JPH0474867A - Production of thin aluminum nitride film - Google Patents

Production of thin aluminum nitride film

Info

Publication number
JPH0474867A
JPH0474867A JP2189062A JP18906290A JPH0474867A JP H0474867 A JPH0474867 A JP H0474867A JP 2189062 A JP2189062 A JP 2189062A JP 18906290 A JP18906290 A JP 18906290A JP H0474867 A JPH0474867 A JP H0474867A
Authority
JP
Japan
Prior art keywords
thin film
substrate
aluminum nitride
nitride thin
energy level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2189062A
Other languages
Japanese (ja)
Inventor
Akira Ueno
明 上野
Tsuneo Mitsuyu
常男 三露
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2189062A priority Critical patent/JPH0474867A/en
Publication of JPH0474867A publication Critical patent/JPH0474867A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

PURPOSE:To form a uniform thin AlN film excellent in flatness characteristic on a substrate by using a specific organic gas as a gaseous raw material and irradiating a substrate with light of specific wavelength at the time of forming a thin AlN film on a substrate by means of organometallic vapor phase epitaxial growth. CONSTITUTION:A substrate 3 composed of a material having a lattice constant close to that of AlN, such as AlAs, Si, and SiC, is attached to a holder 4 in a vacuum vessel 1, and the inside of the vessel 1 is evacuated by means of a vacuum pump 2. The substrate 3 is heated up to 500-750 deg.C by means of a heater 5, and the substrate 3 is irradiated with light 10a having a wavelength shorter than the wavelength equivalent to the width of forbidden band of the thin AlN film by means of an Xe lamp 9, etc., via a window 14. Simultaneously, as gaseous raw material, alkyl Al gas 6a, such as trimethyl Al, and alkylamine gas 6b, such as dimethylamine, are supplied together with H2 gas 6c into the vacuum vessel 1 through respective nozzles 8a-8c. By this method, the AlN layer in a thin film state having uniform composition and excellent in flatness characteristic of surface can stably be formed on the substrate 3.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、低温で高品質の窒化アルミニウム薄膜を製造
する窒化アルミニウム薄膜の製造方法に関す4 従来の技術 窒化アルミニウム(AIN)CL  圧電性を有する絶
縁性の物質であり、SAWデバイス等への応用が考えら
れる。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing an aluminum nitride thin film for producing high-quality aluminum nitride thin films at low temperatures. It is a chemical substance, and its application to SAW devices etc. can be considered.

従!  AIN薄膜の製造法として有機金属気相成長(
MOCVD)法が知られていも これはトリメチルアル
ミニウム(A I  (CH3) 3)とアンモニア(
NHs )を加熱した基板(通家 サファイア(α−A
le’s))表面上で分脈 反応させ、AIN薄膜を製
造しようとするものである。
Follow! Metal-organic vapor phase epitaxy (
Although the MOCVD (MOCVD) method is known, it uses trimethylaluminum (A I (CH3) 3) and ammonia (
NHs) heated substrate (Tsuke sapphire (α-A
The aim is to produce an AIN thin film by conducting a reaction on the surface.

