JPH01109058A - Contactless copy controller - Google Patents

Contactless copy controller

Info

Publication number
JPH01109058A
JPH01109058A JP26735687A JP26735687A JPH01109058A JP H01109058 A JPH01109058 A JP H01109058A JP 26735687 A JP26735687 A JP 26735687A JP 26735687 A JP26735687 A JP 26735687A JP H01109058 A JPH01109058 A JP H01109058A
Authority
JP
Japan
Prior art keywords
laser distance
model
laser
control circuit
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26735687A
Other languages
Japanese (ja)
Other versions
JP2594578B2 (en
Inventor
Etsuo Yamazaki
悦雄 山崎
Hiroo Nagata
永田 寛雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Priority to JP62267356A priority Critical patent/JP2594578B2/en
Publication of JPH01109058A publication Critical patent/JPH01109058A/en
Application granted granted Critical
Publication of JP2594578B2 publication Critical patent/JP2594578B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Machine Tool Copy Controls (AREA)

Abstract

PURPOSE:To enable copying of a model having special shape by providing a laser distance meter, a measuring means, a rotary angle control means and a control means. CONSTITUTION:Amount of light provided from a laser distance meter 3 is measured, and a received light amount signal is fed to a rotary angle control circuit 4. The rotary angle control circuit 4 outputs a signal for controlling rotation of the laser distance meter 3 such that the light receiving amount is maximized. The rotary angle control circuit 4 is controlled by a copy circuit. In other word, the rotary angle control circuit 4 provides a rotary angle information of a theta-shaft motor 6 to a copy control circuit, while receives a rotary angle command from the copy control circuit and outputs a rotary control signal of the theta-shaft motor 6. A theta-shaft amplifier receives the rotary control signal and carries out rotation control of the theta-shaft motor 6 such that the laser distance meter 3 directs to the direction normal to the surface of a model 10. Consequently, influence of the shape of model onto the amount of light to be fed to the laser distance meter 3 is minimized. Furthermore, interference with the model is prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はレーザ光を使用して、モデルを非接触状態でな
らってワークを加工する非接触ならい制御装置に関し、
特にレーザ距離測定装器の回転角を制御するようにした
非接触ならい制御装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a non-contact tracing control device that processes a workpiece by tracing a model in a non-contact state using laser light.
In particular, the present invention relates to a non-contact tracing control device for controlling the rotation angle of a laser distance measuring device.

〔従来の技術〕[Conventional technology]

従来、ならい加工はモデルをトレーサヘッドに設けられ
たスタイラスで接触させてならい、トレーサヘッドから
の信号によって、機械のテーブル等を移動させて、ワー
クを加工するならい制御方式が広く使用されている。
Conventionally, in profiling, a profiling control method has been widely used in which a model is brought into contact with a stylus attached to a tracer head, and a machine table or the like is moved in response to signals from the tracer head to process the workpiece.

一方、レーザ距離測定器のような、レーザ光を使用して
、非接触で距離を測定することが簡単に可能になり、従
来のトレーサヘッドの替わりにし−ザ距離測定器を使用
したならい制御装置が実現可能になってきた。
On the other hand, it is now possible to easily measure distance without contact using a laser beam such as a laser distance measuring device, and it is possible to replace the conventional tracer head with a tracing control device using a laser distance measuring device. has become possible.

この測定原理はレーザ光軸上の測定範囲にある物体上の
反射光を光軸に対して、所定の角度の開口部を持つ受光
部内のポジションセンサ上に像を結ばせ、ポジションセ
ンサの出力電流により基準位置からの光像までの距離を
演算する方式である。
The principle of this measurement is to focus the reflected light from an object within the measurement range on the laser optical axis into an image on a position sensor in the light receiving section, which has an aperture at a predetermined angle with respect to the optical axis. This method calculates the distance from the reference position to the optical image.

第5図にレーザ距離測定器の測定原理を示す。Figure 5 shows the measurement principle of the laser distance measuring device.

