WO2024095756A1 - Welding state determination method and determination system - Google Patents

Welding state determination method and determination system Download PDF

Info

Publication number
WO2024095756A1
WO2024095756A1 PCT/JP2023/037507 JP2023037507W WO2024095756A1 WO 2024095756 A1 WO2024095756 A1 WO 2024095756A1 JP 2023037507 W JP2023037507 W JP 2023037507W WO 2024095756 A1 WO2024095756 A1 WO 2024095756A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
laser
welded
light
intensity
Prior art date
Application number
PCT/JP2023/037507
Other languages
French (fr)
Japanese (ja)
Inventor
整 稲村
俊祐 上垣
Original Assignee
パナソニックエナジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックエナジー株式会社 filed Critical パナソニックエナジー株式会社
Publication of WO2024095756A1 publication Critical patent/WO2024095756A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring

Definitions

  • This disclosure relates to a method and system for determining the welding condition.
  • Patent Document 3 describes a method of judging the welding condition by AI processing based on image data of the laser welded part of a plate material captured by a camera.
  • the accuracy of the judgment can be improved by judging based on the intensity of the reflected light of the irradiated laser, the plasma light generated at the weld, and other factors, along with image data of the welded area.
  • conventional judgment methods have issues such as determining that a good product is defective depending on the threshold value, and further improvements in judgment accuracy are required.
  • the method of determining the welding condition is a method of determining the welding condition of a welded portion that has been irradiated with a laser moving relative to the welded members and melted and solidified, and includes the steps of acquiring a first image, which is an image of the welded portion; measuring the intensity of light emitted from the welded members irradiated with the laser along the direction of movement of the laser; imaging processing step of imaging the intensity of the light corresponding to the direction of movement of the laser and creating a second image; and judging the condition of the welded portion based on an image for judgment that includes the first image and the second image.
  • the welding condition determination system is a determination system for determining the welding condition of a welded portion that has been irradiated with a laser moving relative to the welded members and melted and solidified, and includes an image acquisition means for acquiring a first image that is an image of the welded portion, a measurement means for measuring the intensity of light emitted from the welded members irradiated with the laser along the direction of movement of the laser, an imaging processing means for imaging the intensity of the light in accordance with the direction of movement of the laser and creating a second image, and a determination means for determining the condition of the welded portion based on the first image and the second image.
  • the intensity of light emitted from the welded parts irradiated with a laser is visualized and used to judge the welding condition together with an image of the weld, enabling highly accurate judgment.
  • this visualization makes it easy to use machine learning in artificial intelligence (AI) to judge the weld from multiple perspectives.
  • AI artificial intelligence
  • FIG. 1 is a block diagram showing a schematic configuration of a welding condition determination system according to an embodiment
  • FIG. 2 is a diagram showing an example of a welded portion.
  • 1 is a flowchart illustrating a procedure of a determination method according to an embodiment.
  • FIG. 11 is a schematic diagram for explaining a determination method according to an embodiment;
  • a battery is exemplified as the welded member.
  • the quality of the welded state is determined for the laser welded portion 102 between the sealing body 100 and the lead 101 of a cylindrical battery.
  • the subject of the welded state determination method and determination system according to the present disclosure is not limited to the welded portion 102, but may be a laser welded portion of another member constituting a battery, or a laser welded portion other than a battery.
  • the welded state determination method and determination system according to the present disclosure can be widely applied to laser welded portions formed by irradiating a laser (laser light) by moving it relative to the welded member.
  • FIG. 1 is a block diagram showing a schematic configuration of a welding condition judgment system 10, which is an example of an embodiment.
  • the judgment system 10 includes a first processing unit 11, a second processing unit 12, and a third processing unit 13 as a computer that executes processing to judge the quality of the welded portion 102.
  • the judgment system 10 further includes a camera 20 and a sensor 21.
  • the camera 20 is an image acquisition means that acquires an image of the welded portion 102. In this specification, the image captured by the camera 20 is referred to as the first image.
  • the sensor 21 is a light intensity measurement means that measures the intensity of light emitted from the welded parts irradiated with a laser along the direction of movement of the laser.
  • the judgment system 10 includes an imaging processing means that images the measured value of the intensity of light emitted from the welded parts irradiated with the laser in accordance with the direction of movement of the laser to create a second image, and a judgment means that judges the state of the welded part 102 based on the first and second images.
  • the second processing unit 12 is the imaging processing means
  • the third processing unit 13 is the judgment means.
  • the first processing unit 11 imports an image captured by the camera 20, and performs a trimming process to cut out only the portion necessary for judging the quality of the welded part 102.
  • the determination system 10 includes, for example, three computers. That is, the first processing unit 11, the second processing unit 12, and the third processing unit 13 are configured as separate computers. In the example shown in FIG. 1, the first processing unit 11 and the third processing unit 13 are connected so as to be able to communicate with each other, and the second processing unit 12 and the third processing unit 13 are connected so as to be able to communicate with each other.
  • the computers that make up the determination system 10 may be connected via a local area network (LAN) or via a wide area network (WAN) such as the Internet. It is also possible to realize the functions of each processing unit using one computer. Alternatively, the functions of each processing unit may be realized using four or more computers.
  • the computer constituting each processing unit includes a storage unit that stores programs for executing the functions of the processing unit, parameters required for calculations and processing, acquired image data, etc., and a calculation unit that reads out the programs and executes the quality judgment of the welded parts and the processing required for said judgment.
  • the calculation unit is composed of a processor such as a central processing unit (CPU). Note that the configuration of the computer constituting each processing unit is not particularly limited as long as it is capable of executing the quality judgment of the welded parts.
  • the judgment system 10 is attached to, for example, a laser welding device that welds the sealing body 100 and the lead 101. In this case, the welding state can be inspected immediately following the welding process. At least a part of the configuration of the judgment system 10 may be incorporated into the laser welding device, and in this embodiment, the light intensity measuring means is incorporated into the laser head 52 of the laser welding device.
  • the second processing unit 12 is communicatively connected to the laser oscillator 50, and obtains from the laser oscillator 50 a measured value of the laser output irradiated to the workpieces to be welded.
  • the laser welding device includes a laser oscillator 50, an optical fiber 51, and a laser head 52.
  • the laser output from the laser oscillator 50 is propagated to the laser head 52 via the optical fiber 51, and is irradiated to a welding point from the laser head 52 arranged in close proximity to the sealing body 100 and the lead 101, which are members to be welded.
  • a fiber laser oscillator is generally used as the laser oscillator 50, but a YAG laser oscillator, a CO2 laser oscillator, or the like may also be used.
  • the laser head 52 includes a mirror 53 that reflects the laser output from the laser oscillator 50 in the direction of the workpieces to be welded and transmits the light emitted from the workpieces to be welded.
  • the laser head 52 is generally also provided with a focusing lens, a filter, etc.
  • the laser welding device includes, for example, a drive device that scans at least one of the laser head 52 or a table on which the workpieces to be welded are placed, and a control device that controls the operation of the welding device including the laser oscillator 50, the drive device, etc.
  • the judgment system 10 measures the intensity of light emitted from the welded parts irradiated with a laser and visualizes the measured light intensity. It then uses the second image obtained by the visualization together with the first image of the welded part 102 captured by the camera 20 to judge the welding condition.
  • the welding condition is judged for the presence or absence of welding defects, and can be judged by an inspector's visual inspection, but is preferably judged by computerized image analysis, and more preferably by using an artificial intelligence (AI) model.
  • the judgment system 10 visualizes the intensity of light emitted from the welded part 102, thereby providing the third processing unit 13 with data suitable for AI processing.
  • the judgment system 10 includes a sensor 21 and a spectroscopic unit 22 as light intensity measuring means for measuring the intensity of the light.
  • the light emitted from the workpieces irradiated with a laser includes, for example, plasma light and thermal radiation light.
  • the light emitted from the workpieces irradiated with a laser includes reflected laser light.
  • the judgment system 10 performs imaging processing on at least one, and more preferably all, selected from the plasma light, thermal radiation light, and reflected laser light, and uses the imaging processing to judge the welding condition.
  • the judgment system 10 is provided with a spectroscopic unit 22 that separates these lights. In the example shown in FIG. 1, the sensor 21 and spectroscopic unit 22 are mounted on the laser head 52.
  • Plasma light generated during laser welding causes the laser to be absorbed and refracted. For this reason, it is thought that the plasma light reduces the energy of the laser irradiated to the welded parts, which affects the penetration depth of the weld, for example. Therefore, in welds where the state of the plasma light fluctuates greatly, there is a possibility that defects such as insufficient penetration depth have occurred. Similarly, the thermal radiation light (near-infrared light) generated from the weld and the reflected light of the laser reflected by the weld are useful for determining the welding condition, and large fluctuations in the thermal radiation light and reflected light allow for the estimation of defects in the weld.
  • the thermal radiation light near-infrared light
  • the sensor 21 includes a first sensor that receives plasma light and measures its intensity, a second sensor that receives thermal radiation light and measures its intensity, and a third sensor that receives reflected laser light and measures its intensity.
  • the sensor 21 is, for example, a photodiode with a sensitivity range in the wavelength range of the light to be detected, and outputs an electrical signal according to the intensity of the light as detection information.
  • the light intensity measuring means may be a device that integrates a spectroscopic unit and a sensor capable of detecting reflected light of each wavelength.
  • the detection information of the sensor 21 is transmitted to the second processing unit 12, which performs imaging processing of the measured values of the intensity of the plasma light, thermal radiation light, and reflected light.
  • the second processing unit 12 further obtains the measured value of the laser output from the laser oscillator 50, and performs imaging processing of the measured value.
  • FIG. 2 is a diagram showing the welded portion 102 between the sealing body 100 and the lead 101.
  • the welded portion 102 is formed by irradiating the surface of the lead 101 with a laser while the lead 101 is placed on the sealing body 100.
  • the lead 101 is, for example, a strip-shaped conductive member connected to the positive electrode, and is made of a metal containing aluminum as a main component.
  • the thickness and width of the lead 101 can be changed as appropriate depending on the size of the battery, etc., but as an example, the thickness is 50 ⁇ m to 500 ⁇ m and the width is 2 mm to 10 mm.
  • the sealing body 100 is thicker than the lead 101 and includes a metal plate to which the lead 101 is welded.
  • the metal plate is, for example, made of a metal containing aluminum as a main component.
  • the welded portion 102 extends parallel to the width direction of the lead 101 and is formed in the shape of a thin line having a substantially constant width.
  • the width of the welded portion 102 is, for example, 1 mm to 4 mm, or 1.5 mm to 3.5 mm.
  • the welded portion 102 is formed when the laser is irradiated onto the welded members while moving relative to the members, and the irradiated portion of the laser melts and solidifies.
  • the relative movement of the laser with respect to the members to be welded is achieved by scanning at least one of the laser and a table on which the members to be welded are placed.
  • Figure 3 is a flowchart showing the steps of the determination method of this embodiment.
