 and is connected to the conductive film 21. A lower electrode 24 is formed on the lower surface of the semiconductor substrate 15. The digging structure 18 penetrates the semi-insulating substrate 17. The conductive film 19 is connected to the lower electrode 24.

続いて、本実施の形態に係るMIMキャパシタの製造方法を説明する。図15及び図16は、本発明の実施の形態5に係るMIMキャパシタの製造方法を示す断面図である。   Next, a method for manufacturing the MIM capacitor according to the present embodiment will be described. 15 and 16 are cross-sectional views illustrating the method for manufacturing the MIM capacitor according to the fifth embodiment of the present invention.

まず、図15に示すように、半絶縁性基板17の下面に下部電極24を形成する。そして、半絶縁性基板17の上面にレジスト25を塗布し、フォトリソグラフィ等によりレジスト25に開口26を形成する。そして、ドライエッチング又はウェットエッチングによりレジスト25の開口26から半絶縁性基板17をサイドエッチングして、半絶縁性基板17の内部において半絶縁性基板17の上面の開口よりも幅が広い掘り込み構造18を形成する。ウェットエッチングする薬液は、酒石酸:過酸化水素水混合液、リン酸:過酸化水素水混合液、クエン酸:過酸化水素水混合液、硫酸:過酸化水素水混合液、フッ硝酸などである。ドライエッチングには、RIE(Reactive Ion Etching)、ICP−RIE(Inductive Coupled Plasma-RIE)法などを用いる。   First, as shown in FIG. 15, the lower electrode 24 is formed on the lower surface of the semi-insulating substrate 17. Then, a resist 25 is applied on the upper surface of the semi-insulating substrate 17, and an opening 26 is formed in the resist 25 by photolithography or the like. Then, the semi-insulating substrate 17 is side-etched from the opening 26 of the resist 25 by dry etching or wet etching, and the digging structure is wider inside the semi-insulating substrate 17 than the opening on the upper surface of the semi-insulating substrate 17. 18 is formed. Chemical solutions for wet etching are tartaric acid: hydrogen peroxide mixture, phosphoric acid: hydrogen peroxide mixture, citric acid: hydrogen peroxide mixture, sulfuric acid: hydrogen peroxide mixture, hydrofluoric acid, and the like. For dry etching, RIE (Reactive Ion Etching), ICP-RIE (Inductive Coupled Plasma-RIE), or the like is used.

次に、図16に示すように、掘り込み構造18の内壁に導電膜19、誘電膜20及び導電膜21を順にALD法により形成する。その後、半絶縁性基板17の上面に絶縁膜22をCVD又はスパッタにより形成する。絶縁膜22上に上部電極23を形成する。以上の工程により本実施の形態に係るMIMキャパシタが製造される。   Next, as illustrated in FIG. 16, a conductive film 19, a dielectric film 20, and a conductive film 21 are sequentially formed on the inner wall of the digging structure 18 by the ALD method. Thereafter, an insulating film 22 is formed on the upper surface of the semi-insulating substrate 17 by CVD or sputtering. An upper electrode 23 is formed on the insulating film 22. The MIM capacitor according to the present embodiment is manufactured through the above steps.

本実施の形態のように掘り込み構造18が半絶縁性基板17内に形成されている場合でも、実施の形態1と同様に半導体装置内におけるMIMキャパシタの占有面積を削減することができる。   Even when the digging structure 18 is formed in the semi-insulating substrate 17 as in the present embodiment, the area occupied by the MIM capacitor in the semiconductor device can be reduced as in the first embodiment.

また、半絶縁性基板17の上面に形成された導電膜19、誘電膜20及び導電膜21によりMIMキャパシタが構成される。このように掘り込み構造18以外の領域も利用することでMIMキャパシタの表面積が更に拡大される。   The conductive film 19, the dielectric film 20, and the conductive film 21 formed on the upper surface of the semi-insulating substrate 17 constitute an MIM capacitor. As described above, the surface area of the MIM capacitor is further expanded by using the region other than the digging structure 18.

また、下部電極24を半導体基板15の下面に形成するため、放熱性が向上する。また、下部電極24を裏面アースへ直結できるためインダクタ成分が少ないという電気回路上の利点がある。   Further, since the lower electrode 24 is formed on the lower surface of the semiconductor substrate 15, heat dissipation is improved. Further, since the lower electrode 24 can be directly connected to the back surface ground, there is an advantage on the electric circuit that the inductor component is small.