図において、3はレーザ距離測定器であり、11はレー
ザ駆動回路であり、12は半導体レーザ発振器であり、
レーザ光を発振出力する。13はレーザ光を絞るための
投光レンズである。10aはモデルの位置であり、10
aが基準点であり、lObが基準点より上であり、10
cが基準点より下である。15は受光レンズであり、レ
ーザ光の反射光を受光して、集光する。集光されたレー
ザ光はポジションセンサ16に投光される。ポジション
センサ16はレーザ光の投光される位置を電気信号に変
換する素子であり、図のように被測定物が基準点にある
ときは、その中心にレーザ光があたり、被測定物が上に
あるときは光位置検出素子16の右下方向へ移動し、逆
の場合は左上方向に移動し、これを電気信号として出力
して、アンプ17a及び17bで増幅し、変換回路18
で距離に比例した出力信号Elとして出力する。
In the figure, 3 is a laser distance measuring device, 11 is a laser drive circuit, 12 is a semiconductor laser oscillator,
Emit laser light. Reference numeral 13 is a projection lens for focusing the laser beam. 10a is the position of the model, 10
a is the reference point, lOb is above the reference point, and 10
c is below the reference point. Reference numeral 15 denotes a light-receiving lens, which receives reflected light of the laser beam and condenses it. The focused laser light is projected onto the position sensor 16. The position sensor 16 is an element that converts the position where the laser beam is projected into an electrical signal. When the object to be measured is at the reference point as shown in the figure, the laser beam hits the center of the object, and the object is at the top. , the optical position detection element 16 moves to the lower right direction, and vice versa, moves to the upper left direction, outputs this as an electrical signal, amplifies it with amplifiers 17a and 17b, and converts it to the conversion circuit 18.
It outputs an output signal El proportional to the distance.

このレーザ距離測定器3をトレーサヘッドとして使用し
、X、Y軸は数値指令によって、連続制御し、Z軸をレ
ーザ距離測定器3からの距離信号によって、Z軸の変位
量とし、この変位量が0になるようにモデル表面に対す
る追跡制御を行う。
This laser distance measuring device 3 is used as a tracer head, the X and Y axes are continuously controlled by numerical commands, and the displacement of the Z axis is determined by the distance signal from the laser distance measuring device 3. Tracking control is performed on the model surface so that the value becomes 0.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、レーザ距離測定器では検出精度を上げるために
は、レーザ光軸と反射光の受光軸とのなす角度をある程
度大きくしなければならず、そのため測定ヘッドの受光
部が張り出し、ならい制御装置のトレーサヘッドとして
使用した場合、レーザ距離測定器とモデルとの干渉が生
じる。
However, in order to improve detection accuracy with a laser distance measuring device, the angle between the laser optical axis and the receiving axis of the reflected light must be increased to a certain extent, which causes the light receiving part of the measuring head to protrude, causing the profiling control device to When used as a tracer head, interference between the laser distance measuring device and the model will occur.

またモデル面の傾斜が急になるか、あるいはモデル面の
向く方向、すなわち法線方向がレーザ光軸と受光軸で構
成される面と不一致な場合、レーザ距離測定器の受光部
に入射する光量が減少し、測定精度が低下し、使用でき
るモデルの形状は限定されたものになる。
In addition, if the slope of the model surface becomes steep or the direction in which the model surface faces, that is, the normal direction, does not match the plane composed of the laser optical axis and the light receiving axis, the amount of light incident on the light receiving part of the laser distance measuring device The measurement accuracy is reduced, and the usable model shapes are limited.

本発明の目的は上記問題点を解決し、レーザ距離測定器
の回転角を制御するようにした非接触ならい制御装置を
提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above problems and provide a non-contact tracing control device that controls the rotation angle of a laser distance measuring device.

〔問題点を解決するための手段〕[Means for solving problems]

本発明では上記の問題点を解決するために、モデルを非
接触状態でならってワークを加工する非接触ならい制御
装置において、 Z軸のモデルからの距離を測定するレーザ距離測定器と
、 前記レーザ距離測定器で受光部に入射するモデル表面か
らのレーザ反射光量を測定する測定手段と、 前記レーザ反射光量が最大になるように前記レーザ距離
測定器の回転角を制御する回転角制御手段と、 Z軸を前記レーザ距離測定器で測定した前記モデルまで
の距離に従ってならい動作を実行するならい制御手段゛
と、 を有することを特徴とする非接触ならい制御装置が、 提供される。
In order to solve the above problems, the present invention provides a non-contact tracing control device that processes a workpiece by tracing a model in a non-contact state, and includes: a laser distance measuring device that measures the distance from the model on the Z axis; Measuring means for measuring the amount of laser reflected light from the model surface that is incident on the light receiving section with a distance measuring device; Rotation angle control means for controlling the rotation angle of the laser distance measuring device so that the amount of laser reflected light is maximized; A non-contact tracing control device is provided, comprising: a tracing control means for performing a tracing operation according to the distance to the model measured on the Z-axis by the laser distance measuring device.

