JPS61134013A - Compound semiconductor crystal growth method - Google Patents

Compound semiconductor crystal growth method

Info

Publication number
JPS61134013A
JPS61134013A JP25622684A JP25622684A JPS61134013A JP S61134013 A JPS61134013 A JP S61134013A JP 25622684 A JP25622684 A JP 25622684A JP 25622684 A JP25622684 A JP 25622684A JP S61134013 A JPS61134013 A JP S61134013A
Authority
JP
Japan
Prior art keywords
gas
rate
crystal
substrate
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25622684A
Other languages
Japanese (ja)
Inventor
Katsunobu Maeda
克宣 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP25622684A priority Critical patent/JPS61134013A/en
Publication of JPS61134013A publication Critical patent/JPS61134013A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To bring Ga atoms and Al atoms depositing on a substrate to the state in which both atoms abound in reactivity, and to enable growth at a low temperature by electron-exciting a raw material gas by beams proper to molecular absorption. CONSTITUTION:H2 gas as a carrier gas is fed previously into a reaction pipe 1 at the rate of 10l/min from a third introducing port 2c, a susceptor 3 on which a substrate 4 is placed is heated and held at 470-750 deg.C, a temperature is stabilized and a first light source 8a and a second light source 8b are started, and each laser beam is induced to first and second introducing ports 2a, 2b through mirrors 9a, 9b. AsH3 at the rate of 4.6X10<-3>mol/min is added into H2 gas at the rate of 10l/min beforehand fed from the third introducing port 2c, and induced into the reaction pipe 1. TMG at the rate of 0.7X10<-4>mol/min and H2 gas for carriers at the rate of 0.5l/min are fed from the first introducing port 2a, TMA at the rate of 0.2X10<-4>mol/min and H2 gas for carriers at the rate of 1l/min are supplied from the second introducing port 2b, and a crystal is grown. Accordingly, a Ga0.7Al0.3As crystal obtained has the large mobility of the crystal (maximum 3,220cm<2>/V.S) and holds high mobility up to a substrate temperature of approximately 580 deg.C.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は化合物半導体結晶成長法に関するものであり、
より詳細に述べるならば光アシスト反応による化合物半
導体結晶の気相成長法に関する。
[Detailed description of the invention] (a) Industrial application field The present invention relates to a compound semiconductor crystal growth method,
More specifically, the present invention relates to a method for vapor phase growth of compound semiconductor crystals using photo-assisted reactions.

(ロ)従来の技術 化合物半導体例えば砒化ガリウム(GaAs )の気相
成長法の一つとして、有機ガリウムの一種のトリメチル
ガリウム(TMG)と砒素の水素化物のアルシン(A3
11@)ガスの熱分解を利用して結晶成長を行う方法、
いわゆるMetal Oganic Chemical
 VaporDepos it 1on(NO−CVD
)法がある0通常、キャリアガスとして水素(H2)ガ
スを用いている。
(b) Conventional technology One of the vapor phase growth methods for compound semiconductors, such as gallium arsenide (GaAs), involves the use of trimethylgallium (TMG), a type of organic gallium, and arsine (A3), a hydride of arsenic.
11@) Method of crystal growth using thermal decomposition of gas,
So-called Metal Organic Chemical
VaporDepos it 1on (NO-CVD
) method 0Usually, hydrogen (H2) gas is used as the carrier gas.