なお、実施の形態1〜5において、半絶縁性基板1,17及び半導体基板15の材料は、シリコン(Si)、ガリウム砒素(GaAs)、インジウム燐(InP)、窒化ガリウム(GaN)、炭化シリコン(SiC)などである。   In the first to fifth embodiments, the materials of the semi-insulating substrates 1 and 17 and the semiconductor substrate 15 are silicon (Si), gallium arsenide (GaAs), indium phosphide (InP), gallium nitride (GaN), and silicon carbide. (SiC).

また、導電膜2,4,8,19,21、下部電極10,24及び上部電極11,23は、チタン(Ti)、金(Au)、白金(Pt)、アルミニウム(Al)、銅(Cu)、モリブデン(Mo)、タンタル(Ta)、ニオブ(Nb)、ニッケル(Ni)、タングステン(W)、ルテニウム(Ru)、コバルト(Co)などを含有する導体又はこれらの積層構造である。   The conductive films 2, 4, 8, 19, and 21, the lower electrodes 10 and 24, and the upper electrodes 11 and 23 are made of titanium (Ti), gold (Au), platinum (Pt), aluminum (Al), copper (Cu ), Molybdenum (Mo), tantalum (Ta), niobium (Nb), nickel (Ni), tungsten (W), ruthenium (Ru), cobalt (Co), etc., or a laminated structure thereof.

また、絶縁膜3,16,22及び誘電膜7,9,20は、窒化シリコン(SiN)、窒酸化シリコン(SiON)、酸化シリコン(SiO)、酸化アルミニウム(AlO)、窒化アルミニウム(AlN)、酸化タンタル(TaO)、酸化ジルコニウム(ZrO)、酸化ハフニウム(HfO)、チタン酸ストロンチウム(STO)、チタン酸バリウムストロンチウム(BST)など又はこれらの積層構造である。   The insulating films 3, 16, 22 and the dielectric films 7, 9, 20 are made of silicon nitride (SiN), silicon nitride oxide (SiON), silicon oxide (SiO), aluminum oxide (AlO), aluminum nitride (AlN), Tantalum oxide (TaO), zirconium oxide (ZrO), hafnium oxide (HfO), strontium titanate (STO), barium strontium titanate (BST), etc., or a laminated structure thereof.

1,17 半絶縁性基板、2,4,8,19,21 導電膜、3,16,22 絶縁膜、
5,26 開口、6,18 掘り込み構造、7,9,20 誘電膜、10,24 下部電極、11,23 上部電極、15 半導体基板、25 レジスト
1,17 semi-insulating substrate, 2, 4, 8, 19, 21 conductive film, 3, 16, 22 insulating film,
5, 26 opening, 6, 18 digging structure, 7, 9, 20 dielectric film, 10, 24 lower electrode, 11, 23 upper electrode, 15 semiconductor substrate, 25 resist

Claims (10)