〔作用〕[Effect]

レーザ距離測定器からの光itを測定して、この受光量
が常に最大になるように、レーザ距離測定器の回転角を
制御する。
The light IT from the laser range finder is measured, and the rotation angle of the laser range finder is controlled so that the amount of light received is always at a maximum.

従って、レーザ距離測定器の方向はモデル表面の法線方
向に向き、レーザ距離測定器への光量に対するモデルの
形状による影響は最小限になる。
Therefore, the direction of the laser distance measuring device is oriented in the normal direction of the model surface, and the influence of the shape of the model on the amount of light to the laser distance measuring device is minimized.

また、レーザ距離測定器がモデル表面の法線方向を向く
ために、モデルとの干渉を防止することができる。
Furthermore, since the laser distance measuring device is oriented in the direction normal to the model surface, interference with the model can be prevented.

〔実施例〕〔Example〕

以下、本発明の一実施例を図面の簡単な説明する。 Hereinafter, one embodiment of the present invention will be briefly described with reference to the drawings.

第3図にモデルとレーザ距離測定器の相対的な関係を示
す。図において、IOはモデルであり、3はレーザ距離
測定器であり、レーザ光軸3aと受光軸3bが作る平面
が、モデルlOの表面10dの法線方向になることによ
り、受光量を最大にし、モデル10とレーザ距離測定器
3との干渉を防止する。
Figure 3 shows the relative relationship between the model and the laser distance measuring device. In the figure, IO is a model, and 3 is a laser distance measuring device.The plane created by the laser optical axis 3a and the light receiving axis 3b is in the normal direction of the surface 10d of the model IO, so that the amount of light received can be maximized. , to prevent interference between the model 10 and the laser distance measuring device 3.

第4図に本発明を実施するためのレーザ距離測定器3の
回転動作を示す。図では、トレーサヘッドに回転可能に
設けられたレーザ距離測定器3の回転の状態を示してい
る。ここでは、レーザ距離測定器3はモデル10の左か
らモデル10にアプローチして、Z軸のならいを行い、
右方向に逃げるものとする。図に示すように、レーザ距
離測定器3は常に進行と同時に回転して、モデル10の
表面の法線方向に向くように制御されている。これによ
って、モデル10とレーザ距離測定器3との干渉を防止
し、また距離の測定精度を向上させる。
FIG. 4 shows the rotational operation of the laser distance measuring device 3 for implementing the present invention. The figure shows the state of rotation of the laser distance measuring device 3 rotatably provided on the tracer head. Here, the laser distance measuring device 3 approaches the model 10 from the left side of the model 10, traces the Z axis,
Assume that you run away to the right. As shown in the figure, the laser distance measuring device 3 is controlled so that it always rotates as it advances and faces in the normal direction of the surface of the model 10. This prevents interference between the model 10 and the laser distance measuring device 3 and improves distance measurement accuracy.

第1図に本発明の一実施例の非接触ならい制御装置の構
成図を示す6図において、lはならい制御装置であり、
マイクロコンピュータ構成になっており、マイクロプロ
セッサ、制御プログラムの格納されたROM、各種のデ
ータを記憶するRAM、外部とのインターフェイス回路
等から構成されている。2はトレーサヘッドであり、先
端にレーザ距離測定器3が設けられており、これによっ
てモデル10との距離を測定して、ならい動作を実行す
る。3aはレーザ光のレーザ光軸、3bは受光軸である
。4は回転角制御回路であり、レーザ距離測定器3から
レーザ受光量の信号を受け、この受光量が最大になるよ
うに、θ軸モータ6を制御して、レーザ距離測定器、3
を回転させる。
In FIG. 6 showing a configuration diagram of a non-contact profiling control device according to an embodiment of the present invention in FIG. 1, l is a profiling control device;
It has a microcomputer configuration, and includes a microprocessor, a ROM that stores a control program, a RAM that stores various data, an external interface circuit, and the like. Reference numeral 2 denotes a tracer head, which is provided with a laser distance measuring device 3 at its tip, which measures the distance to the model 10 and executes a tracing operation. 3a is a laser optical axis of the laser beam, and 3b is a light receiving axis. 4 is a rotation angle control circuit which receives a signal of the amount of laser light received from the laser distance measuring device 3, controls the θ-axis motor 6 so that the amount of received light is maximized, and controls the laser distance measuring device, 3.
Rotate.