この様な気相成長法は第3図に示す縦型の気相成長装置
を用いて実施される。このお打ちは石英製反応管〈1)
の上端にTMGとA3H3ガスとからなる原料ガスをキ
ャリアガスと共に導入するガス導入管(2)が設けられ
、反応管(1)内には角錘状のサセプタ(3)上に載置
された結晶基板(4)が設置され、さらにサセプタ(3
)をモータ(5)にて回転きれる回転軸(6)で回転さ
せて成長膜の厚みむらが生じないようにしている。また
、反応管く1)の結晶基板(4)の設置きれた外周には
コイル(7)が付設きれこのフィルに高周波電力が供給
きれるように構成されている。この加熱時、結晶基板(
4)のみを加熱しガス導入管(2)から供給する原料ガ
スが結晶基板に達する前に熱分解するのを防止し結晶基
板上で熱分解を効率良く行わせるために、反応管(1)
の周囲を2重構造にして冷却用媒体(冷却水)を冷却用
媒体導入口(la)から導入しこの2重構造部分の水路
(1b)を巡回させ冷却用媒体排出口(1c)から導出
させるようにしている。 (ld)は残渣ガスの排出口
である。
Such a vapor phase growth method is carried out using a vertical vapor phase growth apparatus shown in FIG. This punch is a quartz reaction tube <1)
A gas introduction pipe (2) for introducing raw material gas consisting of TMG and A3H3 gas together with a carrier gas was provided at the upper end, and a susceptor (3) placed on a pyramid-shaped susceptor (3) was installed inside the reaction tube (1). A crystal substrate (4) is installed, and a susceptor (3) is installed.
) is rotated by a rotating shaft (6) that can be rotated by a motor (5) to prevent uneven thickness of the grown film. Further, a coil (7) is attached to the outer periphery of the reaction tube 1) where the crystal substrate (4) is completely installed, so that high-frequency power can be completely supplied to the filter. During this heating, the crystal substrate (
4) to prevent the raw material gas supplied from the gas introduction tube (2) from being thermally decomposed before reaching the crystal substrate, and to efficiently perform thermal decomposition on the crystal substrate.
The cooling medium (cooling water) is introduced from the cooling medium inlet (la), circulates through the water channel (1b) of this double structure, and is led out from the cooling medium outlet (1c). I try to let them do it. (ld) is a residual gas outlet.

このように構成きれた縦型の気相成長装置は反応管が単
純であり、容易にGaAs結晶等を成長させることがで
きる。尚、この従来装置の基本型は例えば特開昭58−
213415号公報中に従来例として紹介きれている。
The vertical vapor phase growth apparatus configured in this manner has a simple reaction tube and can easily grow GaAs crystals and the like. The basic type of this conventional device is, for example, disclosed in Japanese Patent Application Laid-open No. 1983-
It is introduced as a conventional example in the publication No. 213415.

(ハ)発明が解決しようとする問題点 しかしながら上述の結晶成長法では基板温度が600℃
以下では良質な結晶を成長させることができない欠点が
ある。さらに、GaI−xAQxA8(0< x <1
)等の混晶の場合は同温度が700℃以下では良質な結
晶を得ることが困難である。
(c) Problems to be solved by the invention However, in the above crystal growth method, the substrate temperature is 600°C.
Below this, there is a drawback that high quality crystals cannot be grown. Furthermore, GaI-xAQxA8 (0< x <1
) etc., it is difficult to obtain high quality crystals at temperatures below 700°C.

第4図は前述の方法で成長させたGaAsの結晶基板温
度と77Kにおける移動度の関係を表わす図である。こ
れから明らかな如く結晶基板温度は640°C付近が最
も良質な結晶であり、600 ’C以下では半導体デバ
イスに供する結晶を得ることができない。
FIG. 4 is a diagram showing the relationship between the crystal substrate temperature of GaAs grown by the method described above and the mobility at 77K. As is clear from this, the best quality crystal is obtained when the crystal substrate temperature is around 640°C, and a crystal suitable for semiconductor devices cannot be obtained at a temperature below 600°C.

さらに半導体デバイスの性能の向上を図るためには結晶
中の微視的欠陥を減少させなければならない。特に化合
物半導体結晶は元素周期律表のVO属のAsあるいはP
等の解離圧の高い元素を含むために結晶基板温度を低温
化し、vb元素の離敦防止を図りvb元素の空孔子の減
少が必要である。
Furthermore, in order to improve the performance of semiconductor devices, microscopic defects in crystals must be reduced. In particular, compound semiconductor crystals include As or P in the VO group of the periodic table of elements.
In order to contain elements with high dissociation pressure such as, it is necessary to lower the temperature of the crystal substrate, prevent the dissociation of the Vb element, and reduce the number of vacancies in the Vb element.