基板と、
前記基板上に形成された第1の導電膜と、
前記第1の導電膜上に形成された第1の絶縁膜と、
前記第1の絶縁膜上に形成され、前記第1の導電膜に接続され、開口を有する第2の導電膜と、
前記第1の絶縁膜内に形成され、前記開口に繋がり、前記開口よりも幅が広い掘り込み構造と、
前記掘り込み構造の床、側壁及び天井を含む内壁に順に形成された第1の誘電膜及び第3の導電膜とを備えることを特徴とするMIMキャパシタ。
A substrate,
A first conductive film formed on the substrate;
A first insulating film formed on the first conductive film;
A second conductive film formed on the first insulating film, connected to the first conductive film and having an opening;
A digging structure formed in the first insulating film, connected to the opening, and wider than the opening;
An MIM capacitor comprising: a first dielectric film and a third conductive film formed in order on an inner wall including a floor, a side wall, and a ceiling of the digging structure.
前記第1の誘電膜及び前記第3の導電膜は前記第2の導電膜上にも形成されていることを特徴とする請求項1に記載のMIMキャパシタ。   2. The MIM capacitor according to claim 1, wherein the first dielectric film and the third conductive film are also formed on the second conductive film. 前記第3の導電膜上に形成された第3の誘電膜と、
前記第2の導電膜の上方において前記第3の誘電膜上に形成され、前記第1及び第2の導電膜に接続された第4の導電膜とを更に備えることを特徴とする請求項2に記載のMIMキャパシタ。
A third dielectric film formed on the third conductive film;
3. A fourth conductive film formed on the third dielectric film above the second conductive film and connected to the first and second conductive films, further comprising: a fourth conductive film connected to the first and second conductive films. The MIM capacitor described in 1.
前記基板と前記第1の導電膜の間に形成された第2の絶縁膜を更に備え、
前記基板は半導体基板であることを特徴とする請求項1〜3の何れか1項に記載のMIMキャパシタ。
A second insulating film formed between the substrate and the first conductive film;
The MIM capacitor according to claim 1, wherein the substrate is a semiconductor substrate.
前記掘り込み構造が複数形成されていることを特徴とする請求項1〜4の何れか1項に記載のMIMキャパシタ。   The MIM capacitor according to claim 1, wherein a plurality of the digging structures are formed. 半絶縁性基板と、
前記半絶縁性基板内に形成され、前記半絶縁性基板の上面に開口を有し、前記半絶縁性基板の内部において前記開口よりも幅が広い掘り込み構造と、
前記掘り込み構造の内壁に形成された第1の導電膜と、
前記第1の導電膜上に順に形成された誘電膜及び第2の導電膜とを備えることを特徴とするMIMキャパシタ。
A semi-insulating substrate;
A digging structure formed in the semi-insulating substrate, having an opening on the upper surface of the semi-insulating substrate, and wider than the opening in the semi-insulating substrate;
A first conductive film formed on the inner wall of the digging structure;
An MIM capacitor comprising a dielectric film and a second conductive film formed in order on the first conductive film.
前記第1の導電膜、前記誘電膜及び前記第2の導電膜は前記半絶縁性基板の前記上面にも形成されていることを特徴とする請求項6に記載のMIMキャパシタ。   The MIM capacitor according to claim 6, wherein the first conductive film, the dielectric film, and the second conductive film are also formed on the upper surface of the semi-insulating substrate. 前記半絶縁性基板の下面に形成された下部電極を更に備え、
前記掘り込み構造は前記半絶縁性基板を貫通し、
前記第1の導電膜は前記下部電極に接続されていることを特徴とする請求項6又は7に記載のMIMキャパシタ。
A lower electrode formed on the lower surface of the semi-insulating substrate;
The digging structure penetrates the semi-insulating substrate;
The MIM capacitor according to claim 6, wherein the first conductive film is connected to the lower electrode.
基板上に第1の導電膜を形成する工程と、
前記第1の導電膜上に絶縁膜を形成する工程と、
前記絶縁膜上に前記第1の導電膜に接続された第2の導電膜を形成し、前記第2の導電膜に開口を形成する工程と、
前記開口から前記絶縁膜をサイドエッチングして、前記開口よりも幅が広い掘り込み構造を形成する工程と、
前記掘り込み構造の床、側壁及び天井を含む内壁に誘電膜及び第3の導電膜を順に原子層堆積法により形成する工程とを備えることを特徴とするMIMキャパシタの製造方法。
Forming a first conductive film on the substrate;
Forming an insulating film on the first conductive film;
Forming a second conductive film connected to the first conductive film on the insulating film, and forming an opening in the second conductive film;
Side-etching the insulating film from the opening to form a digging structure wider than the opening;
And a step of sequentially forming a dielectric film and a third conductive film on an inner wall including a floor, a side wall, and a ceiling of the digging structure by an atomic layer deposition method.
半絶縁性基板の上面にレジストを塗布し、レジストに開口を形成する工程と、
前記レジストの前記開口から前記半絶縁性基板をサイドエッチングして、前記半絶縁性基板の内部において前記半絶縁性基板の上面の開口よりも幅が広い掘り込み構造を形成する工程と、
前記掘り込み構造の内壁に第1の導電膜、誘電膜及び第2の導電膜を順に原子層堆積法により形成する工程とを備えることを特徴とするMIMキャパシタの製造方法。
Applying a resist to the upper surface of the semi-insulating substrate and forming an opening in the resist;
Side-etching the semi-insulating substrate from the opening of the resist to form a digging structure having a width wider than the opening of the upper surface of the semi-insulating substrate inside the semi-insulating substrate;
And a step of sequentially forming a first conductive film, a dielectric film, and a second conductive film on the inner wall of the digging structure by an atomic layer deposition method.
JP2015231981A 2015-11-27 2015-11-27 MIM capacitor and manufacturing method thereof Active JP6458718B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015231981A JP6458718B2 (en) 2015-11-27 2015-11-27 MIM capacitor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015231981A JP6458718B2 (en) 2015-11-27 2015-11-27 MIM capacitor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2017098499A true JP2017098499A (en) 2017-06-01
JP6458718B2 JP6458718B2 (en) 2019-01-30

