JPS63289923A - Crystal growth method for compound semiconductor - Google Patents

Crystal growth method for compound semiconductor

Info

Publication number
JPS63289923A
JPS63289923A JP12373087A JP12373087A JPS63289923A JP S63289923 A JPS63289923 A JP S63289923A JP 12373087 A JP12373087 A JP 12373087A JP 12373087 A JP12373087 A JP 12373087A JP S63289923 A JPS63289923 A JP S63289923A
Authority
JP
Japan
Prior art keywords
substrate
compound semiconductor
growth
light
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12373087A
Other languages
Japanese (ja)
Inventor
Yasuto Kawahisa
川久 慶人
Haruka Nakahara
中原 はるか
Masahiro Sasaki
正洋 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP12373087A priority Critical patent/JPS63289923A/en
Publication of JPS63289923A publication Critical patent/JPS63289923A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to obtain an epitaxially grown film of high quality by a method wherein, after light is irradiated on a substrate in a hydrogen radical- containing atmosphere before growth to cleanse the substrate surface at low temperature, a crystal is grown by a vapor growth method. CONSTITUTION:In the case of growing a crystal of a compound semiconductor of the same kind as a compound semiconductor substrate 102 or dissimilar from the substrate 102 on the substrate 102 by a vapor growth method, light is irradiated on the substrate 102 in an atmosphere containing hydrogen radicals produced by the discharge decomposition of hydrogen gas or photodissociation before the growth to cleanse the surface of the substrate 102 and thereafter, the crystal of the compound semiconductor is grown on the substrate 102 by a vapor growth method. For example, after the temperature of the substrate is set at a prescribed temperature before the growth is started, hydrogen radicals produced in a microwave discharge tube 112 are introduced in a growth chamber 101 through a gas introducing part 109 and at the same time, an ArF excimer laser beam of a wavelength of 193 nm is irradiated on the substrate 102 in the chamber 101 from an excimer laser 108 through a reflecting mirror 107 and a light-introducing window 106 to perform a cleaning of the substrate surface.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、化合物半導体の結晶成長方法に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a method for growing compound semiconductor crystals.

(従来の技術) ■−■族あるいは■−■族化合物半導体を有機金属気相
成長法(MOCVD)および分子線エピタキシャル成長
法または光を基板および原料ガスに照射し成長を行なう
光励起気相成長法を用いて、化合物半導体基板上にエピ
タキシャル成長させる際、エピタキシャル成長膜を高品
質化するためには、基板表面の清浄化は必要不可欠な技
術である。有機洗浄と酸処理といった成長前の基板処理
のみでは、例えば基板がGaAs半導体クエーりの場合
GaおよびAsの酸化物等は完全に除去されず、基板/
成長層界面での結晶性が劣化し、高品質なエピタキシャ
ル層が得られない。■−■族化合物半導体であるZn5
eをG a A s基板上に成長させる場合を例にとる
と、基板表面にGaおよびAsの酸化物が存在すると、
成長層であるZn5e層の結晶性が劣化しGa、Aso
ZnSe層への拡散が助長される。基板表面の酸化物除
去等の基板表面清浄化法としては、主として水素ガス等
の還元性ガス雰囲気や基板構成元素の内蒸気圧の高い元
素を含むガス雰囲気で基板を高温に加熱するという方法
が従来主に用いられて来た。GaAs基板を例にとると
、MOCVD法においては、基板を水素ガスあるいはア
ルシン(AsH3)ガス雰囲気中で、MBE法において
は、Asビーム照射下で基板を700℃以上に加熱する
ことによって基板表面清浄化を行なっている。しかしこ
の様に基板を高温に熱処理すると、確かに基板表面の酸
化物を除去できるが、基板表面に熱変成層が生じ、より
高品質なエピタキシャル成長膜を得ることが難かしい。
(Prior art) ■-■ group or ■-■ group compound semiconductors are grown by metal organic chemical vapor deposition (MOCVD), molecular beam epitaxial growth, or photo-excited vapor phase epitaxy in which a substrate and source gas are irradiated with light. When performing epitaxial growth on a compound semiconductor substrate using a compound semiconductor substrate, cleaning the substrate surface is an essential technique in order to improve the quality of the epitaxially grown film. If the substrate is only treated with organic cleaning and acid treatment before growth, for example, if the substrate is a GaAs semiconductor, oxides of Ga and As, etc. will not be completely removed, and the substrate/
Crystallinity at the interface of the grown layer deteriorates, making it impossible to obtain a high-quality epitaxial layer. Zn5, a ■-■ group compound semiconductor
Taking the case of growing e on a GaAs substrate as an example, if oxides of Ga and As exist on the substrate surface,
The crystallinity of the Zn5e layer, which is a growth layer, deteriorates and Ga, Aso
Diffusion into the ZnSe layer is encouraged. The main method for cleaning the substrate surface, such as removing oxides from the substrate surface, is to heat the substrate to a high temperature in an atmosphere of a reducing gas such as hydrogen gas or a gas atmosphere containing elements with high internal vapor pressure among the constituent elements of the substrate. It has traditionally been mainly used. Taking a GaAs substrate as an example, in the MOCVD method, the substrate surface is cleaned in a hydrogen gas or arsine (AsH3) gas atmosphere, and in the MBE method, the substrate is heated to 700°C or higher under As beam irradiation. is undergoing transformation. However, although it is true that oxides on the substrate surface can be removed by heat-treating the substrate at high temperatures in this manner, a thermally altered layer is generated on the substrate surface, making it difficult to obtain a higher quality epitaxially grown film.