この低温化成長として光アシスト反応による気相成長法
がある。(応用物理第52巻第7号p560〜566「
光励起CVO、参照〉、この方法は光エネルギーを熱源
として使用する基板加熱法であり、基板表面に吸着した
TMG+Ashの熱分解結晶成長に有効である。この方
法の採用により結晶基板温度が約450℃迄低下させて
も良質なGaAs結晶を成長させることができる。
As this low-temperature growth, there is a vapor phase growth method using a light-assisted reaction. (Applied Physics Vol. 52 No. 7 p560-566
Photo-excited CVO, see this method is a substrate heating method that uses optical energy as a heat source, and is effective for pyrolytic crystal growth of TMG+Ash adsorbed on the substrate surface. By employing this method, a high quality GaAs crystal can be grown even if the crystal substrate temperature is lowered to about 450°C.

しかしこの方法は単一の光、@(波長エネルギー)を用
いてTMG、 TMA(トリメチルアルミニウム)、A
SH:lなどの熱分解結晶成長を行なうために、混晶系
においては低温化の効果が著しく劣る。第5図はGa←
x AlxAsの混晶比x−0,3のときの結晶基板温
度と得られたGao、t AQc+、3 Asの室温で
の移動度との関係である0図中の実線(P)は光アシス
トのない場合であり最適基板温度は750〜800℃で
ある。破111(Q)は波長248nmのKrFエキシ
マレーザを基板に照射させた場合であり最適基板温度は
650〜730°Cであり100℃の低温化が図られて
いた。しかしながら、移動度の増加は認められなかった
However, this method uses a single light, @ (wavelength energy), to detect TMG, TMA (trimethylaluminum), A
Since pyrolytic crystal growth such as SH:l is performed, the effect of lowering the temperature is significantly inferior in mixed crystal systems. Figure 5 is Ga←
The solid line (P) in the figure 0, which is the relationship between the crystal substrate temperature and the mobility of the obtained Gao,tAQc+,3As at room temperature when the mixed crystal ratio of x-AlxAs is x-0,3, is photo-assisted. In this case, the optimum substrate temperature is 750 to 800°C. Case 111 (Q) is the case where the substrate was irradiated with a KrF excimer laser having a wavelength of 248 nm, and the optimum substrate temperature was 650 to 730°C, and a temperature reduction of 100°C was attempted. However, no increase in mobility was observed.

(ニ)問題点を解決するための手段 本発明は2種類の有機金属化合物(例えばTMGとTM
A)に各々最適な光エネルギー(TMGに対して波長2
48r+m(7)KrFエキシマレーザ、TMAに対し
て波長193nmのArFエキシマレーザ)を照射し、
これら原料ガスを電子励起させて活性な原子(例えばG
aとAQ)を得、これらと水素化物(例えばASHO)
からの原子(As)とを予熱しである結晶基板に結晶成
長きせるものである。さらに本発明は、有機金属化合物
のみならず水素化物に対しても電子励起のために最適な
光エネルギー(例えばASH3に対しては波長193n
mのArFエキシマレーザ)を照射することを可とする
(d) Means for solving the problems The present invention uses two types of organometallic compounds (for example, TMG and TM).
A) Optimal light energy for each (wavelength 2 for TMG)
48r+m (7) KrF excimer laser, TMA is irradiated with ArF excimer laser with a wavelength of 193 nm,
By electronically exciting these raw material gases, active atoms (such as G
a and AQ), and these and a hydride (e.g. ASHO)
In this method, atoms (As) are preheated to grow crystals on a crystal substrate. Furthermore, the present invention provides optimal light energy for electronic excitation not only for organometallic compounds but also for hydrides (for example, for ASH3, the wavelength is 193nm).
irradiation with ArF excimer laser (ArF excimer laser).

(ホ)作用 本発明は原料ガスである2種類の有機金属化合物〈さら
に好ましくは水素化物)に各々に最適な光エネルギー(
波長)を有する光を照射し、結晶を構成する原子を電子
励起移せて活性化しているので、予熱されている基板が
低温であっても移動度の大きい良質な結晶を製造するこ
とができる。
(E) Effect The present invention provides the optimal light energy (
Since the atoms constituting the crystal are activated by electron excitation and transfer by irradiation with light having a certain wavelength (wavelength), high-quality crystals with high mobility can be produced even if the preheated substrate is at a low temperature.

