JPH0475854A - Perceiving sensor for tool life - Google Patents

Perceiving sensor for tool life

Info

Publication number
JPH0475854A
JPH0475854A JP18659390A JP18659390A JPH0475854A JP H0475854 A JPH0475854 A JP H0475854A JP 18659390 A JP18659390 A JP 18659390A JP 18659390 A JP18659390 A JP 18659390A JP H0475854 A JPH0475854 A JP H0475854A
Authority
JP
Japan
Prior art keywords
tool life
tool
reflected light
spot
laser pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18659390A
Other languages
Japanese (ja)
Inventor
Mikio Fukuhara
幹夫 福原
Shigeyuki Sugano
菅野 成行
Fumio Hase
長谷 文雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Toshiba Tungaloy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Tungaloy Co Ltd filed Critical Toshiba Tungaloy Co Ltd
Priority to JP18659390A priority Critical patent/JPH0475854A/en
Publication of JPH0475854A publication Critical patent/JPH0475854A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To previously predict the damage state of the cutting edge of a tool by providing a centralized controller to evaluate size precision obtained from a size precision measuring device, predict a tool life from an evaluating result, and issue a feedback command to a tool system. CONSTITUTION:When a reflection light receiver 2 to receive reflection light of laser pulse beam from an emitter 1 at a reflection angle theta is provided, in- process measurement is made on size precision of the surface of a spot- irradiated work 5 by means of a size precision measuring device 3. From an evaluating result of the measurement, a tool life is predicted, and a feedback command is issued to a tool system by means of a centralized controller 4.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、工具寿命の感知センサーに関し、特に1/=
−ザーバルス光の利用によって切削工具および研削工具
における工具刃先の損傷状態を予測できるようにしたも
のである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a tool life sensing sensor, particularly when 1/=
- It is possible to predict the state of damage to the cutting edge of cutting tools and grinding tools by using Zerbars light.

(従来の技術) 従来、切削工具および研削工具におりる工具寿命を判定
する方法としては、例えば圧電素子を用いて工具摩耗に
伴う振動変化を直接測定号る方法、振動変化のパターン
を認識し、こわを判定する方法、切削抵抗ま1;は研削
抵抗を電気的に変換して、この変化状況から判定する方
法、加工物の温度または加工部の面精度から間接的に判
定する方法などが知られている。
(Prior art) Conventionally, methods for determining the tool life of cutting tools and grinding tools include methods that directly measure vibration changes due to tool wear using piezoelectric elements, and methods that recognize patterns of vibration changes. There are several methods for determining stiffness, such as a method of electrically converting the grinding resistance and determining the stiffness based on the state of change, and a method of determining the stiffness indirectly from the temperature of the workpiece or the surface accuracy of the machined part. Are known.

また、最近ては5例えば特開昭61−1924511号
公報などてみられるように、アコースティック・工ミッ
ションを利用した提案が開示されている。
Recently, proposals using acoustic transmission have been disclosed, for example, in Japanese Patent Application Laid-Open No. 1924511/1983.

(発明が解決しようとする課題) しかしながら、前述した従来の方法では、複雑な工具摩
耗の変化に合せて工具寿命を判定することができないと
いう問題点があり、いずれも実用に供されていなかった
(Problem to be solved by the invention) However, the conventional methods described above have the problem that tool life cannot be determined based on complex changes in tool wear, and none of them have been put to practical use. .

一方、機械装置の自動化、省力化および高速化における
将来的な観点からは、信頼性の高い工具寿命の判定手段
が重要性を増し、その開発が要望されている。
On the other hand, from the future perspective of automation, labor saving, and speeding up of mechanical devices, a highly reliable means for determining tool life is becoming increasingly important, and its development is desired.

このようなことから、本発明では、工具刃先の損傷状態
を事前に予測できるように信頼性・を高めた工具寿命の
感知センサーを提供するものである。
For this reason, the present invention provides a tool life detection sensor with improved reliability so as to be able to predict the state of damage to the cutting edge of a tool in advance.

(課題を解決するための手段) 本発明は、上述の点に鑑みなされたもので。(Means for solving problems) The present invention has been made in view of the above points.

工具寿命の感知センサーは、切削または研削直後の加工
物表面にレーザーパルス光をスポット照射し、次いで、
加工物表面から反射光を検出することにより工具寿命を
予測しようとするものである。
The tool life detection sensor irradiates a spot of laser pulse light onto the workpiece surface immediately after cutting or grinding, and then
This method attempts to predict tool life by detecting reflected light from the workpiece surface.