  • the determination method of this embodiment includes the following steps. (1) An image acquisition step (S10) of acquiring a first image of the welded portion 102. (2) A light intensity measurement step (S11) of measuring the intensity of light emitted from the workpieces (sealing body 100 and leads 101) irradiated with the laser along the direction of laser movement and acquiring measurement data. (3) An imaging processing step (S14) of imaging the measured light intensity in accordance with the laser movement direction to create a second image. (4) A determination step (S16) of determining the state of the welded portion 102 based on a determination image including the first image and the second image.
  • the judgment method of this embodiment further includes a step (S15) of combining the first image and the second image to create a combined image.
  • the combined image is used as the judgment image in the judgment step.
  • the determination method of this embodiment further includes a step (S13) of normalizing the measured light intensity to create parameters for imaging.
  • the parameters are used to create a second image. Since the measured values of plasma light, thermal radiation light, and reflected light may differ greatly in scale, it is expected that the accuracy of machine learning will decrease or learning will take a long time if the values are used as is to create an image. For this reason, it is preferable to perform normalization to align the scale of the measurement data, for example.
  • the judgment method of this embodiment further includes a step (S12) of measuring the output of the laser irradiated to the workpiece along the direction of laser movement.
  • the laser oscillator 50 measures the output of the emitted laser.
  • a laser power meter may be installed in the laser head 52, etc.
  • the measured value of the laser output is normalized in the same manner as the measured value of plasma light, etc., and imaged in accordance with the direction of laser movement.
  • step S14 a third image based on the measured value of the laser output is created along with the second image.
  • the judgment image includes the third image as well as the first and second images.
  • FIG. 4 is a schematic diagram showing the determination method of this embodiment.
  • an image (original image) of the welded parts including the welded part 102 is captured, and the intensity of light emitted from the welded part 102 is measured to obtain measurement data.
  • the original image is captured by the camera 20, for example, after the welding process is completed, and the image data is transmitted to the first processing unit 11.
  • the image of the welded part 102 may be acquired in real time during the welding process.
  • the first processing unit 11 performs a trimming process to remove unnecessary parts from the original image and leave only the image of the welded part 102, and creates a first image 31 of the welded part 102.
  • the measurement data is acquired, for example, in real time during the welding process.
  • the acquired measurement data is then imaged through normalization processing.
  • the measurement data imaged in the imaging processing step includes measured values of the intensity of plasma light, thermal radiation light, and reflected laser light obtained by dispersing the light emitted from the workpieces irradiated with the laser.
  • the intensity of each light is measured in real time during welding by the sensor 21 and the spectroscopic unit 22 along the direction of laser movement, i.e., along the length of the welded portion 102.
  • the measurement data further includes measured values of the laser output measured in real time along the direction of laser movement.
  • each measurement value is converted into a numerical value within the range of 0 to 255.
  • This numerical value within the range of 0 to 255 is a parameter for imaging in step S13 of FIG.
  • the measurement data is visualized by repeatedly arranging each replaced numerical value (a value in the range of 0 to 255) as a single pixel by assigning a shade of color according to the magnitude of the numerical value. In other words, the measurement data consisting of the measured values of light intensity and laser output is converted into image data.
  • a second image 33 based on the measured value of the plasma light, a second image 34 based on the measured value of the thermal radiation light, a second image 35 based on the measured value of the reflected light of the laser, and a third image 36 based on the measured value of the laser output are created.
  • the first image 31, second images 33, 34, 35, and third image 36 of the welded part 102 captured by the camera 20 are combined to create a combined image 37, which is a single image for judgment.
  • the second processing unit 12 obtains the measurement values of each light intensity for measurement points set along the laser movement direction, for example. That is, the measurement values of each light intensity are obtained at the same measurement points as each other.
  • the number of measurement points is not particularly limited, and several thousand to tens of thousands of points may be set in a row along the laser movement direction.
  • the measurement values of the laser output are measured at the same points as the measurement points of each light intensity.
  • the combined image 37 is sent to the third processing unit 13, and a judgment is made as to whether the welding condition is good or bad. This judgment step is preferably performed based on learning data obtained by machine learning of the combined image 37.
  • the third processing unit 13 judges the quality of the welded part 102 from the acquired combined image 37, for example, using an AI model for images. That is, the combined image 37 is provided as an input value for the AI model.
  • commercially available software for images can be used for the AI model, and conventional AI models can be used as they are.
  • various data with different scales and dimensions are visualized, making it easier to detect abnormalities from a broad perspective, which is AI's specialty.
  • the combined image 37 is configured as a single piece of data in which the first image 31, second images 33, 34, 35, and third image 36 are aligned so that they do not overlap one another.
  • each image is configured with a number of pixels 38 lined up in a row along the direction of laser movement, and has a length direction and a width direction.
  • FIG. 4 shows the combined image 37 in a schematic manner, and the second images 33, 34, 35, and third image 36 each have, for example, several thousand to tens of thousands of pixels 38 in the length direction of each image that correspond to the measurement points described above. Meanwhile, the width direction is configured with one pixel 38.
  • the combined image 37 is configured by arranging each image so that the width direction of each image faces the direction X in which the images are lined up.
  • pixels 38 imaging parameters
  • the multiple images that make up the combined image 37 are arranged in the order of a first image 31 captured by the camera 20, a third image 36 of the measured value of the laser output, a second image 35 of the reflected laser light, a second image 33 of the plasma light, and a second image 34 of the thermal radiation light, but the order of the images is not limited to this as long as the AI model can recognize them as a single data. It is also possible to construct the combined image 37 by overlapping each image data.
  • the quality of the welded portion 102 is judged using the combined image 37 based on learning data obtained by machine learning of the AI.
  • Any conventionally known method can be applied to the machine learning, and there is no particular limitation to the method.
  • Machine learning also includes deep learning. For example, patterns of good and bad welded portions 102 are input to the third processing unit. Then, the AI's machine learning enables it to judge the quality of the welded state.
  • the combined image 37 which is one piece of data, is input to the AI model, and the presence or absence of an abnormality is judged based on the learning data.
  • the AI model sets parameters used in machine learning, such as the image size and number for the convolution process, the selection of the convolution process filter, the selection of the activation process filter, the selection of the thinning process filter, the size and number of thinning processes, the size and number of intermediate layers for the perceptron combination process, the dropout rate, and the number of epochs. Then, the welding condition is judged in real time based on the learning data and the combined image 37 that are the results of the machine learning.
  • the AI model reads image data for learning, and initially performs machine learning based on preset initial parameters, and then performs machine learning based on parameters calculated by learning. For example, it varies the weighting coefficient, threshold value, offset value, etc. for the numerical value of each pixel 38 of the image, and ultimately determines the weighting coefficient that maximizes the probability of predicting the welding condition. In the case of deep learning, it may include a layer that performs weighting locally, or a layer that performs weighting globally.
  • the AI model compares the learning data with the combined image 37 to determine the degree of match with various welding conditions. Then, by weighting the results of the match determination or evaluating them using a threshold, the degree of match with various welding conditions is determined comprehensively, and the welding condition with the highest degree of match is determined.
  • the effects of the determination method of this embodiment include the following effects. (1) By visualizing each piece of numerical data, there is no need to use a complex AI model corresponding to each piece of data, and an AI model corresponding only to the image data can be used. (2) Multiple numerical data can be viewed on the image with uniform density values (black, gray, white). By comparing with surrounding values on the image, it is possible to focus only on the amount of change in each data. (3) By performing a pooling process on image data, it is possible to narrow down the range of data analysis from a broad range such as monthly, daily, or hourly. (4) By visualizing numerical data, the data has a two-dimensional positional relationship, making it possible to perform analysis focusing on the information contained in the positional relationship.
  • Configuration 1 A method for determining the welding condition of a welded portion that has been irradiated with a laser that moves relative to the welded members and melted and solidified, the method comprising the steps of: acquiring a first image that is an image of the welded portion; measuring the intensity of light emitted from the welded members irradiated with the laser along the movement direction of the laser; imaging processing step of imaging the measured value of the light intensity corresponding to the movement direction of the laser and creating a second image; and judging the condition of the welded portion based on an image for judgment that includes the first image and the second image.
  • Configuration 2 The method for determining a welding condition described in Configuration 1, further comprising a step of normalizing the measured values of the light intensity to create parameters for imaging, and in the imaging processing step, the parameters are used to create the second image.
  • Configuration 3 The determination method according to configuration 1 or 2, further comprising a step of combining the first image and the second image to create the determination image.
  • Configuration 4 A determination method described in any one of configurations 1 to 3, wherein the measured values of the light intensity imaged in the imaging processing step include measured values of the intensity of plasma light obtained by dispersing the light emitted from the welded members.
  • Configuration 5 A determination method described in any one of configurations 1 to 4, wherein the measured values of the light intensity imaged in the imaging processing step include measured values of the intensity of thermal radiation light obtained by dispersing the light emitted from the welded members.
  • Configuration 6 A determination method described in any one of configurations 1 to 5, wherein the measured values of the light intensity imaged in the imaging processing step include measured values of the intensity of the reflected light of the laser obtained by dispersing the light emitted from the welded members.
  • Configuration 7 The determination method according to any one of configurations 1 to 6, further comprising a step of measuring the output of the laser irradiated to the welded parts along a moving direction of the laser, and in the imaging processing step, the measured value of the laser output is imaged corresponding to the moving direction of the laser to create a third image, and the determination image includes the third image as well as the first image and the second image.
  • Configuration 8 A judgment method according to any one of configurations 1 to 7, in which the judgment step judges the state of the welded portion based on learning data obtained by machine learning of the judgment image.
  • Configuration 9 A judgment system for judging the welding condition of a welded portion that has been irradiated with a laser that moves relative to the welded members and melted and solidified, the judgment system for the welding condition comprising: an image acquisition means for acquiring a first image that is an image of the welded portion; a light intensity measuring means for measuring the intensity of light emitted from the welded members irradiated with the laser along the movement direction of the laser; an imaging processing means for imaging the measured value of the light intensity in accordance with the movement direction of the laser and creating a second image; and a judgment means for judging the condition of the welded portion based on the first image and the second image.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

This welding state determination method comprises: a step for acquiring a first image which is an image of a welded spot; a step for measuring the intensity of light being emitted from a welded member that has been irradiated with a laser beam, along the moving direction of the laser beam; a step for creating a second image by converting, into an image, measurements of the intensity of light along the moving direction of the laser beam; and a step for determining the state of the welded spot on the basis of determination images that include the first image and the second image.