また、半導体レーザの様に、混晶比や伝導型およびキャ
リア濃度の異なる化合物半導薄膜を多層に成長した後、
成長室から大気中に取り出し、フォトリソグラフィー1
等によりパターニングを行ない再び成長室内にてエピタ
キシャル成長を行なうプロセスが必要なデバイス等にお
いては、再成長の前に基板を高温に加熱すると、熱拡散
により混晶比やキャリア濃度の分布に変化が生じ、高性
能なデバイスが得られない。
In addition, like semiconductor lasers, after growing multiple layers of compound semiconductor thin films with different mixed crystal ratios, conductivity types, and carrier concentrations,
Removed from the growth chamber to the atmosphere and photolithography 1
For devices, etc. that require a process of patterning (e.g., epitaxial growth in a growth chamber), heating the substrate to a high temperature before regrowth causes changes in the mixed crystal ratio and carrier concentration distribution due to thermal diffusion. High performance devices cannot be obtained.

さらにMを含む混晶化合物半導体、例えばALxGal
−xM等においては通常の熱処理ではnの酸化物を完全
に除去する事が出来ない。
Furthermore, a mixed crystal compound semiconductor containing M, such as ALxGal
-xM etc., the n oxide cannot be completely removed by normal heat treatment.

一方高温の基板表面清浄化方法における問題点を解決す
る方法として水素ガスのマイクロ波放電分解により生成
された水素ラジカルを用い低温で基板表面清浄化を行な
う方法が提案(S、Oda、etal。
On the other hand, as a method to solve the problems in high-temperature substrate surface cleaning methods, a method has been proposed in which substrate surfaces are cleaned at low temperatures using hydrogen radicals generated by microwave discharge decomposition of hydrogen gas (S, Oda, etal.

17th SSDM pI)237−240(1985
)されているが、低温であるため、水素ラジカルのみで
は反応性が低く、十分な基板表面清浄化が行なわれてい
るとは言い難い。
17th SSDM pI) 237-240 (1985
) However, due to the low temperature, the reactivity of hydrogen radicals alone is low, and it cannot be said that sufficient cleaning of the substrate surface is achieved.

(発明が解決しようとする問題点) 以上述べた様に従来の高温加熱による基板表面清浄化方
法では、基板表面に熱変成層が形成される。また混晶比
およびキャリア濃度分布が所望の分布がずれるという問
題や、Ajを含む混晶化合物半導体のM酸化物の除去が
できないという問題があった。
(Problems to be Solved by the Invention) As described above, in the conventional substrate surface cleaning method using high temperature heating, a thermally altered layer is formed on the substrate surface. Further, there are problems in that the mixed crystal ratio and carrier concentration distribution deviate from desired distributions, and in that M oxide in a mixed crystal compound semiconductor containing Aj cannot be removed.

本発明は、より高品質なエピタキシャル成長膜を得るた
めに、よシ低温においても基板表面の清浄化が行なうこ
との出来る化合物半導体基板の表面清浄化法を用いた化
合物半導体の結晶成長を提供することにある。
The present invention provides compound semiconductor crystal growth using a compound semiconductor substrate surface cleaning method that allows cleaning of the substrate surface even at very low temperatures, in order to obtain higher quality epitaxially grown films. It is in.