発明が解決しようとする課題 このような従来の窒化アルミニウム薄膜の製造方法で+
1NH3の分解には高温を要するた敦基板温度を100
0℃以上にする必要があり、均一で平坦性のよいAIN
薄膜を形成できず、デバイスへの応用が困難であった 本発明は上記課題を解決するもので、SAWデバイスな
どへの応用に有効な均一でかつ平坦性のよい窒化アルミ
ニウム薄膜を提供することを目的としていも 課題を解決するための手段 本発明は上記目的を達成するために 窒化アルミニウム
薄膜の構成元素を含む原料気体分子を窒化アルミニウム
薄膜を格子定数の近い基板表面に供給しつ2 光をその
基板表面に照射して窒化アルミニウム薄膜を製造する方
法において、前記光の波長が前記窒化アルミニウム薄膜
の禁制帯幅に相当する波長よりも短い波長を含むものを
用いるとともに 原料気体分子の吸着状態における酸化
エネルギー準位および還元エネルギー準位が窒化アルミ
ニウム薄膜の表面における伝導帯エネルギー単位と価電
子帯エネルギー準位の間にある原料気体分子を用いる構
成よりなるものである。
Problems to be solved by the invention:
The decomposition of 1NH3 required a high temperature, so Atsushi set the substrate temperature to 100%.
The temperature must be above 0℃, and the AIN must be uniform and flat.
The present invention solves the above-mentioned problems, and aims to provide a uniform and flat aluminum nitride thin film that is effective for application to SAW devices and the like. In order to achieve the above object, the present invention supplies raw material gas molecules containing the constituent elements of an aluminum nitride thin film to the surface of a substrate whose lattice constant is similar to that of the aluminum nitride thin film, and 2. In the method of manufacturing an aluminum nitride thin film by irradiating the substrate surface with light, the wavelength of the light is shorter than the wavelength corresponding to the forbidden band width of the aluminum nitride thin film, and oxidation is performed in the adsorbed state of raw material gas molecules. The structure uses source gas molecules whose energy level and reduction energy level are between the conduction band energy unit and the valence band energy level on the surface of the aluminum nitride thin film.

作用 基板に吸着状態の還元エネルギー準位と酸化エネルギー
準位とが、窒化アルミニウム(以後AINと略す)の表
面における伝導帯エネルギー準位と価電子帯エネルギー
準位との間にある分子を原料として用t、k  さらに
AINの禁制帯幅に相当する波長よりも短い波長を含む
光を基板に照射することによって、AIN中で光励起さ
れた電子と正孔とを生じさせ、電子が吸着状態にあるア
ルミニウム原料を還元し 正孔が吸着状態にある窒素原
料を酸化して、 この両者により分解及び反応を促逸す
も 実施例 本発明のAIN薄膜のアルミニウム原料としてトリメチ
ルアルミニウム(A I  (CHs) 8)、窒素原
料としてジメチルアミン((CHs)2NH)を例にと
り、詳細に説明すも A I  (CHs) s及び(CHI)!NHG& 
 それぞれ吸着状態における還元エネルギー準位及び酸
化エネルギー準位が、、AINの表面における伝導帯エ
ネルギー単位と価電子帯エネルギー準位との間にあム さらにAINの禁制帯幅に相当する波長よりも短い波長
を含む光を基板に照射する光として用いることによって
、AIN中に光励起された電子と正孔とを生じさせ、こ
の電子が吸着状態のアルミニウム原料であるA I  
(CH,) *を還元し また正孔が吸着状態の窒素原
料である(CHs) 2N Hを酸化して、分解及び反
応を促進するという作用に基づくものであム すなわち第3図に示したよう番へ  吸着したAl(C
Hs)s分子の還元エネルギー準位17及び吸着した(
CHs)pNH分子の酸化エネルギー準位20力<、A
IN表面における伝導帯エネルギー準位18と価電子帯
エネルギー準位19との間にあるた数 光照射によって
AIN表面に励起された電子15は容易に吸着分子に移
動して分解(即ち還元)を促進する。−力先励起された
正孔16も同様に容易に吸着(CHs) 2NH分子に
移動して分解(即ち酸化)を促進する。
Using molecules whose reduction energy level and oxidation energy level adsorbed on the working substrate are between the conduction band energy level and valence band energy level on the surface of aluminum nitride (hereinafter abbreviated as AIN) as raw materials. Furthermore, by irradiating the substrate with light containing a wavelength shorter than the wavelength corresponding to the forbidden band width of AIN, photoexcited electrons and holes are generated in AIN, and the electrons are in an adsorbed state. Trimethylaluminum (A I (CHs) 8) was used as the aluminum raw material for the AIN thin film of the present invention by reducing the aluminum raw material and oxidizing the nitrogen raw material in which holes are adsorbed. , using dimethylamine ((CHs)2NH) as an example of nitrogen raw material, A I (CHs) s and (CHI)! NHG&
The reduction energy level and oxidation energy level in the adsorbed state are between the conduction band energy unit and the valence band energy level at the surface of AIN, respectively, and are shorter than the wavelength corresponding to the forbidden band width of AIN. By using light containing wavelengths as light to irradiate the substrate, photoexcited electrons and holes are generated in AIN, and these electrons are absorbed into the adsorbed aluminum raw material AI.
This is based on the action of reducing (CH,) * and oxidizing (CHs) 2N H, which is a nitrogen source in an adsorbed state, to promote decomposition and reaction, as shown in Figure 3. Next step: Adsorbed Al(C)
Hs) reduction energy level 17 of the s molecule and the adsorbed (
CHs) pNH molecule oxidation energy level 20<,A
The number between the conduction band energy level 18 and the valence band energy level 19 on the IN surface. Electrons 15 excited on the AIN surface by light irradiation easily move to adsorbed molecules and undergo decomposition (i.e. reduction). Facilitate. - The excited holes 16 also easily move to adsorbed (CHs) 2NH molecules to promote decomposition (ie, oxidation).