(へ)実施例 第1図は本発明方法を適用するための気相成長装置の実
施例の概略構成図である。図中、第3図に示す従来装置
の構成要素と同一機能要素には同一符号を付し説明を省
略する。
(F) Embodiment FIG. 1 is a schematic diagram of an embodiment of a vapor phase growth apparatus for applying the method of the present invention. In the figure, functional elements that are the same as those of the conventional device shown in FIG. 3 are given the same reference numerals, and explanations thereof will be omitted.

本装置は2種類の有機金属化合物であるTMGとTMA
とを各々に反応管(1)内に導入する第1、第2導入口
(2a)<2b)と、水素化物であるAsH3を反応管
(1)内に導入する第3導入口(2c)とを備えており
、さらに、反応管(1)内に導入きれる各原料ガスに対
しz111子励起きせるため、各原料ガスにとって最適
な光エネルギーを呈する第1、第2、第3光源(8a)
(8b)(8c)と、これら各光源からの光を原料ガス
に案内するためのミラー(9a)(9b)(9c)とを
備えている。第1光源(8a)は第1導入口(2a)か
ら反応管(1)内に導入されるTMGにとって最適な光
エネルギーを照射するK rFエキシマレーザ(エネル
ギー密度100w/am” 、波長248nm )であ
り、第2、第3光fi(8b)(8c)はそれぞれ第2
、第3導入口(2b)(2c)から反応管(1)・内に
それぞれ導入されるTMA、 AsH3にとってそれぞ
れ最適な光エネルギーを照射するArFエキシマレーザ
(エネルギー密度80w/cIT+2、波長193nm
>である。
This device uses two types of organometallic compounds, TMG and TMA.
and a third inlet (2c) that introduces AsH3, which is a hydride, into the reaction tube (1). In addition, first, second, and third light sources (8a) exhibiting optimal light energy for each raw material gas to excite the z111 molecules in each raw material gas introduced into the reaction tube (1).
(8b) (8c), and mirrors (9a) (9b) (9c) for guiding light from each of these light sources to the raw material gas. The first light source (8a) is a K rF excimer laser (energy density 100 w/am", wavelength 248 nm) that irradiates the optimal light energy for TMG introduced into the reaction tube (1) from the first introduction port (2a). Yes, the second and third lights fi (8b) (8c) are the second
, an ArF excimer laser (energy density 80w/cIT+2, wavelength 193nm) that irradiates optimal light energy for TMA and AsH3 introduced into the reaction tube (1) from the third inlet (2b) and (2c), respectively.
> is.

第2図は上記装置を使って製造したGaatAu。=A
s結晶の移動度(室温)とサセプタ〈3)上に載置した
GaAs結晶基板(4)の温度(基板温度)との関係を
示すものであり、特性(R)、(S)はそれぞれ以下の
第1、第2実施例によるものである。
FIG. 2 shows GaatAu manufactured using the above-mentioned apparatus. =A
This shows the relationship between the mobility of the s crystal (room temperature) and the temperature (substrate temperature) of the GaAs crystal substrate (4) placed on the susceptor (3), and the characteristics (R) and (S) are as follows, respectively. This is according to the first and second embodiments.