Description

溶接状態の判定方法及び判定システムWelding condition determination method and determination system
 本開示は、溶接状態の判定方法及び判定システムに関する。 This disclosure relates to a method and system for determining the welding condition.
 従来、レーザ溶接された対象物の溶接状態を判定するため、溶接部の画像データや、レーザを対象物に照射した際に放出される反射光やプラズマ光の強度に基づいて溶接強度等を推定する溶接状態の良否判定が行われている(例えば、特許文献1,2参照)。近年では、人工知能(AI)の機械学習に基づく溶接状態の判定も行われている(例えば、特許文献3参照)。特許文献3には、カメラで撮像した板材のレーザ溶接部の画像データに基づいてAI処理により溶接状態の判定を行うことが記載されている。 Traditionally, in order to determine the welding condition of a laser-welded object, a judgment is made as to the quality of the welding condition by estimating the welding strength, etc. based on image data of the welded part and the intensity of the reflected light or plasma light emitted when the object is irradiated with a laser (see, for example, Patent Documents 1 and 2). In recent years, the welding condition has also been judged based on machine learning by artificial intelligence (AI) (see, for example, Patent Document 3). Patent Document 3 describes a method of judging the welding condition by AI processing based on image data of the laser welded part of a plate material captured by a camera.
特開2000-061672号公報JP 2000-061672 A 特開2005-095942号公報JP 2005-095942 A 特開2020-044546号公報JP 2020-044546 A
 レーザ溶接された対象物の溶接状態を判定する場合、溶接部の画像データとともに、照射されたレーザの反射光の強度、溶接部で発生するプラズマ光などに基づいて判定することで判定の精度が高まる。しかし、従来の判定方法では閾値によっては良品が不良品と判定されるなどの課題があり、判定精度のさらなる向上が求められる。 When judging the welding condition of a laser-welded object, the accuracy of the judgment can be improved by judging based on the intensity of the reflected light of the irradiated laser, the plasma light generated at the weld, and other factors, along with image data of the welded area. However, conventional judgment methods have issues such as determining that a good product is defective depending on the threshold value, and further improvements in judgment accuracy are required.
 本開示に係る溶接状態の判定方法は、レーザが被溶接部材に対して相対移動して被溶接部材に照射されて溶融凝固した溶接部について、溶接状態を判定する判定方法であって、溶接部の画像である第1画像を取得するステップと、レーザが照射された被溶接部材から放出される光の強度をレーザの移動方向に沿って測定するステップと、当該光の強度をレーザの移動方向に対応して画像化し、第2画像を作成する画像化処理ステップと、第1画像と第2画像を含む判定用画像に基づいて溶接部の状態を判定する判定ステップとを備える。 The method of determining the welding condition according to the present disclosure is a method of determining the welding condition of a welded portion that has been irradiated with a laser moving relative to the welded members and melted and solidified, and includes the steps of acquiring a first image, which is an image of the welded portion; measuring the intensity of light emitted from the welded members irradiated with the laser along the direction of movement of the laser; imaging processing step of imaging the intensity of the light corresponding to the direction of movement of the laser and creating a second image; and judging the condition of the welded portion based on an image for judgment that includes the first image and the second image.
 本開示に係る溶接状態の判定システムは、レーザが被溶接部材に対して相対移動して被溶接部材に照射されて溶融凝固した溶接部について、溶接状態を判定する判定システムであって、溶接部の画像である第1画像を取得する画像取得手段と、レーザが照射された被溶接部材から放出される光の強度をレーザの移動方向に沿って測定する測定手段と、当該光の強度をレーザの移動方向に対応して画像化し、第2画像を作成する画像化処理手段と、第1画像と第2画像に基づいて溶接部の状態を判定する判定手段とを備える。 The welding condition determination system according to the present disclosure is a determination system for determining the welding condition of a welded portion that has been irradiated with a laser moving relative to the welded members and melted and solidified, and includes an image acquisition means for acquiring a first image that is an image of the welded portion, a measurement means for measuring the intensity of light emitted from the welded members irradiated with the laser along the direction of movement of the laser, an imaging processing means for imaging the intensity of the light in accordance with the direction of movement of the laser and creating a second image, and a determination means for determining the condition of the welded portion based on the first image and the second image.
 本開示の方法によれば、レーザが照射された被溶接部材から放出される光の強度を画像化して溶接部の画像とともに溶接状態の判定に使用することにより、精度の高い判定が可能となる。また、当該画像化により人工知能(AI)の機械学習を用いて溶接部を多面的に判定することが容易になる。 According to the method disclosed herein, the intensity of light emitted from the welded parts irradiated with a laser is visualized and used to judge the welding condition together with an image of the weld, enabling highly accurate judgment. In addition, this visualization makes it easy to use machine learning in artificial intelligence (AI) to judge the weld from multiple perspectives.
実施形態の一例である溶接状態の判定システムの概略構成を示すブロック図である。1 is a block diagram showing a schematic configuration of a welding condition determination system according to an embodiment; 溶接部の一例を示す図である。FIG. 2 is a diagram showing an example of a welded portion. 実施形態の一例である判定方法の手順を示すフローチャートである。1 is a flowchart illustrating a procedure of a determination method according to an embodiment. 実施形態の一例である判定方法を説明するための模式図である。FIG. 11 is a schematic diagram for explaining a determination method according to an embodiment;
 以下、図面を参照しながら、本開示に係る溶接状態の判定方法及び判定システムの実施形態の一例について詳細に説明する。なお、以下で説明する複数の実施形態及び変形例を選択的に組み合わせてなる構成は本開示に含まれている。 Below, an example of an embodiment of the welding condition determination method and determination system according to the present disclosure will be described in detail with reference to the drawings. Note that the present disclosure includes configurations that selectively combine multiple embodiments and modified examples described below.
 本実施形態では、被溶接部材として電池を例示する。具体的には、円筒形電池の封口体100とリード101のレーザ溶接部102について溶接状態の良否判定を行う。但し、本開示に係る溶接状態の判定方法及び判定システムの対象は、溶接部102に限定されず、電池を構成する他の部材のレーザ溶接部、或いは電池以外のレーザ溶接部であってもよい。本開示に係る溶接状態の判定方法及び判定システムは、被溶接部材に対してレーザ(レーザ光)を相対移動させて照射することにより形成されるレーザ溶接部に広く適用できる。 In this embodiment, a battery is exemplified as the welded member. Specifically, the quality of the welded state is determined for the laser welded portion 102 between the sealing body 100 and the lead 101 of a cylindrical battery. However, the subject of the welded state determination method and determination system according to the present disclosure is not limited to the welded portion 102, but may be a laser welded portion of another member constituting a battery, or a laser welded portion other than a battery. The welded state determination method and determination system according to the present disclosure can be widely applied to laser welded portions formed by irradiating a laser (laser light) by moving it relative to the welded member.
 図1は、実施形態の一例である溶接状態の判定システム10の概略構成を示すブロック図である。図1に示すように、判定システム10は、溶接部102の良否判定を行うための処理を実行するコンピュータとして、第1処理部11と、第2処理部12と、第3処理部13とを備える。判定システム10は、さらに、カメラ20と、センサ21とを備える。カメラ20は、溶接部102の画像を取得する画像取得手段である。本明細書では、カメラ20により撮像される画像を第1画像とする。センサ21は、レーザが照射された被溶接部材から放出される光の強度をレーザの移動方向に沿って測定する光強度測定手段である。 FIG. 1 is a block diagram showing a schematic configuration of a welding condition judgment system 10, which is an example of an embodiment. As shown in FIG. 1, the judgment system 10 includes a first processing unit 11, a second processing unit 12, and a third processing unit 13 as a computer that executes processing to judge the quality of the welded portion 102. The judgment system 10 further includes a camera 20 and a sensor 21. The camera 20 is an image acquisition means that acquires an image of the welded portion 102. In this specification, the image captured by the camera 20 is referred to as the first image. The sensor 21 is a light intensity measurement means that measures the intensity of light emitted from the welded parts irradiated with a laser along the direction of movement of the laser.
 詳しくは後述するが、判定システム10は、レーザが照射された被溶接部材から放出される光の強度の測定値をレーザの移動方向に対応して画像化し、第2画像を作成する画像化処理手段と、上記第1画像と第2画像に基づいて溶接部102の状態を判定する判定手段とを備える。判定システム10では、第2処理部12が画像化処理手段であり、第3処理部13が判定手段である。第1処理部11は、カメラ20により撮像された画像を取り込み、溶接部102の良否判定に必要な部分だけを切り出すトリミング処理を実行する。 Although described in more detail below, the judgment system 10 includes an imaging processing means that images the measured value of the intensity of light emitted from the welded parts irradiated with the laser in accordance with the direction of movement of the laser to create a second image, and a judgment means that judges the state of the welded part 102 based on the first and second images. In the judgment system 10, the second processing unit 12 is the imaging processing means, and the third processing unit 13 is the judgment means. The first processing unit 11 imports an image captured by the camera 20, and performs a trimming process to cut out only the portion necessary for judging the quality of the welded part 102.