これらの作用により従来のMOCVD法より低温で、均
一かつ極めて平坦性のよいのAIN薄膜が製造できる。
Due to these effects, a uniform and extremely flat AIN thin film can be produced at a lower temperature than the conventional MOCVD method.

以下、本発明の一実施例について第1図第2図および第
3図を参照して説明する。
Hereinafter, one embodiment of the present invention will be described with reference to FIG. 1, FIG. 2, and FIG. 3.

第1図は本発明の製造方法の一実施例で用いられる光C
VD装置の構造を示す概略構成図である。
Figure 1 shows the light C used in one embodiment of the manufacturing method of the present invention.
1 is a schematic configuration diagram showing the structure of a VD device.

第1図において、 1は真空容器 2は真空ポンプ、 
3はAIN薄膜と格子定数の近い基板、4は基板ホルタ
′、 5はヒー久 6aはAI(CHa)3ガ入 6b
は(CHs) 2N Hガ入 6cはH2ガ人 ?a、
  7b、  7cはマスフローコントローラ、8a、
  8b、  8cはノズノk 9はXeランプ、 1
0a、  10b、  10cはXeランプ光 11は
コリメー久 12はハーフミラ−13はパワーメータ 
14は窓であも 実際の薄膜成長は次のような手順で行なう。
In Figure 1, 1 is a vacuum container, 2 is a vacuum pump,
3 is a substrate with a lattice constant similar to that of the AIN thin film, 4 is a substrate holter', 5 is a heater 6a is a 3-gauge AI (CHa) 6b
(CHs) 2N H gas included 6c is H2 gas? a,
7b, 7c are mass flow controllers, 8a,
8b, 8c are nozzle k, 9 is Xe lamp, 1
0a, 10b, 10c are Xe lamp lights 11 is a collimator 12 is a half mirror 13 is a power meter
Although 14 is a window, actual thin film growth is performed in the following procedure.

まず表面を清浄にした基板3を基板ホルダ4に装着すム
 この場合基板3は例えばα−AlzOsとすム 次に
真空容器1を真空ポンプ2により高真空に排気す4 次に基板3をヒータ5により結晶成長に適切な温度にす
ム この場合には例えば650℃とする。
First, the substrate 3 whose surface has been cleaned is mounted on the substrate holder 4. In this case, the substrate 3 is made of α-AlzOs, for example. Next, the vacuum container 1 is evacuated to a high vacuum using the vacuum pump 2. Next, the substrate 3 is placed in a heater. 5, the temperature is set to an appropriate temperature for crystal growth. In this case, the temperature is set to, for example, 650°C.