すなわち、レーザーパルス光の反射光を反射角θで受光
する反射光受光器が備えられたときには、スポット照射
された加工物表面の寸法精度をインプロセス計測する寸
法精度計測器およびこの計測の評価結果から工具寿命を
予測して工具系にフィードバック指令する集中制御器が
接続されるように構成したものである。
That is, when equipped with a reflected light receiver that receives the reflected light of the laser pulse light at a reflection angle θ, a dimensional accuracy measuring device that measures in-process the dimensional accuracy of the spot-irradiated workpiece surface and the evaluation results of this measurement. The system is connected to a central controller that predicts the tool life and gives feedback commands to the tool system.

また、レーザーパルス光の反射光を同軸上で受けるレー
ザー干渉顕微鏡が備えられたときには。
Also, when a laser interference microscope is equipped that receives the reflected light of the laser pulse light on the same axis.

スポット照射された加工物表面を画像処理して、パター
ン認識−判断し、この判断結果から工具寿命を予測して
工具系にフィードバック指令する集中制御器が接続され
るように構成したものである。
The system is connected to a central controller that performs image processing on the surface of the workpiece irradiated with spot irradiation, performs pattern recognition and judgment, predicts the tool life based on the judgment result, and sends a feedback command to the tool system.

(作用) 本発明の工具寿命の感知センサーは、レーザーパルス光
の反射光から、スポット照射された加工物表面における
寸法精度をインプロセス計測するとともに、この評価結
果から、工具寿命を予測して、工具系にフィードバック
指令するように機能する。
(Function) The tool life detection sensor of the present invention measures the dimensional accuracy on the spot-irradiated workpiece surface in-process from the reflected light of the laser pulse light, and predicts the tool life from this evaluation result. It functions to give feedback commands to the tool system.

また、本発明の工具寿命の感知センサーは、レーザーパ
ルス光の反射光を同軸上で受光するレーザー干渉顕微鏡
によって加工物表面を検出するとともに、これを基にし
て画像処理、パターン認識・判断し、この判断結果から
工具寿命を予測して工具系にフィードバック指令するよ
うに機能する。
In addition, the tool life detection sensor of the present invention detects the workpiece surface using a laser interference microscope that receives the reflected light of the laser pulse light on the same axis, and performs image processing, pattern recognition and judgment based on this, It functions to predict the tool life based on this judgment result and send a feedback command to the tool system.

(実施例) 以下、本発明工具寿命の感知センサーにおける一実施例
について1図を参照しながら説明する。
(Embodiment) Hereinafter, an embodiment of the tool life detection sensor of the present invention will be described with reference to FIG.

第1図は、本発明の概要を示したフローチャートであり
、装置の全体構成は、レーザーパルス光発射器(1)、
反射光受光器(2)、寸法精度計測器(3)オよび集中
制御器(4)からなっている。この場合、レーザーパル
ス光発射器(1)は、単波長のHe−Neガスレーザー
、ルビー固体レーザを1〜100μ秒間発振できること
が必要であり、またし−ザーパルス光は、第2図で示さ
れているように、P点から加工物(5)の表面にスポッ
ト照射される。
FIG. 1 is a flowchart showing an overview of the present invention, and the overall configuration of the device includes a laser pulse light emitter (1),
It consists of a reflected light receiver (2), a dimensional accuracy measuring device (3), and a central controller (4). In this case, the laser pulse light emitter (1) needs to be able to emit a single wavelength He-Ne gas laser or ruby solid-state laser for 1 to 100 μs, and the laser pulse light is As shown in the figure, a spot is irradiated onto the surface of the workpiece (5) from point P.