 判定システム10は、例えば、3台のコンピュータを備える。即ち、第1処理部11、第2処理部12、及び第3処理部13は、別々のコンピュータで構成される。図1に示す例では、第1処理部11と第3処理部13が通信可能に接続され、また第2処理部12と第3処理部13が通信可能に接続されている。判定システム10を構成するコンピュータは、ローカルエリアネットワーク(LAN)を介して接続されていてもよく、インターネット等の広域ネットワーク(WAN)を介して接続されていてもよい。なお、各処理部の機能を1つのコンピュータで実現することも可能である。或いは、各処理部の機能を4台以上のコンピュータで実現してもよい。 The determination system 10 includes, for example, three computers. That is, the first processing unit 11, the second processing unit 12, and the third processing unit 13 are configured as separate computers. In the example shown in FIG. 1, the first processing unit 11 and the third processing unit 13 are connected so as to be able to communicate with each other, and the second processing unit 12 and the third processing unit 13 are connected so as to be able to communicate with each other. The computers that make up the determination system 10 may be connected via a local area network (LAN) or via a wide area network (WAN) such as the Internet. It is also possible to realize the functions of each processing unit using one computer. Alternatively, the functions of each processing unit may be realized using four or more computers.
 各処理部を構成するコンピュータは、処理部の機能を実行するためのプログラム、演算、処理に必要なパラメータ、取得された画像データなどを記憶する記憶部と、プログラムを読み出して溶接部の良否判定及び当該判定に必要な処理を実行する演算部とを備える。演算部は、例えば、中央演算処理装置(CPU)等のプロセッサで構成される。なお、各処理部を構成するコンピュータの構成は、溶接部の良否判定を実行可能なものであればよく、特に限定されない。 The computer constituting each processing unit includes a storage unit that stores programs for executing the functions of the processing unit, parameters required for calculations and processing, acquired image data, etc., and a calculation unit that reads out the programs and executes the quality judgment of the welded parts and the processing required for said judgment. The calculation unit is composed of a processor such as a central processing unit (CPU). Note that the configuration of the computer constituting each processing unit is not particularly limited as long as it is capable of executing the quality judgment of the welded parts.
 判定システム10は、例えば、封口体100とリード101の溶接を行うレーザ溶接装置に付設されている。この場合、溶接工程に続いて直ぐに溶接状態の検査を行うことができる。判定システム10の構成の少なくとも一部はレーザ溶接装置に組み込まれていてもよく、本実施形態では、光強度測定手段がレーザ溶接装置のレーザヘッド52に組み込まれている。また、第2処理部12は、レーザ発振器50と通信可能に接続され、被溶接部材に照射されるレーザの出力の測定値をレーザ発振器50から取得する。 The judgment system 10 is attached to, for example, a laser welding device that welds the sealing body 100 and the lead 101. In this case, the welding state can be inspected immediately following the welding process. At least a part of the configuration of the judgment system 10 may be incorporated into the laser welding device, and in this embodiment, the light intensity measuring means is incorporated into the laser head 52 of the laser welding device. In addition, the second processing unit 12 is communicatively connected to the laser oscillator 50, and obtains from the laser oscillator 50 a measured value of the laser output irradiated to the workpieces to be welded.
 レーザ溶接装置は、レーザ発振器50と、光ファイバ51と、レーザヘッド52とを備える。レーザ発振器50から出力されたレーザは、光ファイバ51を介してレーザヘッド52に伝搬され、被溶接部材である封口体100及びリード101上に近接配置されたレーザヘッド52から溶接箇所に照射される。レーザ発振器50には、一般的に、ファイバーレーザ発振器が用いられるが、YAGレーザ発振器及びCOレーザ発振器などが用いられてもよい。 The laser welding device includes a laser oscillator 50, an optical fiber 51, and a laser head 52. The laser output from the laser oscillator 50 is propagated to the laser head 52 via the optical fiber 51, and is irradiated to a welding point from the laser head 52 arranged in close proximity to the sealing body 100 and the lead 101, which are members to be welded. A fiber laser oscillator is generally used as the laser oscillator 50, but a YAG laser oscillator, a CO2 laser oscillator, or the like may also be used.
 レーザヘッド52は、レーザ発振器50から出力されたレーザを被溶接部材の方向に反射し、被溶接部材から放出される光を透過するミラー53を含む。また、レーザヘッド52には、一般的に、集光レンズ、フィルタ等が設けられている。レーザ溶接装置は、例えば、レーザヘッド52又は被溶接部材が載せられるテーブルの少なくとも一方を走査させる駆動装置と、レーザ発振器50、駆動装置等を含む溶接装置の動作を制御する制御装置とを備える。 The laser head 52 includes a mirror 53 that reflects the laser output from the laser oscillator 50 in the direction of the workpieces to be welded and transmits the light emitted from the workpieces to be welded. The laser head 52 is generally also provided with a focusing lens, a filter, etc. The laser welding device includes, for example, a drive device that scans at least one of the laser head 52 or a table on which the workpieces to be welded are placed, and a control device that controls the operation of the welding device including the laser oscillator 50, the drive device, etc.
 判定システム10は、上記のように、レーザが照射された被溶接部材から放出される光の強度を測定し、測定された光の強度を画像化する。そして、カメラ20により撮像された溶接部102の第1画像とともに、当該画像化により得られた第2画像を用いて、溶接状態の判定を行う。溶接状態の判定は、溶接欠陥の有無を判定するものであり、検査者の目視により行うことも可能であるが、好ましくはコンピュータによる画像解析により行われ、より好ましくは人工知能(AI)モデルを利用して行われる。判定システム10は、溶接部102から放出される光の強度を画像化することにより、AI処理に好適なデータを第3処理部13に提供する。 As described above, the judgment system 10 measures the intensity of light emitted from the welded parts irradiated with a laser and visualizes the measured light intensity. It then uses the second image obtained by the visualization together with the first image of the welded part 102 captured by the camera 20 to judge the welding condition. The welding condition is judged for the presence or absence of welding defects, and can be judged by an inspector's visual inspection, but is preferably judged by computerized image analysis, and more preferably by using an artificial intelligence (AI) model. The judgment system 10 visualizes the intensity of light emitted from the welded part 102, thereby providing the third processing unit 13 with data suitable for AI processing.
 判定システム10は、上記光の強度を測定するための光強度測定手段として、センサ21と、分光ユニット22とを備える。レーザが照射された被溶接部材から放出される光には、例えば、プラズマ光と熱放射光が含まれる。また、レーザが照射された被溶接部材から放出される光にはレーザの反射光が含まれるものとする。判定システム10は、プラズマ光、熱放射光、及びレーザの反射光から選択される少なくとも1つ、より好ましくは全てについて画像化処理を行い、溶接状態の判定に使用する。判定システム10には、これらの光を分光する分光ユニット22が設けられている。図1に示す例では、レーザヘッド52にセンサ21と分光ユニット22が搭載されている。 The judgment system 10 includes a sensor 21 and a spectroscopic unit 22 as light intensity measuring means for measuring the intensity of the light. The light emitted from the workpieces irradiated with a laser includes, for example, plasma light and thermal radiation light. The light emitted from the workpieces irradiated with a laser includes reflected laser light. The judgment system 10 performs imaging processing on at least one, and more preferably all, selected from the plasma light, thermal radiation light, and reflected laser light, and uses the imaging processing to judge the welding condition. The judgment system 10 is provided with a spectroscopic unit 22 that separates these lights. In the example shown in FIG. 1, the sensor 21 and spectroscopic unit 22 are mounted on the laser head 52.
 レーザ溶接時に発生するプラズマ光は、レーザの吸収や屈折を生じさせる。このため、プラズマ光は、被溶接部材に照射されるレーザのエネルギーを減少させると考えられ、例えば、溶接部の溶け込み深さに影響する。ゆえに、プラズマ光の状態が大きく変動した溶接箇所では、溶け込み深さが不足する等の欠陥が発生している可能性がある。同様に、溶接部から発生する熱放射光(近赤外線)、溶接部で反射するレーザの反射光は、溶接状態の判定に有用であり、熱放射光及び反射光の大きな変動は溶接部の欠陥を推定させる。 Plasma light generated during laser welding causes the laser to be absorbed and refracted. For this reason, it is thought that the plasma light reduces the energy of the laser irradiated to the welded parts, which affects the penetration depth of the weld, for example. Therefore, in welds where the state of the plasma light fluctuates greatly, there is a possibility that defects such as insufficient penetration depth have occurred. Similarly, the thermal radiation light (near-infrared light) generated from the weld and the reflected light of the laser reflected by the weld are useful for determining the welding condition, and large fluctuations in the thermal radiation light and reflected light allow for the estimation of defects in the weld.
 図1では、1つのセンサ21を図示しているが、センサ21には、プラズマ光を受光してその強度を測定する第1のセンサと、熱放射光を受光してその強度を測定する第2のセンサと、レーザの反射光を受光してその強度を測定する第3のセンサとが含まれる。センサ21は、例えば、検出対象光の波長領域に感度域が存在するフォトダイオードであり、検出情報として光の強度に応じた電気信号を出力する。なお、光強度測定手段として、分光ユニットと各波長の反射光を検出可能なセンサとが一体化された装置を用いてもよい。 In FIG. 1, one sensor 21 is shown, but the sensor 21 includes a first sensor that receives plasma light and measures its intensity, a second sensor that receives thermal radiation light and measures its intensity, and a third sensor that receives reflected laser light and measures its intensity. The sensor 21 is, for example, a photodiode with a sensitivity range in the wavelength range of the light to be detected, and outputs an electrical signal according to the intensity of the light as detection information. Note that the light intensity measuring means may be a device that integrates a spectroscopic unit and a sensor capable of detecting reflected light of each wavelength.
 判定システム10では、センサ21の検出情報が第2処理部12に送信され、第2処理部12においてプラズマ光、熱放射光、及び反射光の強度の測定値の画像化処理が実行される。第2処理部12は、さらに、レーザ発振器50からレーザの出力の測定値を取得し、当該測定値の画像化処理を行う。 In the determination system 10, the detection information of the sensor 21 is transmitted to the second processing unit 12, which performs imaging processing of the measured values of the intensity of the plasma light, thermal radiation light, and reflected light. The second processing unit 12 further obtains the measured value of the laser output from the laser oscillator 50, and performs imaging processing of the measured value.