次にXeランプ9を点灯する。Xeランプ光10aはコ
リメータ11により平行光にされ その後、ハーフミラ
−12により同強度の二つの光lOb、10cとなり、
光10bは窓14を通って基板3に照射される。光10
cの強度をパワーメータ13により測定することにより
基板3に照射される光10bの強度を知る。光10bの
強度をXeランプ9を調節することにより、薄膜成長に
適当な強度にすも この場合例えば500mW/Cm’
 とすム 次に窒化アルミニウム薄膜の構成元素を含む原料気体分
子としてA I  (CHs) sガス6aおよび(C
H=)2NHガス6bの流量を、マスフローコントロー
ラ7a、7bにより適当な流量比になるよう調節し ノ
ズル8a、8bにより基板3表面に供給すム また 同
時にノズル8CよりH2ガス6Cを真空容器l内に導入
すム この場合の流量は 例えばA l  (CHa)
 sガス6aが0.5Sccrrh  (CH3)2N
Hガス6bが50scc瓜H2ガス6cが500sec
mとすム 用いたXeランプ光の分光分布図は第2図に示すとおり
であり、AINの禁制帯幅(約3.8eV)に相当する
波長(約326nm)よりも短い波長の光を含んでいる
た敢 第3図に示すようにAIN中に吸収された光は電
子15及び正孔16を励起し 電子15は吸着状態にお
ける還元エネルギー準位17カ<、AIN表面における
伝導帯エネルギー準位18と価電子帯エネルギー準位1
9との間にあるAI  (CHs)3ガス6a分子を、
また正孔16は吸着状態における酸化エネルギー準位2
0力<、AIN表面における伝導帯エネルギー準位18
と価電子帯エネルギー準位19との間にある(CH−)
2NHガス6b分子をそれぞれ還元酸化し 分解・反応
を促進すム 以上のような方法で製造したAIN薄膜(表 従来のM
OCVD法に比べて数百℃以上も低い650℃という基
板温度で製造できたた数 均一かつ極めて平坦性のよい
単結晶薄膜であっちなお上述の実施例で!;L  A 
l  (CHs) sガス6aおよび(CHs)eNH
ガス6bを同時に基板3表面に供給した力交 これらを
交互に供給し その流量と供給時皿 さらには光10a
の強度等を制御することによりA1層とN層が1原子層
づつ並んだ原子層成長も可能であっtう なお本実施例では 原料気体分子として、アルキルアル
ミニウムであるトリメチルアルミニウム(A I  (
CHa) s)ガス6aについて述べたが、アルキルア
ルミニウムとしてはトリメチルアルミニウを用いること
もでき、 また原料気体分子として、アルキルアミンで
あるジメチルアミン((CHs)sNH)ガス6bにつ
いて述べた力丈 アルキルアミンとしてはメチルアミン
、エチルアミン。
Next, the Xe lamp 9 is turned on. The Xe lamp light 10a is made into parallel light by a collimator 11, and then turned into two lights lOb and 10c with the same intensity by a half mirror 12.
The light 10b passes through the window 14 and is irradiated onto the substrate 3. light 10
By measuring the intensity of light 10b with the power meter 13, the intensity of the light 10b irradiated onto the substrate 3 can be determined. By adjusting the intensity of the light 10b using the Xe lamp 9, the intensity can be adjusted to an appropriate intensity for thin film growth. In this case, for example, 500 mW/Cm'
Next, A I (CHs) s gas 6a and (C
The flow rate of the H=)2NH gas 6b is adjusted to an appropriate flow rate ratio using the mass flow controllers 7a and 7b, and the nozzles 8a and 8b supply the H2 gas 6C to the surface of the substrate 3. At the same time, the H2 gas 6C is supplied from the nozzle 8C into the vacuum vessel l. In this case, the flow rate is, for example, A l (CHa)
s gas 6a is 0.5Sccrrh (CH3)2N
H gas 6b is 50scc, H2 gas 6c is 500sec
The spectral distribution diagram of the Xe lamp light using m and Sum is shown in Figure 2, and it does not include light with a wavelength shorter than the wavelength (approximately 326 nm) corresponding to the forbidden band width of AIN (approximately 3.8 eV). As shown in Figure 3, the light absorbed in AIN excites electrons 15 and holes 16, and electrons 15 reach the reduction energy level 17 in the adsorbed state, and the conduction band energy level at the AIN surface. 18 and valence band energy level 1
The AI (CHs)3 gas 6a molecule between 9 and
In addition, the hole 16 has an oxidation energy level of 2 in the adsorbed state.
0 force <, conduction band energy level 18 on the AIN surface
and the valence band energy level 19 (CH-)
The AIN thin film produced by the method described above reduces and oxidizes each 2NH gas 6b molecule to promote decomposition and reaction (see table)
In the above example, we were able to manufacture a single crystal thin film with a uniform and extremely flat surface at a substrate temperature of 650°C, which is several hundred degrees Celsius lower than that of the OCVD method! ;LA
l (CHs)s gas 6a and (CHs)eNH
A force exchange in which gas 6b is simultaneously supplied to the surface of the substrate 3. These are supplied alternately, and the flow rate and supply time are changed to the plate and the light 10a.
By controlling the strength, etc., it is possible to grow atomic layers in which the A1 layer and the N layer are arranged one atomic layer at a time.In addition, in this example, trimethylaluminum (A I
CHa) s) Although gas 6a has been described, trimethylaluminum can also be used as the alkyl aluminum, and as the raw material gas molecule, the alkyl amine dimethylamine ((CHs)sNH) gas 6b, which is an alkyl amine, has been described. Examples include methylamine and ethylamine.