そして、加工物(5)の表面からの反射光は1反射光受
光器(2)によって検出され1次いで加工物(5)の表
面の寸法精度計測器(3)によってインプロセス計測さ
れる。なお、加工物(5)の表面における寸法精度の検
出は5加工物(5)の回転に伴って反射光受光器(2)
のスクリーン上を移動する反射光移動距離り、L、から
微小半径変化量△aを測定することにより、被削材の半
径aを高精度で瞬間時に計測するようにしたものである
。この場合、前述した移動距離L+ L−xは、L+ 
La ”k△asinθなる関係式が成り立つものであ
り、第2図から以下のようにして求められる。
The reflected light from the surface of the workpiece (5) is detected by a reflected light receiver (2) and then in-process measured by a dimensional accuracy measuring device (3) on the surface of the workpiece (5). The dimensional accuracy on the surface of the workpiece (5) is detected by the reflected light receiver (2) as the workpiece (5) rotates.
The radius a of the workpiece is instantaneously measured with high precision by measuring the minute radius change Δa from the travel distance of the reflected light moving on the screen, L. In this case, the above-mentioned moving distance L+ L−x is L+
The relational expression La ``k△asinθ holds true, and can be obtained from FIG. 2 as follows.

L+  L、s  =P  L+    P Lx=I
2 sinθ−(氾+△a)  sinθ。
L+ L, s = P L+ P Lx=I
2 sin θ− (flood + △a) sin θ.

(25inO−(25in(l 1−  △asinO
+”ik △asir+O ここで、 5in0=sin(? +  −△a=に△
a(ただしkは常数) このように12でインプロセス計測された寸法精度はフ
ァジ・イコントローラにより瞬時性を数量化するため、
ごユーラルネッ[・ワークを具備1.たご一ニー 1・
口>コンピュータからなる集中制御器(4)によって表
面粗さなどが精度評価されるとともに、この評価結果(
こ基づいて工具寿命の計測がなされる。また、この予測
結果(二t、−E具系にフィードバックさね、必要に応
じて二丁−具交換の指令が出される。
(25inO-(25in(l 1- △asinO
+”ik △asir+O Here, 5in0=sin(? + −△a=△
a (where k is a constant) In this way, the dimensional accuracy measured in-process in step 12 is quantified by the fuzzy controller, so
Equipped with your own network 1. Tagoichinee 1・
The accuracy of surface roughness etc. is evaluated by a centralized controller (4) consisting of a computer, and the evaluation results (
Based on this, the tool life is measured. In addition, this prediction result (2t, -E tool system is fed back to it, and a command to replace the 2nd tool is issued as necessary.

これに対シ51、第3図に示された工具寿命の感知セン
サーは、し−づ′−パルス光発対語(1)、レザー干渉
顕微鏡(6)および集中制御器(4)からなるものであ
る。この場合、1.・−ザー干渉顕微鏡(6)は2ホ[
ノブラム二[渉法な用いて加1−物(5)の表面におけ
るソC学的不均一外をスクリーン十に結像さ1するもの
である。そしてホログラムf渉計は、顕微鏡対物L・ン
ズ、ピンホールおよびコリメーター1ノンズから構成さ
れる。なお、結書は、CCD  (電荷結合素子)カメ
ラにより 256X  256画素のフレームメ士りに
取込めばよい。
In contrast, the tool life detection sensor shown in FIG. be. In this case, 1.・-The laser interference microscope (6) is 2 ho[
The non-uniformity on the surface of the additive (5) is imaged onto a screen using a novel method. The hologram f-intermeter is composed of a microscope objective L lens, a pinhole, and a collimator 1 lens. The results may be captured using a 256×256 pixel frame using a CCD (charge-coupled device) camera.

そして、L−−−ザー干渉顕微鐙(6)によって検出さ
れた加工物(5)の表面は、集中制御器(41[、ZJ
、って画像処理、パターン認識・判断され、その判断結
果に基づいて工具寿命が予測され、工具系にフィードバ
ック指令さね、必要に応じて1−具交換の指令が出され
る。なお、工具寿命の判定では、数々の加工条件Fで得
られたデータを基りこ学習、知覚、判断が安来されるが
、ニコーラルネットワクを具備したニューロンコンピュ
ーターをしに利用すtllf真価を発揮するものである
Then, the surface of the workpiece (5) detected by the laser interference microscope stirrup (6) is controlled by the central controller (41 [, ZJ
Image processing, pattern recognition, and judgment are performed, and the tool life is predicted based on the judgment results, and a feedback command is issued to the tool system, and a command to replace the tool is issued as necessary. In addition, in determining tool life, learning, perception, and judgment are performed based on data obtained under various machining conditions F, but the true value of tllf is demonstrated by using a neuron computer equipped with a nicoral network. It is something.