8zはトレーサヘッド2等を上下運動させるためのZ軸
モータである。8xはテーブル2oを移動させるX軸モ
ータであり、ならい制御装置1によって制御される。
8z is a Z-axis motor for vertically moving the tracer head 2 and the like. 8x is an X-axis motor that moves the table 2o, and is controlled by the profiling control device 1.

第2図に本発明の一実施例の非接触ならい制御装置のブ
ロック図を示す。図において、laはならい制御回路で
あり、第1図のならい制御装置からサーボアンプを除い
たものである。2はトレーサヘッドであり、トレーサヘ
ッド2にはレーザ距離測定器3、回転角制御回路4、θ
軸アンプ5及びθ軸モータ6が設けられている。
FIG. 2 shows a block diagram of a non-contact tracing control device according to an embodiment of the present invention. In the figure, la is a profiling control circuit, which is the same as the profiling control device of FIG. 1 except that the servo amplifier is removed. 2 is a tracer head, and the tracer head 2 includes a laser distance measuring device 3, a rotation angle control circuit 4, and θ.
An axial amplifier 5 and a θ-axis motor 6 are provided.

レーザ距離測定器3はレーザ光を出力し、受光角度によ
って、これからレーザ距離測定器3とモデルlOとの距
離に相当するアナログ電圧Elをならい制御回路1aに
送る。ならい制御回路1aはこのアナログ電圧E2をデ
ィジタル値に変換し、これからレーザ距離測定器3とモ
デル10との距離を計算して、ならい加工を実行する。
The laser distance measuring device 3 outputs a laser beam, and depending on the receiving angle, sends an analog voltage El corresponding to the distance between the laser distance measuring device 3 and the model IO to the tracing control circuit 1a. The profiling control circuit 1a converts this analog voltage E2 into a digital value, calculates the distance between the laser distance measuring device 3 and the model 10 from it, and executes profiling.

さらに、レーザ距離測定器3は受光量を測定して回転角
制御回路4に受光量信号Lrを出力する。
Further, the laser distance measuring device 3 measures the amount of received light and outputs a received light amount signal Lr to the rotation angle control circuit 4.

回転角制御回路4は、この受光量信号Lrが最大になる
ように、レーザ距離測定器3を回転制御するための信号
を出力する。回転角制御回路4の制御はならい回路1a
の管理の下に制御が行われる。
The rotation angle control circuit 4 outputs a signal for controlling the rotation of the laser distance measuring device 3 so that the received light amount signal Lr becomes maximum. The rotation angle control circuit 4 is controlled by the tracing circuit 1a.
Control is carried out under the management of

すなわち、回転角制御回路4はならい制御回路1aにθ
軸モータ6の回転角度情報を送り、ならい制御回路1a
から、回転角度指令を受けて、θ軸モータ6の回転制御
信号を出力する。θ軸アンプはこの回転制御信号を受け
て、θ軸モータ6の回転制御を行い、レーザ距離測定器
3がモータ1゜の表面の法線方向を向くように制御する
That is, the rotation angle control circuit 4 outputs θ to the profile control circuit 1a.
The rotation angle information of the shaft motor 6 is sent to the tracing control circuit 1a.
It receives a rotation angle command from and outputs a rotation control signal for the θ-axis motor 6. The θ-axis amplifier receives this rotation control signal and controls the rotation of the θ-axis motor 6 so that the laser distance measuring device 3 faces the normal direction of the surface of the motor 1°.