〔発明の構成〕[Structure of the invention]

(問題点を解決するだめの手段) 上記目的を達成するために、本発明による化合物半導体
の結晶成長方法を以下に示す。
(Another Means to Solve the Problems) In order to achieve the above object, a method for growing compound semiconductor crystals according to the present invention will be described below.

成長前に水素ガスのマイク波放電分解等の放電分解ある
いはSOR光等による光解離により生成した水素ラジカ
ル雰凹気中に基板を置き、かつ該基板に対して光を照射
し、基板表面の清浄化を行なう。しかる後に該基板上に
MOCVD 、ハイドライドVPE、MBEや光励起気
相成長等の気相成長法により化合物半導体の結晶成長を
行なう。
Before growth, the substrate is placed in a hydrogen radical atmosphere generated by discharge decomposition such as microwave discharge decomposition of hydrogen gas or photodissociation by SOR light, etc., and the substrate is irradiated with light to clean the substrate surface. . Thereafter, compound semiconductor crystals are grown on the substrate by a vapor phase growth method such as MOCVD, hydride VPE, MBE, or photoexcited vapor phase growth.

(作用) 上述した本発明の様な基板表面清浄化方法を用いた化合
物半導体の結晶成長方法においては、水素ラジカルによ
る還元反応が光照射により促進され、低温でも効率良く
基板表面上の酸化物や汚染物質が除去され、高品質なエ
ピタキシャル膜を得ることが可能となる。
(Function) In the compound semiconductor crystal growth method using the substrate surface cleaning method of the present invention described above, the reduction reaction by hydrogen radicals is promoted by light irradiation, and oxides and oxides on the substrate surface are efficiently removed even at low temperatures. Contaminants are removed, making it possible to obtain a high quality epitaxial film.

(実施例) 第1図は、本発明の方法を実施するための成長系の概略
図である。この図において成長容器(101)内には、
基板(102泗!サセプタ(103)上に配置されてい
る。サセプタ(103)はヒータ(図示せず)により加
熱されておシサセプタ(103)上の基板(102)は
所定の温度に設定される。成長開始前に基板温度を所定
の温度に設定した後に、成長室(101)内にガス導入
口(109)よシマイクロ波放電管(1)2)内で生成
された水素ラジカルを導入し、同時にエキシマレーザ(
108)より ArF エキシマレーザ光(波長193
nm)を反射ミラー(107)および光導入窓(106
)を介し、成長室(101)内の基板(103)に照射
し、基板表面の清浄化を行なう。しかる後にガス導入口
(109)を閉め水素ラジカル導入をとめ、またエキシ
マレーザ光の照射をやめ、成長容器(101)内を排気
する。次に基板温度を所定の温度に設定し、ガス導入口
(104)よシ原料ガスを、またガス導入口(105)
よシ水素ガスを成長室内に導入し、排気系(1)4X)
排気速度を調節し所定の圧力に設定すると同時に再びA
rFエキシマレーザ光を基板(102)に照射し成長を
行なう。
(Example) FIG. 1 is a schematic diagram of a growth system for carrying out the method of the present invention. In this figure, inside the growth container (101),
The substrate (102) is placed on a susceptor (103).The susceptor (103) is heated by a heater (not shown), and the substrate (102) on the susceptor (103) is set to a predetermined temperature. After setting the substrate temperature to a predetermined temperature before starting growth, hydrogen radicals generated in the microwave discharge tubes (1) and 2) are introduced into the growth chamber (101) through the gas inlet (109). , and at the same time excimer laser (
108) ArF excimer laser light (wavelength 193
nm) through a reflecting mirror (107) and a light introduction window (106).
) to the substrate (103) in the growth chamber (101) to clean the substrate surface. Thereafter, the gas inlet (109) is closed to stop the introduction of hydrogen radicals, the irradiation of excimer laser light is stopped, and the inside of the growth container (101) is evacuated. Next, set the substrate temperature to a predetermined temperature, and feed the raw material gas through the gas inlet (104) and the gas inlet (105).
Introduce hydrogen gas into the growth chamber and exhaust system (1) 4X)
Adjust the pumping speed and set it to the specified pressure, and at the same time press A again.
Growth is performed by irradiating the substrate (102) with rF excimer laser light.