 図2は、封口体100とリード101の溶接部102を示す図である。図1及び図2に示すように、溶接部102は、封口体100上にリード101を重ねた状態で、リード101の表面に対してレーザを照射することにより形成される。リード101は、例えば、正極に接続される短冊状の導電性部材であって、アルミニウムを主成分とする金属で構成される。リード101の厚みと幅は、電池のサイズ等に応じて適宜変更可能であるが、一例としては、厚みが50μm以上500μm以下、幅が2mm以上10mm以下である。封口体100は、リード101よりも厚みがあり、リード101が溶接される金属板を含む。金属板は、例えば、アルミニウムを主成分とする金属で構成される。 FIG. 2 is a diagram showing the welded portion 102 between the sealing body 100 and the lead 101. As shown in FIGS. 1 and 2, the welded portion 102 is formed by irradiating the surface of the lead 101 with a laser while the lead 101 is placed on the sealing body 100. The lead 101 is, for example, a strip-shaped conductive member connected to the positive electrode, and is made of a metal containing aluminum as a main component. The thickness and width of the lead 101 can be changed as appropriate depending on the size of the battery, etc., but as an example, the thickness is 50 μm to 500 μm and the width is 2 mm to 10 mm. The sealing body 100 is thicker than the lead 101 and includes a metal plate to which the lead 101 is welded. The metal plate is, for example, made of a metal containing aluminum as a main component.
 図2に示す例では、溶接部102がリード101の幅方向と平行に延び、略一定の幅を有する細線状に形成されている。溶接部102の幅は、例えば、1mm以上4mm以下、又は1.5mm以上3.5mm以下である。溶接部102は、レーザが被溶接部材に対して相対移動しながら被溶接部材に照射され、レーザの照射部が溶融凝固することにより形成される。被溶接部材に対するレーザの相対移動は、レーザ、及び被溶接部材を載せたテーブルの少なくとも一方を走査させることにより行う。 In the example shown in FIG. 2, the welded portion 102 extends parallel to the width direction of the lead 101 and is formed in the shape of a thin line having a substantially constant width. The width of the welded portion 102 is, for example, 1 mm to 4 mm, or 1.5 mm to 3.5 mm. The welded portion 102 is formed when the laser is irradiated onto the welded members while moving relative to the members, and the irradiated portion of the laser melts and solidifies. The relative movement of the laser with respect to the members to be welded is achieved by scanning at least one of the laser and a table on which the members to be welded are placed.
 以下、図3及び図4を参照しながら、溶接状態の判定方法について詳説する。図3は、本実施形態の判定方法の手順を示すフローチャートである。 The method for determining the welding condition will be described in detail below with reference to Figures 3 and 4. Figure 3 is a flowchart showing the steps of the determination method of this embodiment.
 図3に示すように、本実施形態の判定方法は、以下のステップを備える。
(1)溶接部102の第1画像を取得する画像取得ステップ(S10)。
(2)レーザが照射された被溶接部材(封口体100及びリード101)から放出される光の強度をレーザの移動方向に沿って測定し、測定データを取得する光強度測定ステップ(S11)。
(3)測定された光の強度をレーザの移動方向に対応して画像化し、第2画像を作成する画像化処理ステップ(S14)。
(4)第1画像と第2画像を含む判定用画像に基づいて溶接部102の状態を判定する判定ステップ(S16)。
As shown in FIG. 3, the determination method of this embodiment includes the following steps.
(1) An image acquisition step (S10) of acquiring a first image of the welded portion 102.
(2) A light intensity measurement step (S11) of measuring the intensity of light emitted from the workpieces (sealing body 100 and leads 101) irradiated with the laser along the direction of laser movement and acquiring measurement data.
(3) An imaging processing step (S14) of imaging the measured light intensity in accordance with the laser movement direction to create a second image.
(4) A determination step (S16) of determining the state of the welded portion 102 based on a determination image including the first image and the second image.
 本実施形態の判定方法は、さらに、第1画像と第2画像を結合して結合画像を作成するステップ(S15)を備える。そして、上記判定ステップにおける判定用画像として、結合画像が用いられる。判定ステップは、判定用画像の機械学習により得られる学習データに基づいて溶接部102の状態を判定することが好ましい。溶接部102から放出される光の強度の測定値を画像化し、複数の画像を結合した1つのデータである結合画像として第3処理部13に提供することにより、機械学習の精度が向上し、ひいては溶接状態の判定精度が向上する。 The judgment method of this embodiment further includes a step (S15) of combining the first image and the second image to create a combined image. The combined image is used as the judgment image in the judgment step. In the judgment step, it is preferable to judge the state of the welded portion 102 based on learning data obtained by machine learning of the judgment image. By imaging the measured values of the intensity of light emitted from the welded portion 102 and providing the combined image, which is a single piece of data obtained by combining multiple images, to the third processing unit 13, the accuracy of the machine learning is improved, and thus the judgment accuracy of the welded state is improved.
 本実施形態の判定方法は、さらに、測定された光の強度を正規化して画像化用のパラメータを作成するステップ(S13)を備える。この場合、S14の画像化処理ステップでは、当該パラメータを用いて第2画像を作成する。プラズマ光、熱放射光、及び反射光の測定値は、そのスケールが大きく異なる場合があるため、そのままの数値を使用して画像化すると、機械学習の精度が低下する、或いは学習に時間がかかることが想定される。このため、例えば、測定データのスケールを揃える正規化を行うことが好ましい。 The determination method of this embodiment further includes a step (S13) of normalizing the measured light intensity to create parameters for imaging. In this case, in the imaging processing step of S14, the parameters are used to create a second image. Since the measured values of plasma light, thermal radiation light, and reflected light may differ greatly in scale, it is expected that the accuracy of machine learning will decrease or learning will take a long time if the values are used as is to create an image. For this reason, it is preferable to perform normalization to align the scale of the measurement data, for example.
 本実施形態の判定方法は、さらに、被溶接部材に照射されたレーザの出力をレーザの移動方向に沿って測定するステップ(S12)を備える。レーザ発振器50は、例えば、出射したレーザの出力を測定している。或いは、レーザヘッド52等にレーザパワーメータが設置されていてもよい。レーザの出力の測定値は、プラズマ光等の測定値と同様に、正規化処理され、レーザの移動方向に対応して画像化される。ステップS14では、第2画像とともに、レーザの出力の測定値に基づく第3画像が作成される。この場合、判定用画像には、第1画像及び第2画像とともに第3画像が含まれる。 The judgment method of this embodiment further includes a step (S12) of measuring the output of the laser irradiated to the workpiece along the direction of laser movement. The laser oscillator 50, for example, measures the output of the emitted laser. Alternatively, a laser power meter may be installed in the laser head 52, etc. The measured value of the laser output is normalized in the same manner as the measured value of plasma light, etc., and imaged in accordance with the direction of laser movement. In step S14, a third image based on the measured value of the laser output is created along with the second image. In this case, the judgment image includes the third image as well as the first and second images.
 図4は、本実施形態の判定方法を示す模式図である。図4に示すように、本実施形態の判定方法では、溶接部102を含む被溶接部材の画像(オリジナル画像)を撮像するとともに、溶接部102から放出される光の強度を測定して測定データを得る。オリジナル画像は、例えば、溶接工程の終了後、カメラ20により撮像され、その画像データが第1処理部11に送信される。なお、溶接部102の画像は、溶接工程においてリアルタイムで取得されてもよい。第1処理部11は、オリジナル画像から不要な部分を切除して溶接部102の画像だけを残すトリミング処理を行い、溶接部102の第1画像31を作成する。 FIG. 4 is a schematic diagram showing the determination method of this embodiment. As shown in FIG. 4, in the determination method of this embodiment, an image (original image) of the welded parts including the welded part 102 is captured, and the intensity of light emitted from the welded part 102 is measured to obtain measurement data. The original image is captured by the camera 20, for example, after the welding process is completed, and the image data is transmitted to the first processing unit 11. Note that the image of the welded part 102 may be acquired in real time during the welding process. The first processing unit 11 performs a trimming process to remove unnecessary parts from the original image and leave only the image of the welded part 102, and creates a first image 31 of the welded part 102.
 測定データは、例えば、溶接工程においてリアルタイムで取得される。そして、取得された測定データは、正規化処理を経て画像化される。画像化処理ステップで画像化される測定データには、上記の通り、レーザが照射された被溶接部材から放出される光を分光して得られるプラズマ光、熱放射光、及びレーザの反射光の強度の測定値が含まれる。各光の強度は、センサ21及び分光ユニット22により、レーザの移動方向に沿って、即ち溶接部102の長さ方向に沿って溶接時にリアルタイムで測定される。測定データには、さらに、レーザの移動方向に沿ってリアルタイムで測定されるレーザの出力の測定値が含まれる。 The measurement data is acquired, for example, in real time during the welding process. The acquired measurement data is then imaged through normalization processing. As described above, the measurement data imaged in the imaging processing step includes measured values of the intensity of plasma light, thermal radiation light, and reflected laser light obtained by dispersing the light emitted from the workpieces irradiated with the laser. The intensity of each light is measured in real time during welding by the sensor 21 and the spectroscopic unit 22 along the direction of laser movement, i.e., along the length of the welded portion 102. The measurement data further includes measured values of the laser output measured in real time along the direction of laser movement.
 各測定データの正規化処理と画像化処理の概要は、下記の通りである。
(1)測定データを構成する測定値について、最大値と最小値を抽出する。
(2)測定値について、最大値が255(濃度値:白)、最小値が0(濃度値:黒)になるような変換式を算出する。
(3)上記変換式に従い、各測定値を0~255の範囲内の数値に置き換える。この0~255の範囲内の数値が、図3のステップS13における画像化用のパラメータである。
(4)置換された1つの数値(0~255の範囲内の数値)を数値の大きさに応じて色の濃淡を割り当てて1つの画素として並べることを繰り返して測定データを画像化する。即ち、光強度の測定値及びレーザ出力の測定値で構成される測定データを画像データに変換する。
The normalization and imaging processes for each measurement data are outlined below.
(1) The maximum and minimum values are extracted from the measurement values that make up the measurement data.
(2) A conversion equation is calculated for the measurement values such that the maximum value is 255 (density value: white) and the minimum value is 0 (density value: black).