Family

ID=58803809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015231981A Active JP6458718B2 (en) 2015-11-27 2015-11-27 MIM capacitor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6458718B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020184517A1 (en) * 2019-03-13 2020-09-17 パナソニックIpマネジメント株式会社 Capacitor and method for producing same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6066851A (en) * 1983-09-22 1985-04-17 Oki Electric Ind Co Ltd Ic capacitor and manufacture thereof
JPS63208263A (en) * 1987-02-25 1988-08-29 Toshiba Corp Semiconductor device
JPH0399461A (en) * 1989-09-12 1991-04-24 Mitsubishi Electric Corp Semiconductor device provided with mim capacitor
JPH0461266A (en) * 1990-06-29 1992-02-27 Nippon Telegr & Teleph Corp <Ntt> Capacitance element and its manufacturing method
JPH0476947A (en) * 1990-07-18 1992-03-11 Nec Corp Manufacture of semiconductor device
JPH05251658A (en) * 1992-03-05 1993-09-28 Oki Electric Ind Co Ltd Manufacture of semiconductor device
JPH06302780A (en) * 1993-04-13 1994-10-28 Fujitsu Ltd Ic memory and manufacture thereof
JPH07161936A (en) * 1993-12-07 1995-06-23 Toshiba Corp Semiconductor storage device and its manufacture
JPH08236698A (en) * 1995-02-27 1996-09-13 Nec Eng Ltd Semiconductor device
JP2003297942A (en) * 2002-03-26 2003-10-17 Samsung Electronics Co Ltd Semiconductor device having metal-insulator-metal type capacitor and method for manufacturing the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6066851A (en) * 1983-09-22 1985-04-17 Oki Electric Ind Co Ltd Ic capacitor and manufacture thereof
JPS63208263A (en) * 1987-02-25 1988-08-29 Toshiba Corp Semiconductor device
JPH0399461A (en) * 1989-09-12 1991-04-24 Mitsubishi Electric Corp Semiconductor device provided with mim capacitor
JPH0461266A (en) * 1990-06-29 1992-02-27 Nippon Telegr & Teleph Corp <Ntt> Capacitance element and its manufacturing method
JPH0476947A (en) * 1990-07-18 1992-03-11 Nec Corp Manufacture of semiconductor device
JPH05251658A (en) * 1992-03-05 1993-09-28 Oki Electric Ind Co Ltd Manufacture of semiconductor device
JPH06302780A (en) * 1993-04-13 1994-10-28 Fujitsu Ltd Ic memory and manufacture thereof
JPH07161936A (en) * 1993-12-07 1995-06-23 Toshiba Corp Semiconductor storage device and its manufacture
JPH08236698A (en) * 1995-02-27 1996-09-13 Nec Eng Ltd Semiconductor device
JP2003297942A (en) * 2002-03-26 2003-10-17 Samsung Electronics Co Ltd Semiconductor device having metal-insulator-metal type capacitor and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020184517A1 (en) * 2019-03-13 2020-09-17 パナソニックIpマネジメント株式会社 Capacitor and method for producing same
US11784000B2 (en) 2019-03-13 2023-10-10 Panasonic Intellectual Property Management Co., Ltd. Capacitor and method for producing same

Also Published As

Publication number Publication date
JP6458718B2 (en) 2019-01-30

Similar Documents

Publication Publication Date Title
JP6725109B2 (en) Semiconductor device
TWI709256B (en) Mim capacitor, semiconductor structure including mim capacitors and method for manufacturing the same
US11101072B2 (en) Capacitor with limited substrate capacitance
US11587738B2 (en) Capacitor
JPWO2019142317A1 (en) Thin layer capacitor and method for manufacturing thin layer capacitor
JP4837943B2 (en) Semiconductor device and manufacturing method thereof
US20090309134A1 (en) Semiconductor device and method of manufacturing the same
US20240088206A1 (en) Semiconductor structure
JP6458718B2 (en) MIM capacitor and manufacturing method thereof
US11563079B2 (en) Metal insulator metal (MIM) structure and manufacturing method thereof
CN108123039B (en) MIM capacitor and manufacturing method thereof
TW201721882A (en) Structure of MIM capacitor and the method for fabricating the same
US7977184B2 (en) Method for fabricating MIM structure capacitor
JP6451601B2 (en) Semiconductor device
JP6669359B2 (en) Method for manufacturing capacitor
CN108123040B (en) MIM capacitor and manufacturing method thereof
JP5780026B2 (en) MIM capacitor, semiconductor device
JP2018125332A (en) Monolithic microwave integrated circuit and method for manufacturing the same
CN103972210A (en) Semiconductor device and method of manufacturing semiconductor device
US20200357644A1 (en) Semiconductor device manufacturing method
JP7076576B2 (en) Semiconductor device structure
JP2014056887A (en) Method for manufacturing capacitor
CN108123038B (en) MIM capacitor and manufacturing method thereof
US11411089B2 (en) Semiconductor device and manufacturing method thereof
JP2017017272A (en) Capacitor, semiconductor device, manufacturing method of capacitor, and manufacturing method of semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181210

R150 Certificate of patent or registration of utility model

Ref document number: 6458718

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250