(発明の効果) 本発明は、以上説明し51こように、第1の発明どして
、レーザーパルス光発射器(1)、反射光受光器+21
 、 ”を精度度田測器f3)J5J:び集中制御器(
4)からなる工具寿命の感知センサーを提供するととも
(J、第2の発明とじて、レーザーバルス光発対語(1
)、レザー干渉顕微鏡(6)および集中制御器(・1)
からなる工具寿命の感知セン(J−・−を提供し7たも
のである。
(Effects of the Invention) As explained above, the present invention includes the first invention, which includes a laser pulse light emitter (1), a reflected light receiver +21
, ” Accuracy degree measuring instrument f3) J5J: and centralized controller (
4) A sensor for detecting tool life consisting of (J) and a second invention, a laser pulse light emission pair (1) is provided.
), laser interference microscope (6) and central controller (・1)
The tool life sensing sensor (J-.-) is provided.

したがって、第1の発明では、加工物(5)の表面にお
ける一=j法精度を瞬時のうちにインプロセス計測−測
し、予めA?、憧させである工具摩耗どの対応関係にお
いて工具寿命をファジィコントローラにて認識、識別判
定後、その結果を確実にT具系フィドバψツク指令でき
る効果を有する。
Therefore, in the first invention, the 1=j method accuracy on the surface of the workpiece (5) is instantaneously in-process measured, and A? This has the effect of being able to reliably issue a T-tool system feedback command based on the results after the fuzzy controller recognizes and discriminates the tool life in the correspondence relationship between the long-awaited tool wear and the like.

また、第2の発明では、加工物(5)の表面が画像処理
、パターン認識・判断されることから、その1!1j断
結果が工具系t、−フィードバック指令できる効果を有
する。
Further, in the second invention, since the surface of the workpiece (5) is subjected to image processing, pattern recognition and judgment, the 1!1j cutting result has the effect of being able to issue a feedback command to the tool system t,-.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明工具寿命の感知セン(ノーにおける一
実施例を示すフローチャ−1−H、第2図は、加工物に
対する反射光受光器の位置関係を示す説明図、第3図は
、本発明工具寿命の感知センサーにおける変形例を示す
フローチャー1−である。 −L/−ザーバルス光発1j器 ・・・反射光受光器   +31−・・寸法精度計測器
・・・集中制御器    (5)・・・加工物・−・1
ノーザ〜干渉顕微鏡 特許出願人 東芝タンガロイ株式会社
FIG. 1 is a flowchart 1-H showing an embodiment of the tool life detection sensor of the present invention (No), FIG. 2 is an explanatory diagram showing the positional relationship of the reflected light receiver with respect to the workpiece, and FIG. , is a flowchart 1- showing a modified example of the tool life detection sensor of the present invention. (5)...Processed product...1
NOZA - Interference microscope patent applicant Toshiba Tungaloy Corporation

Claims (2)

【特許請求の範囲】[Claims] (1)切削または研削直後の加工物表面に対し、レーザ
ーパルス光をスポット照射するレーザーパルス光発射器
と、スポット照射された加工物表面から反射角θで反射
光を受ける反射光受光器と、この反射光受光器で受光し
た反射光を検出して、寸法精度をインプロセス計測する
寸法精度計測器と、この寸法精度計測器から得られた寸
法精度を評価し、この評価結果から工具寿命を予測して
、工具系にフィードバック指令する集中制御器とからな
ることを特徴とする工具寿命の感知センサ。
(1) A laser pulse light emitter that irradiates a spot of laser pulse light onto the workpiece surface immediately after cutting or grinding, and a reflected light receiver that receives reflected light at a reflection angle θ from the spot-irradiated workpiece surface; A dimensional accuracy measuring device that detects the reflected light received by this reflected light receiver and measures dimensional accuracy in-process, and evaluates the dimensional accuracy obtained from this dimensional accuracy measuring device, and estimates the tool life based on the evaluation results. A tool life detection sensor characterized by comprising a centralized controller that predicts and gives feedback commands to the tool system.
(2)切削または研削直後の加工物表面に対し、レーザ
ーパルス光をスポット照射するレーザーパルス光発射器
と、スポット照射された加工物表面から反射光を同軸上
で受けるレーザー干渉顕微鏡と、このレーザー干渉顕微
鏡によって検出された加工物表面を画像処理してパター
ン認識・判断し、この判断結果から工具寿命を予測して
、工具系にフィードバック指令する集中制御器とからな
ることを特徴とする工具寿命の感知センサー。
(2) A laser pulse light emitter that irradiates a spot of laser pulse light onto the workpiece surface immediately after cutting or grinding, a laser interference microscope that coaxially receives reflected light from the spot-irradiated workpiece surface, and this laser A tool life system characterized by comprising a central controller that performs image processing on the workpiece surface detected by an interference microscope to recognize and judge patterns, predicts tool life based on the judgment results, and sends feedback commands to the tool system. sensing sensor.
JP18659390A 1990-07-13 1990-07-13 Perceiving sensor for tool life Pending JPH0475854A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18659390A JPH0475854A (en) 1990-07-13 1990-07-13 Perceiving sensor for tool life