(3) According to the above conversion formula, each measurement value is converted into a numerical value within the range of 0 to 255. This numerical value within the range of 0 to 255 is a parameter for imaging in step S13 of FIG.
(4) The measurement data is visualized by repeatedly arranging each replaced numerical value (a value in the range of 0 to 255) as a single pixel by assigning a shade of color according to the magnitude of the numerical value. In other words, the measurement data consisting of the measured values of light intensity and laser output is converted into image data.
 上記(1)~(4)の処理を全ての測定データについて実行することにより、プラズマ光の測定値に基づく第2画像33、熱放射光の測定値に基づく第2画像34、レーザの反射光の測定値に基づく第2画像35、及びレーザの出力の測定値に基づく第3画像36が作成される。そして、カメラ20により撮像された溶接部102の第1画像31、第2画像33,34,35、及び第3画像36を結合して1つの判定用画像である結合画像37を作成する。なお、広範囲のデータとして画像を作成する場合は、プーリング処理を実施し、画素数を圧縮することが好ましい。 By performing the above processes (1) to (4) on all the measurement data, a second image 33 based on the measured value of the plasma light, a second image 34 based on the measured value of the thermal radiation light, a second image 35 based on the measured value of the reflected light of the laser, and a third image 36 based on the measured value of the laser output are created. Then, the first image 31, second images 33, 34, 35, and third image 36 of the welded part 102 captured by the camera 20 are combined to create a combined image 37, which is a single image for judgment. When creating an image as wide-range data, it is preferable to perform a pooling process and compress the number of pixels.
 測定データの正規化処理と画像化処理は、第2処理部12において実行される。第2処理部12は、例えば、レーザの移動方向に沿って設定された測定ポイントについて、各光強度の測定値を取得する。即ち、各光強度の測定値は、互いに同じ測定ポイントで取得される。測定ポイントの数は特に限定されず、レーザの移動方向に沿って一列に数千から数万ポイントが設定されてもよい。レーザの出力の測定値についても同様に、各光強度の測定ポイントと同じポイントで測定される。 Normalization and imaging of the measurement data are performed in the second processing unit 12. The second processing unit 12 obtains the measurement values of each light intensity for measurement points set along the laser movement direction, for example. That is, the measurement values of each light intensity are obtained at the same measurement points as each other. The number of measurement points is not particularly limited, and several thousand to tens of thousands of points may be set in a row along the laser movement direction. Similarly, the measurement values of the laser output are measured at the same points as the measurement points of each light intensity.
 本実施形態の判定方法では、結合画像37を第3処理部13に送信し、溶接状態の良否判定を行う。この判定ステップは、結合画像37の機械学習により得られる学習データに基づいて行うことが好ましい。第3処理部13は、例えば、画像用のAIモデルを用いて、取得した結合画像37から溶接部102の良否判定を行う。即ち、結合画像37をAIモデルの入力値として与える。なお、AIモデルには画像用の市販のソフトを用いることが可能であり、従来のAIモデルをそのまま活用できる。つまり、本実施形態の判定方法によれば、スケールや次元の異なる様々なデータを画像化することにより、AIが得意とする広い視点での異常検出が容易になる。 In the judgment method of this embodiment, the combined image 37 is sent to the third processing unit 13, and a judgment is made as to whether the welding condition is good or bad. This judgment step is preferably performed based on learning data obtained by machine learning of the combined image 37. The third processing unit 13 judges the quality of the welded part 102 from the acquired combined image 37, for example, using an AI model for images. That is, the combined image 37 is provided as an input value for the AI model. Note that commercially available software for images can be used for the AI model, and conventional AI models can be used as they are. In other words, according to the judgment method of this embodiment, various data with different scales and dimensions are visualized, making it easier to detect abnormalities from a broad perspective, which is AI's specialty.
 図4に示すように、結合画像37は、第1画像31、第2画像33,34,35、及び第3画像36が互いに重ならないように整列配置され、1つのデータとして構成されている。各画像は、上記の通り、レーザの移動方向に沿って一列に並ぶ複数の画素38で構成され、長さ方向と幅方向を有する。図4は、結合画像37を模式的に示しているが、第2画像33,34,35、及び第3画像36は、例えば、各画像の長さ方向には上記測定ポイントに対応する数千から数万個の画素38を有する。一方、幅方向には1つの画素38で構成される。 As shown in FIG. 4, the combined image 37 is configured as a single piece of data in which the first image 31, second images 33, 34, 35, and third image 36 are aligned so that they do not overlap one another. As described above, each image is configured with a number of pixels 38 lined up in a row along the direction of laser movement, and has a length direction and a width direction. FIG. 4 shows the combined image 37 in a schematic manner, and the second images 33, 34, 35, and third image 36 each have, for example, several thousand to tens of thousands of pixels 38 in the length direction of each image that correspond to the measurement points described above. Meanwhile, the width direction is configured with one pixel 38.
 結合画像37は、各画像が並ぶ方向Xに各画像の幅方向が向くように配置されて構成される。また、各画像の同じ測定ポイントに対応する数値データに基づく画素38(画像化用のパラメータ)は、方向Xに並ぶように配置される。図4に示す例では、結合画像37を構成する複数の画像が、カメラ20により撮像された第1画像31、レーザ出力の測定値の第3画像36、レーザ反射光の第2画像35、プラズマ光の第2画像33、熱放射光の第2画像34の順に配置されているが、AIモデルが1つのデータとして認識できればよく、画像の順番はこれに限定されない。なお、各画像データを重ね合わせて結合画像37を構築することも可能である。 The combined image 37 is configured by arranging each image so that the width direction of each image faces the direction X in which the images are lined up. In addition, pixels 38 (imaging parameters) based on numerical data corresponding to the same measurement point of each image are arranged to be lined up in the direction X. In the example shown in FIG. 4, the multiple images that make up the combined image 37 are arranged in the order of a first image 31 captured by the camera 20, a third image 36 of the measured value of the laser output, a second image 35 of the reflected laser light, a second image 33 of the plasma light, and a second image 34 of the thermal radiation light, but the order of the images is not limited to this as long as the AI model can recognize them as a single data. It is also possible to construct the combined image 37 by overlapping each image data.
 結合画像37を用いた溶接部102の良否判定は、上記のように、AIの機械学習により得られる学習データに基づいて実施されることが好ましい。機械学習には、従来公知の方法を適用でき、その方法は特に限定されない。また、機械学習には、ディープラーニングが含まれる。第3処理部には、例えば、溶接部102の良品、不良品のパターンが入力される。そして、AIが機械学習することによりAIによる溶接状態の良否判定が可能になる。判定ステップでは、1つのデータである結合画像37がAIモデルに入力され、学習データに基づいて異常箇所の有無が判定される。 As described above, it is preferable that the quality of the welded portion 102 is judged using the combined image 37 based on learning data obtained by machine learning of the AI. Any conventionally known method can be applied to the machine learning, and there is no particular limitation to the method. Machine learning also includes deep learning. For example, patterns of good and bad welded portions 102 are input to the third processing unit. Then, the AI's machine learning enables it to judge the quality of the welded state. In the judgment step, the combined image 37, which is one piece of data, is input to the AI model, and the presence or absence of an abnormality is judged based on the learning data.
 AIモデルは、例えば、畳み込み処理の画像サイズと枚数、畳み込み処理フィルタの選択、活性化処理のフィルタ選択、間引き処理のフィルタ選択、間引き処理のサイズと枚数、パーセプトロン結合処理の中間層のサイズと層数、ドロップアウト割合、エポック数など、機械学習に用いられるパラメータを設定する。そして、機械学習の結果である学習データと結合画像37に基づいて、溶接状態をリアルタイムで判定する。 The AI model sets parameters used in machine learning, such as the image size and number for the convolution process, the selection of the convolution process filter, the selection of the activation process filter, the selection of the thinning process filter, the size and number of thinning processes, the size and number of intermediate layers for the perceptron combination process, the dropout rate, and the number of epochs.Then, the welding condition is judged in real time based on the learning data and the combined image 37 that are the results of the machine learning.
 AIモデルは、学習用の画像データを読み込み、初期は予め設定された初期パラメータに基づいて機械学習を行い、その後、学習により算出したパラメータに基づいて機械学習を行う。例えば、画像の各画素38の数値に対して重み付けを行う係数、閾値、オフセット値等を変化させ、最終的に溶接状態を当てる確率が最も高くなる重み付け係数などを決定する。ディープラーニングの場合は、局所的に重み付けを行う層を含んでもよく、大局的に重み付けを行う層を含んでもよい。 The AI model reads image data for learning, and initially performs machine learning based on preset initial parameters, and then performs machine learning based on parameters calculated by learning. For example, it varies the weighting coefficient, threshold value, offset value, etc. for the numerical value of each pixel 38 of the image, and ultimately determines the weighting coefficient that maximizes the probability of predicting the welding condition. In the case of deep learning, it may include a layer that performs weighting locally, or a layer that performs weighting globally.
 AIモデルは、例えば、学習データと結合画像37を照らし合わせて、様々な溶接状態との一致度を判定する。そして、それぞれの一致度の判定結果を重み付けする、又は閾値を用いて評価することにより、様々な溶接状態との一致度を総合的に判定し、最も一致度の高い溶接状態を判定する。 The AI model, for example, compares the learning data with the combined image 37 to determine the degree of match with various welding conditions. Then, by weighting the results of the match determination or evaluating them using a threshold, the degree of match with various welding conditions is determined comprehensively, and the welding condition with the highest degree of match is determined.