7x、7y、7zはそれぞれ各軸のサーボアンプ、8x
、8y、82はそれぞれ各軸のサーボモータ、9x、9
y、9zはそれぞれ各軸の位置検出器である。
7x, 7y, 7z are the servo amplifiers for each axis, 8x
, 8y, 82 are the servo motors of each axis, 9x, 9
y and 9z are position detectors for each axis, respectively.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明では、レーザ距離測定器をモ
デル表面に対する法線方向に向くように制御しているの
で、レーザ距離測定器とモデルとの干渉を防止し、レー
ザ距離測定器の距離測定の精度を向上させ、特殊な形状
のモデルもならうことができる。
As explained above, in the present invention, since the laser distance measurement device is controlled to face in the normal direction to the model surface, interference between the laser distance measurement device and the model is prevented, and distance measurement by the laser distance measurement device is It improves the accuracy of the model and allows models with special shapes to be modeled.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の非接触ならい制御装置の構
成図、 第2図は本発明の一実施例の非接触ならい制御装置のブ
ロック図、 第3図はモデルとレーザ距離測定器の相対的な関係を示
す図、 第4図は本発明を実施するためのレーザ距離測定器の回
転動作を示す図、 第5図はレーザ距離測定器の詳細図である。 l−・−・−−−−一・−・・ならい制御装置la−・
・・−−−一−−ならい制御回路2・−−−−−−・−
・−・トレーサヘッド3−・・−・−・・−・−レーザ
距離測定器3a・・−・・・−・−・レーザ光軸 3b、・・−・−−−−−−一受光軸 4・・−・・−・−−一−−回転角制御回路5・−・−
・・−・−θ軸アンプ 6・・・−・−・−−−−−−−−θ軸モータ8x−・
・〜・・−X軸モータ 8y・−・−・−Y軸モータ 8z−・−・・・・−・Z軸モータ 10−・−・−・・・−・・−モデル 特許出願人 ファナック株式会社 代理人   弁理士  服部毅巖 第1図 第2図
Fig. 1 is a block diagram of a non-contact tracing control device according to an embodiment of the present invention, Fig. 2 is a block diagram of a non-contact tracing control device according to an embodiment of the present invention, and Fig. 3 is a model and a laser distance measuring device. FIG. 4 is a diagram showing the rotational operation of the laser distance measuring device for carrying out the present invention, and FIG. 5 is a detailed diagram of the laser distance measuring device. l-・-・----1・-・Trailing control device la-・
・・−−−1−−Trailing control circuit 2・−−−−−−・−
・ - ・ Tracer head 3- ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Laser distance measuring instrument 3a ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・4・・・・・−・−−1−−Rotation angle control circuit 5・−・−
・・−・−θ axis amplifier 6・・・−・−・−−−−−−−−θ axis motor 8x−・
... Company agent Patent attorney Takeshi Hattori Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)モデルを非接触状態でならってワークを加工する
非接触ならい制御装置において、 Z軸のモデルからの距離を測定するレーザ距離測定器と
、 前記レーザ距離測定器で受光部に入射するモデル表面か
らのレーザ反射光量を測定する測定手段と、 前記レーザ反射光量が最大になるように前記レーザ距離
測定器の回転角を制御する回転角制御手段と、 Z軸を前記レーザ距離測定器で測定した前記モデルまで
の距離に従ってならい動作を実行するならい制御手段と
、 を有することを特徴とする非接触ならい制御装置。
(1) A non-contact tracing control device that processes a workpiece by tracing a model in a non-contact state, comprising: a laser distance measuring device that measures the distance from the model on the Z axis; and a model that is incident on a light receiving section by the laser distance measuring device. measuring means for measuring the amount of laser reflected light from the surface; rotation angle control means for controlling the rotation angle of the laser distance measuring device so that the amount of laser reflected light is maximized; and measuring the Z-axis with the laser distance measuring device. A non-contact tracing control device comprising: tracing control means for performing a tracing operation according to the distance to the model.
JP62267356A 1987-10-23 1987-10-23 Non-contact profile control device Expired - Lifetime JP2594578B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62267356A JP2594578B2 (en) 1987-10-23 1987-10-23 Non-contact profile control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62267356A JP2594578B2 (en) 1987-10-23 1987-10-23 Non-contact profile control device

Publications (2)

Publication Number Publication Date
JPH01109058A true JPH01109058A (en) 1989-04-26
JP2594578B2 JP2594578B2 (en) 1997-03-26

Family

ID=17443682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62267356A Expired - Lifetime JP2594578B2 (en) 1987-10-23 1987-10-23 Non-contact profile control device

Country Status (1)

Country Link
JP (1) JP2594578B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991001849A1 (en) * 1989-07-27 1991-02-21 Fanuc Ltd Noncontact profile control unit
WO1991004833A1 (en) * 1989-10-04 1991-04-18 Fanuc Ltd Non-contact profile control apparatus
WO1992001534A1 (en) * 1990-07-25 1992-02-06 Fanuc Ltd Non-contact copy control device
WO1992004157A1 (en) * 1990-09-07 1992-03-19 Fanuc Ltd Non-contact copy control device
WO1992013677A1 (en) * 1991-02-06 1992-08-20 Fanuc Ltd Device for controlling non-contact digitizing
WO1993002832A1 (en) * 1991-07-26 1993-02-18 Fanuc Ltd Method of non-contact copy control
JP2011112384A (en) * 2009-11-24 2011-06-09 Sumco Corp Method of measuring shape of semiconductor wafer and shape measuring instrument used therefor
WO2014041990A1 (en) * 2012-09-11 2014-03-20 シャープ株式会社 Film thickness measuring device and film thickness measuring method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102044851B1 (en) * 2018-06-29 2019-11-13 대한민국(농촌진흥청장) Teat cup Gripper attached Automatic Detect device of dairy cow teat