(第1実施例) 予じめキャリアガスであるH2ガスを第3導入口(2c
)から反応管(1)内に10Q7分の割合で供給し、基
板(4)を載置したサセプタ(3)を750℃乃至47
0’Cに加熱保持した。温度が安定したのち第1光源(
8a)及び第2光源(8b)を起動させ、各々のレーザ
光をミラー(9aH9b)を介して第1、第2導入口<
2aH2b)に誘導した。続いて、第3導入口(2c)
から予しめ供給しているH2ガス10鉦/分中にAsH
3を4.6X10−3モル/分加えて反応管(1)に誘
導する0次いで、第1誘導口(2a)からTMGを0.
7XIO−4°モル/分とキャリア用のH2ガス0.5
11/分を供給し、また第2誘導口(2b)からTMA
を0.2X 10→モル/分とキャリア用のH2ガス1
旦/分を供給する。このようなガス供給量で、基板温度
750℃乃至470℃にして結晶成長を行なった。その
結果、第2図の特性(R)で示すGact Ak3 A
s結晶を製造することができた。これは、第5図特性(
Q)で示される従来方法による結晶の移動度(最高値で
2800cm” /V・S)に比して著しく大きく(最
大3220an 2/Y −S)且つ基板温度が580
°C付近迄高い移動度を保持している。
(First Example) H2 gas, which is a carrier gas, is introduced into the third inlet port (2c
) into the reaction tube (1) at a rate of 10Q7 minutes, and the susceptor (3) on which the substrate (4) was placed was heated at 750°C to 47°C.
The temperature was maintained at 0'C. After the temperature stabilizes, the first light source (
8a) and the second light source (8b) are activated, and the respective laser beams are passed through the mirror (9aH9b) to the first and second inlet ports.
2aH2b). Next, the third inlet (2c)
AsH gas was supplied in advance at 10 g/min from H2 gas.
3 is added at 4.6 x 10-3 mol/min and introduced into the reaction tube (1). Next, 0.0.
7XIO-4°mol/min and H2 gas for carrier 0.5
11/min and also TMA from the second induction port (2b).
0.2X 10 → mol/min and H2 gas 1 for carrier
supply hours per minute. With such a gas supply amount, crystal growth was performed at a substrate temperature of 750° C. to 470° C. As a result, Gact Ak3 A shown by the characteristic (R) in Fig. 2
s crystal could be produced. This is the characteristic shown in Figure 5 (
The crystal mobility (maximum value is 3220an2/Y-S) is significantly higher than the crystal mobility obtained by the conventional method (maximum value is 2800cm"/V・S) as shown in Q), and the substrate temperature is 580cm"/V・S.
It maintains high mobility up to around °C.

(第2実施例) 上記第1実施例においては第3導入口(2c)から供給
されるASH3に対して光エネルギーを付与していない
が、本実施例はこの第1実施例と同一系を用いさらに第
3光源(8c)よりASH3に光エネルギーを付与する
ようにしたものである。この成長方法による基板温度と
移動度の関係は第2図の特性(S)の如く第1実施例の
ものよりも更に改良されている。即も、50℃も低温化
が図られており、Asの解離及び混晶膜の熱的歪みの更
に減少した良好な結晶が製造された。
(Second Example) In the first example above, no optical energy is applied to the ASH3 supplied from the third inlet (2c), but this example uses the same system as the first example. In addition, light energy is applied to the ASH3 from a third light source (8c). The relationship between the substrate temperature and the mobility obtained by this growth method is further improved than that of the first embodiment, as shown in the characteristic (S) in FIG. Immediately, the temperature was lowered by as much as 50° C., and a good crystal was produced in which the dissociation of As and the thermal distortion of the mixed crystal film were further reduced.

(ト)発明の効果 以上のごとく本発明方法にあっては原料ガスを予じめ各
原料ガスの分子吸収に適した光で電子励起しているから
基板上に堆積するGa原子とAQ原子は反応性に冨む状
態になっており、反応性の低下した際に生じるGaの空
孔子と厄の空孔子の密度を減少させることができ、且つ
vb原子(AsjK子)の熱的励起も不要となることか
ら低温成長が可能となる。尚本発明はGa1−xAQx
Asについての実施例を詳細に述べたが、本発明はGa
Asの結晶成長あるいはInP若しくはこれらの混晶に
於いても励起光源を選択することにより良質な結晶を得
ることは勿論である。
(g) Effects of the Invention As described above, in the method of the present invention, the raw material gases are electronically excited in advance with light suitable for molecular absorption of each raw material gas, so Ga atoms and AQ atoms deposited on the substrate are It is in a highly reactive state, and the density of Ga vacancies and vacancies that occur when reactivity decreases can be reduced, and thermal excitation of vb atoms (AsjK atoms) is not required. This makes low-temperature growth possible. In addition, the present invention relates to Ga1-xAQx
Although the embodiments regarding As have been described in detail, the present invention also applies to Ga.
It goes without saying that good quality crystals can be obtained by selecting an excitation light source even when growing As crystals, InP, or mixed crystals thereof.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を実施する気相成長装置の概略構成
図、第2図は本発明方法による結晶の基板温度対移動度
の特性図、第3図は従来の気相成長装置の概略構成図、
第4図と第5図は従来方法によるGaAs結晶とGaC
Lt kQa* As結晶の基板温度対移動度の特性図
である。 (1)・・・反応管、(8a)(8b)(8c)−第1
、第2、第3光源。
Fig. 1 is a schematic configuration diagram of a vapor phase growth apparatus for carrying out the method of the present invention, Fig. 2 is a characteristic diagram of substrate temperature versus mobility of a crystal according to the method of the present invention, and Fig. 3 is a schematic diagram of a conventional vapor phase growth apparatus. Diagram,
Figures 4 and 5 show GaAs crystal and GaC obtained by the conventional method.
FIG. 2 is a characteristic diagram of substrate temperature versus mobility of Lt kQa* As crystal. (1)...Reaction tube, (8a) (8b) (8c)-first
, second and third light sources.