ジエチルアミン、 およびターシャリ−ブチルアミンの
うちの一つを用いることもできも また上述の実施例では基板としてα−AI20sを用い
た力丈 窒化アルミニウム薄膜と格子定数の近い基板例
えばAlAs、  Si、  5iCI、  他の基板
を用いてもよ(l さらに 光源はXeランプに限らず、光の波長がAIN
の禁制帯幅に相当する波長よりも短い波長を含むもので
あれば同様の効果が得られる。
One of diethylamine, and tertiary-butylamine can also be used.Also, in the above example, α-AI20s was used as the substrate.A substrate with a lattice constant similar to that of the aluminum nitride thin film, such as AlAs, Si, 5iCI, etc. (L) Furthermore, the light source is not limited to a Xe lamp, and the wavelength of light is
A similar effect can be obtained if the wavelength includes a wavelength shorter than the wavelength corresponding to the forbidden band width.

また 原料気体分子は上述の例に限らず、吸着状態にお
ける酸化エネルギー準位および還元エネルギー単位力<
、AIN表面における伝導帯エネルギー準位と価電子帯
エネルギー準位との間にある分子であれば同様の効果が
得られる。
In addition, the raw material gas molecules are not limited to the above examples, but the oxidation energy level and reduction energy unit power <
, a similar effect can be obtained if the molecule is between the conduction band energy level and the valence band energy level on the AIN surface.

更に上述の実施例では原料気体分子以外にH2ガスを導
入した力丈 必ずしも必要ではなし′1oシかし この
H2には分解によって生じたアルキル基等を炭化水素化
することによって膜中に炭素が取り込まれるのを防ぐ等
の効果がある。
Furthermore, in the above embodiment, in addition to the raw material gas molecules, H2 gas was introduced. However, this H2 contains carbon in the film by converting alkyl groups generated by decomposition into hydrocarbons. It has the effect of preventing it from being taken in.

また 薄膜製造中の基板温度41500℃以上750℃
未満が好適であム 500℃未満では良好な結晶性の膜
が得られず、また750℃を超える温度では平坦性が徐
々に悪くなる。
Also, the substrate temperature during thin film manufacturing is 41500℃ or higher and 750℃.
If the temperature is less than 500°C, a film with good crystallinity cannot be obtained, and if the temperature exceeds 750°C, the flatness gradually deteriorates.