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5221234A (en) * 1975-08-12 1977-02-17 Yoshitomi Pharmaceutical Antirust agent
JPS6038603A (en) * 1983-08-10 1985-02-28 Mitsubishi Heavy Ind Ltd Spatial coordinate measuring apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5221234A (en) * 1975-08-12 1977-02-17 Yoshitomi Pharmaceutical Antirust agent
JPS6038603A (en) * 1983-08-10 1985-02-28 Mitsubishi Heavy Ind Ltd Spatial coordinate measuring apparatus

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991001849A1 (en) * 1989-07-27 1991-02-21 Fanuc Ltd Noncontact profile control unit
JPH0360956A (en) * 1989-07-27 1991-03-15 Fanuc Ltd Non-contact profile control device
WO1991004833A1 (en) * 1989-10-04 1991-04-18 Fanuc Ltd Non-contact profile control apparatus
WO1992001534A1 (en) * 1990-07-25 1992-02-06 Fanuc Ltd Non-contact copy control device
JPH0482658A (en) * 1990-07-25 1992-03-16 Fanuc Ltd Non-contact profile control unit
US5345687A (en) * 1990-07-25 1994-09-13 Fanuc, Ltd. Noncontact tracing control device
JPH04115854A (en) * 1990-09-07 1992-04-16 Fanuc Ltd Noncontact profile control unit
US5274563A (en) * 1990-09-07 1993-12-28 Fanuc Ltd. Noncontact tracing control system
WO1992004157A1 (en) * 1990-09-07 1992-03-19 Fanuc Ltd Non-contact copy control device
WO1992013677A1 (en) * 1991-02-06 1992-08-20 Fanuc Ltd Device for controlling non-contact digitizing
US5343402A (en) * 1991-02-06 1994-08-30 Fanuc Ltd. Non-contact digitizing control unit
WO1993002832A1 (en) * 1991-07-26 1993-02-18 Fanuc Ltd Method of non-contact copy control
US5426356A (en) * 1991-07-26 1995-06-20 Fanuc Ltd. Non-contact profile control method
JP2011112384A (en) * 2009-11-24 2011-06-09 Sumco Corp Method of measuring shape of semiconductor wafer and shape measuring instrument used therefor
WO2014041990A1 (en) * 2012-09-11 2014-03-20 シャープ株式会社 Film thickness measuring device and film thickness measuring method

Also Published As

Publication number Publication date
JP2594578B2 (en) 1997-03-26

Similar Documents

Publication Publication Date Title
US5243265A (en) Non-contact tracing control apparatus
JP2810709B2 (en) Non-contact profile control device
Shirinzadeh Laser‐interferometry‐based tracking for dynamic measurements
JP3192992B2 (en) Method and system for measuring angle indexing accuracy of machine tool
JPH01109058A (en) Contactless copy controller
US5345687A (en) Noncontact tracing control device
JPH03121754A (en) Noncontact tracing control device
JPH04176543A (en) Control unit for digitizing
US4949024A (en) Contactless profiling method
JPH04189452A (en) Digitizing control device
JPH0146276B2 (en)
JPH04115854A (en) Noncontact profile control unit
JPH10277889A (en) Cutter tip position measuring device
JPH03140814A (en) Three-dimensional rectangular coordinate type high-speed precision measuring instrument
JPH0621767B2 (en) Curved surface shape measuring method and apparatus
JP2679236B2 (en) Non-contact type shape measuring device
JPH0146275B2 (en)
JPH0158020B2 (en)
JPS6219703A (en) Non-contacting shape measuring method
JPH059223B2 (en)
JPH0637444Y2 (en) Machined surface vertical direction detector
JPH09243344A (en) Three-dimensional position measuring device
JP2581633Y2 (en) Burr measuring device
JP2802117B2 (en) Processing machine with teaching function
JPS6067807A (en) Controlling method of profiling action in non-contacting pattern measurement