Claims (2)

【特許請求の範囲】[Claims] (1)反応炉内において予熱されている基板上に、出発
化合物として2種類の有機金属化合物と水素化物とを導
入し熱分解法にて化合物半導体結晶を成長させる方法に
おいて、前記2種類の有機金属化合物は各々の有機金属
化合物に適する各別の光エネルギーで励起されているこ
とを特徴とする化合物半導体結晶成長法。
(1) A method in which two types of organic metal compounds and a hydride are introduced as starting compounds onto a substrate that has been preheated in a reactor, and a compound semiconductor crystal is grown by a pyrolysis method. A compound semiconductor crystal growth method characterized in that the metal compounds are excited with different light energies suitable for each organometallic compound.
(2)前記水素化物は該水素化物に適する光エネルギー
で励起されていることを特徴とする特許請求の範囲第(
1)項記載の化合物半導体結晶成長法。
(2) The hydride is excited with light energy suitable for the hydride.
1) Compound semiconductor crystal growth method described in section 1).
JP25622684A 1984-12-04 1984-12-04 Compound semiconductor crystal growth method Pending JPS61134013A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25622684A JPS61134013A (en) 1984-12-04 1984-12-04 Compound semiconductor crystal growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25622684A JPS61134013A (en) 1984-12-04 1984-12-04 Compound semiconductor crystal growth method

Publications (1)

Publication Number Publication Date
JPS61134013A true JPS61134013A (en) 1986-06-21

Family

ID=17289685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25622684A Pending JPS61134013A (en) 1984-12-04 1984-12-04 Compound semiconductor crystal growth method

Country Status (1)

Country Link
JP (1) JPS61134013A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000058878A (en) * 1998-08-04 2000-02-25 Ju Howan Chul Capacitor of semiconductor element and fabrication thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000058878A (en) * 1998-08-04 2000-02-25 Ju Howan Chul Capacitor of semiconductor element and fabrication thereof

Similar Documents

Publication Publication Date Title
JPS6134928A (en) Growing process of element semiconductor single crystal thin film
US5300185A (en) Method of manufacturing III-V group compound semiconductor
JPS61134013A (en) Compound semiconductor crystal growth method
Kato et al. Photoenhanced chemical vapor deposition of zinc phosphide
US5213654A (en) Vapor-phase epitaxial growth method for semiconductor crystal layers
JPH11135436A (en) Formation of compound semiconductor film
JPS62214616A (en) Organo metallic vapor phase epitaxy equipment
JPS63176393A (en) Production of aluminum nitride thin film
JPH01158721A (en) Method and apparatus for light irradiation type low temperature mocvd
JPH04187597A (en) Production of thin film of gallium nitride
JPH05226257A (en) Vapor growth method and photo assisted vapor growth apparatus
JP2753832B2 (en) III-V Vapor Phase Growth of Group V Compound Semiconductor
JPS63188932A (en) Method for vapor growth of gallium nitride compound semiconductor
JPS62208625A (en) Silicon epitaxial growth
JPS63289923A (en) Crystal growth method for compound semiconductor
JPS6388830A (en) Vapor growth method of compound semiconductor
JPH0267721A (en) Manufacture of compound semiconductor thin film
JPS61135111A (en) Method of epitaxial growth of compound semiconductor
JPS6223107A (en) Photo-vapor phase epitaxy method
JP2793939B2 (en) Method for growing compound semiconductor crystal
JPS60206446A (en) Photochemical gaseous phase growing apparatus
JPH0891994A (en) Formation of crystalline silicon
JPS62199015A (en) Semiconductor crystal growth device
JPH04254499A (en) Production of compound semiconductor crystal
JPH065516A (en) Method and apparatus for vapor growth of compound semiconductor crystal