発明の効果 以上の実施例から明らかなように本発明によれば 光の
波長が窒化アルミニウム薄膜の禁制帯幅に相当する波長
よりも短い波長を含む光を用いるととも番ミ  原料気
体分子の吸着状態における酸化エネルギー準位および還
元エネルギー準位力士 窒化アルミニウム薄膜の表面に
おける伝導帯エネルギー準位と価電子帯エネルギー準位
との間にある原料気体分子を用いる構成によるので、 
SAWデバイスなどへの応用に極めて有用な均一かつ平
坦性のよい窒化アルミニウム薄膜を提供できる。
Effects of the Invention As is clear from the above embodiments, according to the present invention, by using light having a wavelength shorter than the wavelength corresponding to the forbidden band width of the aluminum nitride thin film, it is possible to adsorb raw material gas molecules. The oxidation energy level and reduction energy level in the state are based on the configuration using source gas molecules that are between the conduction band energy level and the valence band energy level on the surface of the aluminum nitride thin film.
It is possible to provide a uniform and flat aluminum nitride thin film that is extremely useful for applications such as SAW devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の窒化アルミニウム薄膜の製
造方法を実施するために使用する装置の概略構成医 第
2図は本発明による製造方法に用いられるXeランプの
分光分布医 第3図はAIN表面のエネルギー準位と吸
着状態の原料気体分子の酸化または還元エネルギー準位
との関係を示す模式図である。 3・・・窒化アルミニウム薄膜と格子定数の近い基板、
 6a・ ・Al  (CHs)sガス(原料気体分子
)、 6b・・・ (CHa)2NHガス(原料気体分
子)、 10a、  10b、  l0c−Xeランプ
光 代理人の氏名 弁理士 粟野重孝 はか1名3 °−瞥
イヒフルミ=り、ム、傳S員乙Mド子足1ダの近い基板
da−^1 (tHl)z ly”ス(IF f’r気
イ本分JθAb −(tHs)z NHz−x  (月
−ftツ”tn9”;b)lθa、 10b、 106
−Xeランプ光!3  図 第 図
FIG. 1 is a schematic diagram of the equipment used to carry out the method for manufacturing an aluminum nitride thin film according to an embodiment of the present invention. FIG. 2 is a diagram showing the spectral distribution of a Xe lamp used in the manufacturing method according to the present invention. is a schematic diagram showing the relationship between the energy level of the AIN surface and the oxidation or reduction energy level of the raw material gas molecules in the adsorbed state. 3... Substrate with a lattice constant similar to that of the aluminum nitride thin film,
6a... Al (CHs)s gas (raw material gas molecules), 6b... (CHa)2NH gas (raw material gas molecules), 10a, 10b, 10c-Xe lamp light agent's name Patent attorney Shigetaka Awano Haka 1 Name 3 °-view Ihifurumi = ri, mu, Den S member B M de child foot 1 da nearby board da-^1 (tHl) NHz-x (Mon-fttsu"tn9";b) lθa, 10b, 106
-Xe lamp light! 3 Figure Figure

Claims (4)

【特許請求の範囲】[Claims] (1)窒化アルミニウム薄膜の構成元素を含む原料気体
分子を、その窒化アルミニウム薄膜と格子定数の近い基
板表面に供給しつつ、光を前記基板表面に照射して窒化
アルミニウム薄膜を製造する方法において、前記光の波
長が前記窒化アルミニウム薄膜の禁制帯幅に相当する波
長よりも短い波長を含む光を用いるとともに、前記原料
気体分子の吸着状態における酸化エネルギー準位と還元
エネルギー準位がともに前記窒化アルミニウム薄膜の表
面における伝導帯エネルギー準位と価電子帯エネルギー
準位の間にある原料気体分子を用いることを特徴とする
窒化アルミニウム薄膜の製造方法。
(1) In a method of manufacturing an aluminum nitride thin film by supplying raw material gas molecules containing the constituent elements of the aluminum nitride thin film to the substrate surface whose lattice constant is similar to that of the aluminum nitride thin film, and irradiating the substrate surface with light, The wavelength of the light is shorter than the wavelength corresponding to the forbidden band width of the aluminum nitride thin film, and the oxidation energy level and the reduction energy level of the raw material gas molecules in the adsorbed state are both the aluminum nitride thin film. A method for producing an aluminum nitride thin film, characterized by using raw material gas molecules located between the conduction band energy level and the valence band energy level on the surface of the thin film.
(2)原料気体分子が、アルキルアルミニウムとアルキ
ルアミンであることを特徴とする、請求項1記載の窒化
アルミニウム薄膜の製造方法。
(2) The method for producing an aluminum nitride thin film according to claim 1, wherein the raw material gas molecules are an alkyl aluminum and an alkyl amine.
(3)アルキルアルミニウムとしてトリメチルアルミニ
ウムまたはトリエチルアルミニウムの何れかを用い、ア
ルキルアミンとしてメチルアミン、ジメチルアミン、エ
チルアミン、ジエチルアミン、ターシャリーブチルアミ
ンのうちの一つを用いることを特徴とする、請求項2記
載の窒化アルミニウム薄膜の製造方法。
(3) The aluminum alkyl is either trimethylaluminum or triethylaluminum, and the alkylamine is one of methylamine, dimethylamine, ethylamine, diethylamine, and tert-butylamine. A method for producing an aluminum nitride thin film.
(4)窒化アルミニウム薄膜と格子定数の近い基板の温
度を、500℃〜750℃の範囲に設定したことを特徴
とする、請求項1記載の窒化アルミニウム薄膜の製造方
法。
(4) The method for producing an aluminum nitride thin film according to claim 1, wherein the temperature of the substrate having a lattice constant similar to that of the aluminum nitride thin film is set in a range of 500°C to 750°C.
JP2189062A 1990-07-16 1990-07-16 Production of thin aluminum nitride film Pending JPH0474867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2189062A JPH0474867A (en) 1990-07-16 1990-07-16 Production of thin aluminum nitride film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2189062A JPH0474867A (en) 1990-07-16 1990-07-16 Production of thin aluminum nitride film