 本実施形態の判定方法の効果としては、以下のような効果が挙げられる。
(1)各数値データを画像化することにより、各データに対応した複雑なAIモデルを使用する必要がなく、画像データのみに対応したAIモデルを使用できる。
(2)複数の数値データが、画像上では一律に濃度値(黒、灰、白)で視認することができ、画像上の周辺値と比較することで、各データの変化量のみに着目できる。
(3)画像データに対するプーリング処理を行うことで、データを解析する範囲を月単位、日単位、時間単位などのように大きな範囲から絞り込んでいくような解析ができる。
(4)数値データの画像化により、データは2次元の位置関係を有するようになるため、位置関係の持つ情報に着目した解析ができる。
(5)画像データに対する処理手法として、AIモデルだけでなく様々な画像処理手法が既に開発されており、これらの手法で解析することも可能である。解析手法によっては、緩やかな変化のみに着目、急峻な変化のみに着目、若しくはノイズデータの除去などが可能である。
(6)画像データは、人に取っても視認しやすいデータであるから、広範囲のデータを一目で確認することができる。
The effects of the determination method of this embodiment include the following effects.
(1) By visualizing each piece of numerical data, there is no need to use a complex AI model corresponding to each piece of data, and an AI model corresponding only to the image data can be used.
(2) Multiple numerical data can be viewed on the image with uniform density values (black, gray, white). By comparing with surrounding values on the image, it is possible to focus only on the amount of change in each data.
(3) By performing a pooling process on image data, it is possible to narrow down the range of data analysis from a broad range such as monthly, daily, or hourly.
(4) By visualizing numerical data, the data has a two-dimensional positional relationship, making it possible to perform analysis focusing on the information contained in the positional relationship.
(5) As a method for processing image data, various image processing methods have already been developed in addition to AI models, and analysis can be performed using these methods. Depending on the analysis method, it is possible to focus only on gradual changes, only on steep changes, or to remove noise data.
(6) Image data is easily visible to humans, so a wide range of data can be confirmed at a glance.
 以上のように、本実施形態の判定方法によれば、レーザが照射された被溶接部材から放出される光の強度などの数値データを画像化して溶接部の画像とともに溶接状態の判定に使用することにより、精度の高い良否判定が可能である。また、当該画像化によりAIモデルを含む種々の解析手法の適用が容易になる。AIモデルを用いて良否判定を行う場合、溶接状態を多面的に判定することが容易である。 As described above, according to the judgment method of this embodiment, numerical data such as the intensity of light emitted from the welded parts irradiated with a laser is visualized and used to judge the welding condition together with an image of the weld, making it possible to make a highly accurate pass/fail judgment. In addition, this visualization makes it easy to apply various analytical methods, including AI models. When an AI model is used to make a pass/fail judgment, it is easy to judge the welding condition from multiple perspectives.
 なお、レーザ溶接部では、急速な温度変化や物質状態の変化が起きており、溶接状態の解析は容易ではない。そのため、レーザ溶接に関わるパラメータの最適化は、トライ&エラーの積み上げの上に成り立っている。また、量産化に際しては、様々な複合要因からスパッタ、穴あきなどの溶接不良が発生し得る。このため、本実施形態の判定方法では、様々な広範囲のデータを取得し、判定ステップの入力値とする。一方、様々なデータを入力値とすることで問題になってくるのが、データ形式やスケールが異なることであるが、これらの数値データを画像化し、画像データとしてAIモデルに入力することで、溶接状態の良否判定を多面的且つ高精度で行うことが可能になる。 In addition, rapid temperature changes and changes in material state occur in laser welds, making it difficult to analyze the weld condition. For this reason, optimization of parameters related to laser welding is based on an accumulation of trial and error. Furthermore, during mass production, welding defects such as spattering and holes can occur due to a variety of complex factors. For this reason, in the judgment method of this embodiment, a wide range of data is acquired and used as input values for the judgment step. On the other hand, one problem with using various data as input values is that the data formats and scales are different. However, by converting this numerical data into images and inputting it into an AI model as image data, it becomes possible to make a multifaceted and highly accurate judgment of the quality of the weld condition.
 本開示は、以下の実施形態によりさらに説明される。
 構成1:レーザが被溶接部材に対して相対移動して前記被溶接部材に照射されて溶融凝固した溶接部について、溶接状態を判定する判定方法であって、前記溶接部の画像である第1画像を取得するステップと、前記レーザが照射された前記被溶接部材から放出される光の強度を前記レーザの移動方向に沿って測定するステップと、前記光の強度の測定値を前記レーザの移動方向に対応して画像化し、第2画像を作成する画像化処理ステップと、前記第1画像と前記第2画像を含む判定用画像に基づいて前記溶接部の状態を判定する判定ステップとを備える、溶接状態の判定方法。
 構成2:前記判定方法は、前記光の強度の測定値を正規化して画像化用のパラメータを作成するステップをさらに備え、前記画像化処理ステップでは、前記パラメータを用いて前記第2画像を作成する、構成1に記載の溶接状態の判定方法。
 構成3:前記判定方法は、前記第1画像と前記第2画像を結合して前記判定用画像を作成するステップをさらに備える、構成1又は2に記載の判定方法。
 構成4:前記画像化処理ステップで画像化される前記光の強度の測定値には、前記被溶接部材から放出される光を分光して得られるプラズマ光の強度の測定値が含まれる、構成1~3のいずれか1つに記載の判定方法。
 構成5:前記画像化処理ステップで画像化される前記光の強度の測定値には、前記被溶接部材から放出される光を分光して得られる熱放射光の強度の測定値が含まれる、構成1~4のいずれか1つに記載の判定方法。
 構成6:前記画像化処理ステップで画像化される前記光の強度の測定値には、前記被溶接部材から放出される光を分光して得られる前記レーザの反射光の強度の測定値が含まれる、構成1~5のいずれか1つに記載の判定方法。
 構成7:前記判定方法は、前記被溶接部材に照射された前記レーザの出力を前記レーザの移動方向に沿って測定するステップをさらに備え、前記画像化処理ステップでは、前記レーザの出力の測定値を前記レーザの移動方向に対応して画像化して第3画像を作成し、前記判定用画像には、前記第1画像及び前記第2画像とともに前記第3画像が含まれる、構成1~6のいずれか1つに記載の判定方法。
 構成8:前記判定ステップでは、前記判定用画像の機械学習により得られる学習データに基づいて前記溶接部の状態を判定する、構成1~7のいずれか1つに記載の判定方法。
 構成9:レーザが被溶接部材に対して相対移動して前記被溶接部材に照射されて溶融凝固した溶接部について、溶接状態を判定する判定システムであって、前記溶接部の画像である第1画像を取得する画像取得手段と、前記レーザが照射された前記被溶接部材から放出される光の強度を前記レーザの移動方向に沿って測定する光強度測定手段と、前記光の強度の測定値を前記レーザの移動方向に対応して画像化し、第2画像を作成する画像化処理手段と、前記第1画像と前記第2画像に基づいて前記溶接部の状態を判定する判定手段とを備える、溶接状態の判定システム。
The present disclosure is further illustrated by the following embodiments.
Configuration 1: A method for determining the welding condition of a welded portion that has been irradiated with a laser that moves relative to the welded members and melted and solidified, the method comprising the steps of: acquiring a first image that is an image of the welded portion; measuring the intensity of light emitted from the welded members irradiated with the laser along the movement direction of the laser; imaging processing step of imaging the measured value of the light intensity corresponding to the movement direction of the laser and creating a second image; and judging the condition of the welded portion based on an image for judgment that includes the first image and the second image.
Configuration 2: The method for determining a welding condition described in Configuration 1, further comprising a step of normalizing the measured values of the light intensity to create parameters for imaging, and in the imaging processing step, the parameters are used to create the second image.
Configuration 3: The determination method according to configuration 1 or 2, further comprising a step of combining the first image and the second image to create the determination image.
Configuration 4: A determination method described in any one of configurations 1 to 3, wherein the measured values of the light intensity imaged in the imaging processing step include measured values of the intensity of plasma light obtained by dispersing the light emitted from the welded members.
Configuration 5: A determination method described in any one of configurations 1 to 4, wherein the measured values of the light intensity imaged in the imaging processing step include measured values of the intensity of thermal radiation light obtained by dispersing the light emitted from the welded members.
Configuration 6: A determination method described in any one of configurations 1 to 5, wherein the measured values of the light intensity imaged in the imaging processing step include measured values of the intensity of the reflected light of the laser obtained by dispersing the light emitted from the welded members.
Configuration 7: The determination method according to any one of configurations 1 to 6, further comprising a step of measuring the output of the laser irradiated to the welded parts along a moving direction of the laser, and in the imaging processing step, the measured value of the laser output is imaged corresponding to the moving direction of the laser to create a third image, and the determination image includes the third image as well as the first image and the second image.
Configuration 8: A judgment method according to any one of configurations 1 to 7, in which the judgment step judges the state of the welded portion based on learning data obtained by machine learning of the judgment image.
Configuration 9: A judgment system for judging the welding condition of a welded portion that has been irradiated with a laser that moves relative to the welded members and melted and solidified, the judgment system for the welding condition comprising: an image acquisition means for acquiring a first image that is an image of the welded portion; a light intensity measuring means for measuring the intensity of light emitted from the welded members irradiated with the laser along the movement direction of the laser; an imaging processing means for imaging the measured value of the light intensity in accordance with the movement direction of the laser and creating a second image; and a judgment means for judging the condition of the welded portion based on the first image and the second image.
 10 判定システム、11 第1処理部、12 第2処理部、13 第3処理部、20 カメラ、21 センサ、22 分光ユニット、31 第1画像、33,34,35 第2画像、36 第3画像、37 結合画像、38 画素、50 レーザ発振器、51 光ファイバ、52 レーザヘッド、53 ミラー、100 封口体、101 リード、102 溶接部
 