この様な成長系を用いて行なった面方位(100)Ga
As基板上へのZnS eのエピタキシャル成長につい
て以下に記す。
Surface orientation (100) Ga obtained using such a growth system
The epitaxial growth of ZnSe on an As substrate will be described below.

原料ガスには、■族原料としてジメチル亜鉛(DMZ)
を、また■族原料としてジメチルセレン(DMSe)を
用いた。また、それらのキャリアガスには水素ガスを用
いた。まず最初にガス導入口(1)3)よシ放電管(1
)2)内へ水素ガスを導入する。導入された水素ガスは
ガス導入口(109)を介し排気系(1)4)より排気
した。排気系(1)4)の排気速度を調節し、放電管(
1)2)内の圧力を10−2Torrに設定し九後、マ
イクロ波電源(1)0)よりマイクロ波電力を導波管(
1)1)を介し、放電管(1)2)に供給し、マイクロ
波放電分解により水素ガスを励起し生成された水素ラジ
カルを成長膜!(101)内へ導入する。それと同時に
エキシマレーザ(108)よl) ArFエキシマレー
ザ光を反射ミラー(107)、光導入窓(106)を介
し、(CrOドープSI GaAs基板(面方位(10
0)X102′yX20分間照射し、基板表面の清浄化
を行なった。
The raw material gas contains dimethyl zinc (DMZ) as a group ■ raw material.
In addition, dimethyl selenium (DMSe) was used as the Group Ⅰ raw material. Furthermore, hydrogen gas was used as the carrier gas. First, open the gas inlet (1) 3) and the discharge tube (1).
)2) Introduce hydrogen gas into the interior. The introduced hydrogen gas was exhausted from the exhaust system (1) 4) through the gas inlet (109). Adjust the exhaust speed of the exhaust system (1) 4) and discharge the discharge tube (
1) After setting the pressure in 2) to 10-2 Torr, microwave power is supplied from the microwave power source (1)0) to the waveguide (
1) Supplied through 1) to the discharge tube (1) 2), the hydrogen gas is excited by microwave discharge decomposition, and the generated hydrogen radicals are used to grow the film! (101). At the same time, the ArF excimer laser beam (from the excimer laser (108)) is passed through the reflecting mirror (107) and the light introduction window (106) to the (CrO-doped SI GaAs substrate (plane orientation (10
0)X102'yX irradiation for 20 minutes to clean the substrate surface.

照射エネルギーは、基板表面上でI QrrJ /cd
/pu l se繰シ返し周波数は80 ppsに設定
した。また基板温度は、400℃に設定した。ArFエ
キシマレーザ照射終了後、ガス導入口(109)を閉め
、成長容器(101)内を排気する。次にガス導入口(
105)より水素力xt−2008CCM、 i ;’
hカス導入口(104)ヨp DMZヲ7 X I Q
  mol /minオよび水素ガ、X 398CCM
 。
The irradiation energy is I QrrJ /cd on the substrate surface.
/pulse repetition frequency was set to 80 pps. Further, the substrate temperature was set at 400°C. After the ArF excimer laser irradiation is completed, the gas inlet (109) is closed and the inside of the growth container (101) is evacuated. Next, the gas inlet (
105) From hydrogen force xt-2008CCM, i ;'
h Waste inlet (104) DMZ 7 X I Q
mol/min and hydrogen gas, X 398CCM
.

DMSeを1.4 X 10  mol /minおよ
び水素ガス1)005CC成長容器(101)内へ導入
すると同時に、基板(102)にArFエキシマレーザ
光を反射ミラー(107)、光導入窓(106)を介し
照射しZ’nSeの成長を行なった。成長圧力は、排気
系(1)4)17)排気速度を調節し50Torrとし
、基板温度は400℃に設定した。
DMSe at 1.4 x 10 mol/min and hydrogen gas 1) At the same time, a mirror (107) that reflects ArF excimer laser light and a light introduction window (106) are introduced into the substrate (102). The growth of Z'nSe was carried out by irradiation. The growth pressure was set at 50 Torr by adjusting the exhaust system (1) 4) 17) exhaust speed, and the substrate temperature was set at 400°C.