Publications (1)

Publication Number Publication Date
JPH0474867A true JPH0474867A (en) 1992-03-10

Family

ID=16234659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2189062A Pending JPH0474867A (en) 1990-07-16 1990-07-16 Production of thin aluminum nitride film

Country Status (1)

Country Link
JP (1) JPH0474867A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08130439A (en) * 1994-11-01 1996-05-21 Agency Of Ind Science & Technol High-speed surface acoustic wave element
JP2002237737A (en) * 2000-12-05 2002-08-23 Ngk Insulators Ltd Substrate for surface acoustic wave device and method for manufacturing the substrate and surface acoustic wave device using the substrate
US6742251B1 (en) 1997-03-18 2004-06-01 Yazaki Corporation Method of crimping a terminal onto an electrical wire equipped with a water-proof plug using a positioning means

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08130439A (en) * 1994-11-01 1996-05-21 Agency Of Ind Science & Technol High-speed surface acoustic wave element
US6742251B1 (en) 1997-03-18 2004-06-01 Yazaki Corporation Method of crimping a terminal onto an electrical wire equipped with a water-proof plug using a positioning means
JP2002237737A (en) * 2000-12-05 2002-08-23 Ngk Insulators Ltd Substrate for surface acoustic wave device and method for manufacturing the substrate and surface acoustic wave device using the substrate
JP4502553B2 (en) * 2000-12-05 2010-07-14 日本碍子株式会社 Method for manufacturing substrate for surface acoustic wave device

Similar Documents

Publication Publication Date Title
JP3598381B2 (en) General formula; sp3-bonded boron nitride represented by BN, having a hexagonal 5H-type or 6H-type polymorphic structure, emitting light in the ultraviolet region, a method for producing the same, and a functional material using the same
Ozeki Atomic layer epitaxy of III–V compounds using metalorganic and hydride sources
JPH0474867A (en) Production of thin aluminum nitride film
JPS6134923A (en) Growing device of semiconductor crystal
JPH08172055A (en) Method and equipment for growing nitride semiconductor crystal
JPS63137174A (en) Device for forming functional deposited film by photochemical vapor growth method
JPH03274275A (en) Device for forming thin film utilizing organometallic gas
JPH02208925A (en) Formation of semiconductor film
JP3163267B2 (en) Vapor growth method
JP2821557B2 (en) Method for growing compound semiconductor single crystal thin film
JPH04207020A (en) Device and method for manufacturing semiconductor
JPH0431391A (en) Epitaxial growth
JPH0442891A (en) Production of semiconductor thin film
JPH04170397A (en) Production of gallium nitride thin film
JPS63312978A (en) Thin film forming device
JPS61134013A (en) Compound semiconductor crystal growth method
JPH0535719B2 (en)
JPS61247686A (en) Preparation of semiconductor single crystal
JPS63188932A (en) Method for vapor growth of gallium nitride compound semiconductor
TW202336265A (en) Chemical vapor deposition system and method
JPH04170398A (en) Production of gallium nitride thin film
JPH03170395A (en) Method for growing thin film
JPH01100093A (en) Production of diamond thin film
JPS62138390A (en) Molecular beam epitaxy
JPS63478A (en) Formation of thin film