REFERENCE SIGNS LIST 10 Determination system, 11 First processing unit, 12 Second processing unit, 13 Third processing unit, 20 Camera, 21 Sensor, 22 Spectroscopic unit, 31 First image, 33, 34, 35 Second image, 36 Third image, 37 Combined image, 38 Pixel, 50 Laser oscillator, 51 Optical fiber, 52 Laser head, 53 Mirror, 100 Sealing body, 101 Lead, 102 Welded portion

Claims (9)

  1.  レーザが被溶接部材に対して相対移動して前記被溶接部材に照射されて溶融凝固した溶接部について、溶接状態を判定する判定方法であって、
     前記溶接部の画像である第1画像を取得するステップと、
     前記レーザが照射された前記被溶接部材から放出される光の強度を前記レーザの移動方向に沿って測定するステップと、
     前記光の強度の測定値を前記レーザの移動方向に対応して画像化し、第2画像を作成する画像化処理ステップと、
     前記第1画像と前記第2画像を含む判定用画像に基づいて前記溶接部の状態を判定する判定ステップと、
     を備える、溶接状態の判定方法。
    A method for determining a welding state of a welded portion that is melted and solidified by irradiating a laser onto the welded members while the laser moves relative to the welded members, comprising:
    acquiring a first image of the weld;
    measuring the intensity of light emitted from the workpiece irradiated with the laser along a moving direction of the laser;
    an imaging process step of imaging the light intensity measurements in a direction corresponding to the laser movement to produce a second image;
    a determination step of determining a state of the welded portion based on a determination image including the first image and the second image;
    A method for determining a welding condition comprising:
  2.  前記判定方法は、前記光の強度の測定値を正規化して画像化用のパラメータを作成するステップをさらに備え、
     前記画像化処理ステップでは、前記パラメータを用いて前記第2画像を作成する、請求項1に記載の溶接状態の判定方法。
    The method further comprises normalizing the light intensity measurements to generate imaging parameters;
    The method for determining a welding condition according to claim 1 , wherein in said imaging processing step, said second image is created using said parameters.
  3.  前記判定方法は、前記第1画像と前記第2画像を結合して前記判定用画像を作成するステップをさらに備える、請求項1に記載の判定方法。 The method of claim 1 further comprises a step of combining the first image and the second image to create the image for determination.
  4.  前記画像化処理ステップで画像化される前記光の強度の測定値には、前記被溶接部材から放出される光を分光して得られるプラズマ光の強度の測定値が含まれる、請求項1に記載の判定方法。 The method of claim 1, wherein the measured values of the light intensity imaged in the imaging process step include measured values of the plasma light intensity obtained by dispersing the light emitted from the welded members.
  5.  前記画像化処理ステップで画像化される前記光の強度の測定値には、前記被溶接部材から放出される光を分光して得られる熱放射光の強度の測定値が含まれる、請求項1に記載の判定方法。 The method of claim 1, wherein the measured values of the light intensity imaged in the imaging process step include measured values of the intensity of thermal radiation light obtained by dispersing the light emitted from the welded members.
  6.  前記画像化処理ステップで画像化される前記光の強度の測定値には、前記被溶接部材から放出される光を分光して得られる前記レーザの反射光の強度の測定値が含まれる、請求項1に記載の判定方法。 The method of claim 1, wherein the measured values of the light intensity imaged in the imaging process step include measured values of the intensity of the reflected light of the laser obtained by dispersing the light emitted from the workpiece.
  7.  前記判定方法は、前記被溶接部材に照射された前記レーザの出力を前記レーザの移動方向に沿って測定するステップをさらに備え、
     前記画像化処理ステップでは、前記レーザの出力の測定値を前記レーザの移動方向に対応して画像化して第3画像を作成し、
     前記判定用画像には、前記第1画像及び前記第2画像とともに前記第3画像が含まれる、請求項1に記載の判定方法。
    The method further includes a step of measuring an output of the laser irradiated to the workpiece along a moving direction of the laser,
    In the imaging process, the measured values of the laser output are imaged in a direction corresponding to the laser movement to create a third image;
    The method according to claim 1 , wherein the determination images include the third image in addition to the first image and the second image.
  8.  前記判定ステップでは、前記判定用画像の機械学習により得られる学習データに基づいて前記溶接部の状態を判定する、請求項1~7のいずれか一項に記載の判定方法。 The method according to any one of claims 1 to 7, wherein in the judgment step, the condition of the weld is judged based on learning data obtained by machine learning of the judgment image.
  9.  レーザが被溶接部材に対して相対移動して前記被溶接部材に照射されて溶融凝固した溶接部について、溶接状態を判定する判定システムであって、
     前記溶接部の画像である第1画像を取得する画像取得手段と、
     前記レーザが照射された前記被溶接部材から放出される光の強度を前記レーザの移動方向に沿って測定する光強度測定手段と、
     前記光の強度の測定値を前記レーザの移動方向に対応して画像化し、第2画像を作成する画像化処理手段と、
     前記第1画像と前記第2画像に基づいて前記溶接部の状態を判定する判定手段と、
     を備える、溶接状態の判定システム。
     
    A judgment system for judging a welding state of a welded portion that is melted and solidified by irradiating a laser to the welded members while moving the laser relative to the welded members,
    an image acquisition means for acquiring a first image which is an image of the welded portion;
    a light intensity measuring means for measuring the intensity of light emitted from the workpiece irradiated with the laser along a moving direction of the laser;
    an image processing means for imaging the measured light intensity in a direction corresponding to the laser movement direction to generate a second image;
    a determination means for determining a state of the welded portion based on the first image and the second image;
    A welding condition determination system comprising:
PCT/JP2023/037507 2022-10-31 2023-10-17 Welding state determination method and determination system WO2024095756A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-174341 2022-10-31
JP2022174341 2022-10-31

Publications (1)

Publication Number Publication Date
WO2024095756A1 true WO2024095756A1 (en) 2024-05-10

Family

ID=90930329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/037507 WO2024095756A1 (en) 2022-10-31 2023-10-17 Welding state determination method and determination system

Country Status (1)

Country Link
WO (1) WO2024095756A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11114683A (en) * 1997-10-07 1999-04-27 Sanyo Mach Works Ltd Quality inspection device for laser beam welding
JP2005111538A (en) * 2003-10-09 2005-04-28 Toyota Motor Corp Method and device for inspecting laser welding quality
US20120125899A1 (en) * 2010-11-18 2012-05-24 Kia Motors Corporation Method and apparatus for the quality inspection of laser welding
JP2020099922A (en) * 2018-12-21 2020-07-02 パナソニックIpマネジメント株式会社 Laser welding device and laser welding method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11114683A (en) * 1997-10-07 1999-04-27 Sanyo Mach Works Ltd Quality inspection device for laser beam welding
JP2005111538A (en) * 2003-10-09 2005-04-28 Toyota Motor Corp Method and device for inspecting laser welding quality
US20120125899A1 (en) * 2010-11-18 2012-05-24 Kia Motors Corporation Method and apparatus for the quality inspection of laser welding
JP2020099922A (en) * 2018-12-21 2020-07-02 パナソニックIpマネジメント株式会社 Laser welding device and laser welding method

Similar Documents

Publication Publication Date Title
US20210318673A1 (en) In-Situ Inspection Method Based on Digital Data Model of Weld
US20230201956A1 (en) Method for analyzing a laser machining process, system for analyzing a laser machining process, and laser machining system comprising such a system
US20160098825A1 (en) Feature extraction method and system for additive manufacturing
KR20210091789A (en) Laser Machining Process Monitoring System and Method Using Deep Convolutional Neural Network
CN112154040B (en) Method for automatically determining optimal welding parameters for performing a weld on a workpiece
JP2009515705A (en) Method and apparatus for evaluating the joint location of a workpiece
US20240100626A1 (en) Laser working system for performing a working process on a workpiece by means of a laser beam and method for monitoring a working process on a workpiece by means of a laser beam
US20230274407A1 (en) Systems and methods for analyzing weld quality
JP2021058927A (en) Laser welding quality detecting method and laser welding quality detecting device
CN116000453B (en) Laser welding quality real-time monitoring method and system
WO2024095756A1 (en) Welding state determination method and determination system
KR101439758B1 (en) Apparatus and method of inspecting defect of laser welding
JP2023064612A (en) System for determining laser welding quality and method for determining laser welding quality
EP3315238A1 (en) Method of and welding process control system for real-time tracking of the position of the welding torch by the use of fiber bragg grating based optical sensors
CN113714635A (en) Laser processing apparatus
JP2000061672A (en) Laser welding state detecting method
CN116056832A (en) Method for analyzing a workpiece surface for a laser machining process and analysis device for analyzing a workpiece surface
Bračun et al. Surface defect detection on power transmission belts using laser profilometry
Mao et al. Development of a melt pool characteristics detection platform based on multi-information fusion of temperature fields and photodiode signals in plasma arc welding
US20230120761A1 (en) Process signal reconstruction and anomaly detection in laser machining processes
Choi et al. Spectroscopy-based smart optical monitoring system in the applications of laser additive manufacturing
CN117999473A (en) Method and system for analyzing laser machining processes based on spectrograms
WO2022181060A1 (en) Determination method and determination device for laser processing state
Pajić et al. AI APPLICATION IN QUALITY ASSURANCE OF INDUSTRIAL LASER WELDING PROCESSES
CN116140805A (en) Laser welding penetration real-time detection method and system