またArFエキシマレーザ光の照射強度は、基板表面で
1 mJ /d/ pulSes繰り返し周波数はs 
o ppsとした。
The irradiation intensity of the ArF excimer laser beam is 1 mJ/d/pulSes on the substrate surface, and the repetition frequency is s.
o pps.

この様にして成長させたZn5e膜の結晶性を、X線2
結晶法および4.2にフォトルミネセンス測定(He−
Cdレーザ光励起)Kより評価したところ基板表面清浄
化の際に、エキシマレーザを照射せず、前記実施例で示
したのと同じ成長条件で成長したZn5e膜および基板
表面清浄化をせず前記実施例で示したのと同じ成長条件
で成長したZn5e膜にくらべ、本実施例で得られたZ
n8e膜は、X線回折パターンの半値幅はせまく、また
自由励起子発光強度も強かった。この様に、水素ラジカ
ル雰囲気中で基板に対してエキシマレーザ光を照射する
ことにより、高品質なZn5e膜が得られた。
The crystallinity of the Zn5e film grown in this way was investigated by
Crystal method and photoluminescence measurement (He-
When cleaning the substrate surface, the Zn5e film was grown under the same growth conditions as shown in the above example, without irradiating the excimer laser, and when the substrate surface was cleaned, the Zn5e film was Compared to the Zn5e film grown under the same growth conditions as shown in the example, the Zn5e film obtained in this example
In the n8e film, the half width of the X-ray diffraction pattern was narrow and the free exciton emission intensity was strong. In this manner, a high quality Zn5e film was obtained by irradiating the substrate with excimer laser light in a hydrogen radical atmosphere.

なお本発明は、上述した実施例に限定されるものでなく
、その要旨を逸脱しない範囲で変形して実施することが
出来る。成長する膜は、Zn5eに限らず他の■−■族
や■−■族化合物半導体でも良い。また基板はGaAs
基板は他の面方位でも良く、その伝導型はp型、n型、
半絶縁性いずれモも良い、さらに他の■−■族や■−■
族化合物半導体を基板に用いても良い。照射する光はA
rFエキシマレーザ光に限らず、KrF 、 XeF等
他のエキシマレーザ光や、低圧、高圧および超高圧水銀
ランプ、Xe−Hgランプ、重水素ランプ、希ガスマイ
クロ波放電による輝線等信の光源でも良い。水素ラジカ
ルの生成は、放電分解に限らずSOR党等による光解離
を用いても良い。
Note that the present invention is not limited to the embodiments described above, and can be modified and implemented without departing from the gist thereof. The film to be grown is not limited to Zn5e, but may be other semiconductors of the ■-■ group or the ■-■ group. Also, the substrate is GaAs
The substrate may have other plane orientations, and its conductivity type may be p-type, n-type,
Semi-insulating materials are also good, and other ■−■ group and ■−■
A group compound semiconductor may be used for the substrate. The irradiated light is A
The light source is not limited to rF excimer laser light, but may also be other excimer laser light such as KrF or XeF, low-pressure, high-pressure, or ultra-high pressure mercury lamps, Xe-Hg lamps, deuterium lamps, or emission line light sources using rare gas microwave discharge. . The generation of hydrogen radicals is not limited to discharge decomposition, and photodissociation by SOR or the like may also be used.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、成長前に水素ラジカル雰囲気中におい
て基板に光を照射し低温で基板表面を1青浄化した後に
結晶を成長させている為、高品質なエピタキシャル成長
膜を得ることが可能となった。
According to the present invention, since the substrate is irradiated with light in a hydrogen radical atmosphere and the substrate surface is purified by 1 blue at a low temperature before crystal growth, it is possible to obtain a high quality epitaxially grown film. Ta.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を行なうための成長系の概略
図である。 (101) ・・・成長容器、(102)−・・基板、
(103)・・・サセプタ、(104)・・・ガス導入
口、(105)・・・ガス導入口、(106)・・・光
導入窓、(107)・・・反射ミラー、(108)・・
・エキシマレーザ、(109)・・・ガス導入口、(1
)0)・・・マイクロ波電源、(1)1)・・・導波管
、(1)2)・・・放電管、(1)3)・・・ガス導入
口、(1)4)・・・排気系。
FIG. 1 is a schematic diagram of a growth system for carrying out an embodiment of the present invention. (101)...Growth container, (102)-...Substrate,
(103)...Susceptor, (104)...Gas inlet, (105)...Gas inlet, (106)...Light introduction window, (107)...Reflection mirror, (108)・・・
・Excimer laser, (109)...Gas inlet, (1
)0)...Microwave power supply, (1)1)...Waveguide, (1)2)...Discharge tube, (1)3)...Gas inlet, (1)4) ...Exhaust system.