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18659390A JPH0475854A (en) 1990-07-13 1990-07-13 Perceiving sensor for tool life

Publications (1)

Publication Number Publication Date
JPH0475854A true JPH0475854A (en) 1992-03-10

Family

ID=16191266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18659390A Pending JPH0475854A (en) 1990-07-13 1990-07-13 Perceiving sensor for tool life

Country Status (1)

Country Link
JP (1) JPH0475854A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017210692A1 (en) 2016-06-28 2017-12-28 Fanuc Corporation Lifetime determination device; Lifetime determination procedure, and program for cutting tool
CN112884717A (en) * 2021-01-29 2021-06-01 东莞市牛犇智能科技有限公司 System and method for real-time workpiece surface detection and tool life prediction
WO2021200654A1 (en) * 2020-04-02 2021-10-07 ファナック株式会社 Tool state learning device, tool state estimation device, control device, tool state learning method, and tool state estimation method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017210692A1 (en) 2016-06-28 2017-12-28 Fanuc Corporation Lifetime determination device; Lifetime determination procedure, and program for cutting tool
JP2018001288A (en) * 2016-06-28 2018-01-11 ファナック株式会社 Life determination device of cutting tool, life determination method, and program
US10535130B2 (en) 2016-06-28 2020-01-14 Fanuc Corporation Life determination device, life determination method, and recording medium for cutting tool
DE102017210692B4 (en) 2016-06-28 2024-01-25 Fanuc Corporation lifespan determination device; Service life determination method and program for cutting tool
WO2021200654A1 (en) * 2020-04-02 2021-10-07 ファナック株式会社 Tool state learning device, tool state estimation device, control device, tool state learning method, and tool state estimation method
CN112884717A (en) * 2021-01-29 2021-06-01 东莞市牛犇智能科技有限公司 System and method for real-time workpiece surface detection and tool life prediction

Similar Documents

Publication Publication Date Title
KR102305900B1 (en) Apparatuses and methods for accurate structure marking and marking-assisted structure locating
CN113226612B (en) Identification of processing defects in laser processing systems by means of deep convolutional neural networks
KR20210091789A (en) Laser Machining Process Monitoring System and Method Using Deep Convolutional Neural Network
KR102226222B1 (en) Laser machining apparatus
CN112839765B (en) Method and processing machine for determining a characteristic variable of a processing operation
US10502563B2 (en) Measurement device
JPH0475854A (en) Perceiving sensor for tool life
JP2004114203A (en) Apparatus for measuring profile of workpiece and profile measuring system using the same
JP2005014026A (en) Weld zone inspection method, and welding support system
JPH01109058A (en) Contactless copy controller
KR900003203B1 (en) A method and system for measuring the roughness profile of a@ surface
CN112912197B (en) Method and device for monitoring a machining process of a workpiece by means of a laser beam
JP2010058238A (en) Machining method
Kaierle et al. Understanding the laser process: new approaches for process monitoring in laser materials processing
Shiou et al. Strategies and processes to measure the dimensional geometry of sheet metal parts for exact laser cutting
JPH0952187A (en) Laser beam machine system
WO2024095756A1 (en) Welding state determination method and determination system
JPH04372339A (en) Machining device
JP4591760B2 (en) Electric discharge machining apparatus and electric discharge machining method
JPH05337669A (en) Laser beam machine
JPS62127612A (en) Surface displacement measuring method by laser light
KR20160109615A (en) Apparatus and method for inspecting parts using line scanning
JPH08264493A (en) Dicing apparatus
JPH0584642A (en) Cutting work device
JPH03146285A (en) Laser processing controller