Claims (3)

【特許請求の範囲】[Claims] (1)化合物半導体基板上に気相成長法により該基板と
同種または異種の化合物半導体を結晶成長させる際、成
長前に水素ガスの放電分解あるいは、光解離により生成
された水素ラジカル雰囲気中で、前記基板に対して光を
照射し、基板表面を清浄化した後に、前記気相成長法に
より基板上に化合物半導体の結晶成長を行なうことを特
徴とする化合物半導体の結晶成長方法。
(1) When crystal-growing a compound semiconductor of the same type or different type as the substrate by vapor phase growth on a compound semiconductor substrate, before growth, in an atmosphere of hydrogen radicals generated by discharge decomposition of hydrogen gas or photodissociation, A method for growing compound semiconductor crystals, comprising irradiating the substrate with light to clean the surface of the substrate, and then growing crystals of the compound semiconductor on the substrate by the vapor phase growth method.
(2)前記基板が、III−V族またはII−VI族化合物半
導体であることを特徴とする特許請求の範囲第1項記載
の化合物半導体の結晶成長方法。
(2) The method for growing crystals of a compound semiconductor according to claim 1, wherein the substrate is a III-V group or II-VI group compound semiconductor.
(3)前記光が、波長350nm以下の波長を有する光
であることを特徴とする特許請求の範囲第1項又は第2
項記載の化合物半導体の結晶成長方法。
(3) Claim 1 or 2, wherein the light has a wavelength of 350 nm or less.
A method for growing crystals of a compound semiconductor as described in Section 1.
JP12373087A 1987-05-22 1987-05-22 Crystal growth method for compound semiconductor Pending JPS63289923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12373087A JPS63289923A (en) 1987-05-22 1987-05-22 Crystal growth method for compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12373087A JPS63289923A (en) 1987-05-22 1987-05-22 Crystal growth method for compound semiconductor

Publications (1)

Publication Number Publication Date
JPS63289923A true JPS63289923A (en) 1988-11-28

Family

ID=14867931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12373087A Pending JPS63289923A (en) 1987-05-22 1987-05-22 Crystal growth method for compound semiconductor

Country Status (1)

Country Link
JP (1) JPS63289923A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0613333A (en) * 1992-02-18 1994-01-21 Nec Corp Thermal cvd method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0613333A (en) * 1992-02-18 1994-01-21 Nec Corp Thermal cvd method

Similar Documents

Publication Publication Date Title
JPH08172055A (en) Method and equipment for growing nitride semiconductor crystal
JPH0669025B2 (en) Semiconductor crystal growth equipment
JPS63289923A (en) Crystal growth method for compound semiconductor
JPH11135436A (en) Formation of compound semiconductor film
JPH0553759B2 (en)
JPS59215728A (en) Optical cleaning method of surface of semiconductor
JPH01215014A (en) Growth of semiconductor crystal
JP2793939B2 (en) Method for growing compound semiconductor crystal
JPH04187597A (en) Production of thin film of gallium nitride
JPS62118521A (en) Formation of semiconductor film
JPH0744154B2 (en) Light irradiation type low temperature MOCVD method and apparatus
JP2004103745A (en) Epitaxial growth method for nitride semiconductor film by hot wire cvd method
JP3182584B2 (en) Compound thin film forming method
JPS63188932A (en) Method for vapor growth of gallium nitride compound semiconductor
JP3232754B2 (en) Method of growing II-VI compound semiconductor
JPH0267721A (en) Manufacture of compound semiconductor thin film
JPS63289821A (en) Formation of semiconductor crystal layer
JP3574494B2 (en) Nitride compound semiconductor crystal growth method and growth apparatus
JP2549835B2 (en) Method for manufacturing compound semiconductor thin film
JPS6134924A (en) Growing device of semiconductor crystal
JPS61134013A (en) Compound semiconductor crystal growth method
Nishizava et al. Photo-Assisted Molecular Layer Epitaxy
Nishizawa Photoassisted deposition process
JPH05198518A (en) Compound semiconductor film formation method
JPH04170397A (en) Production of gallium nitride thin film