JPS61135111A - Method of epitaxial growth of compound semiconductor - Google Patents

Method of epitaxial growth of compound semiconductor

Info

Publication number
JPS61135111A
JPS61135111A JP25696784A JP25696784A JPS61135111A JP S61135111 A JPS61135111 A JP S61135111A JP 25696784 A JP25696784 A JP 25696784A JP 25696784 A JP25696784 A JP 25696784A JP S61135111 A JPS61135111 A JP S61135111A
Authority
JP
Japan
Prior art keywords
gas
substrate
crystal
susceptor
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25696784A
Other languages
Japanese (ja)
Inventor
Katsunobu Maeda
克宣 前田
Yasuhiro Kaizaki
康裕 貝崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP25696784A priority Critical patent/JPS61135111A/en
Publication of JPS61135111A publication Critical patent/JPS61135111A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To reduce the irregularity of concentration of impurity by activating previously the hydrogenated gas at the higher temperature than is received on the substrate region. CONSTITUTION:With the purpose of growth of Ga0.7Al0.3As film, the susceptor 3 and the preheating body 12 are heated at each prescribed temperature by the high-frequency heating. then the AsH3 gas of 10% concentration is sent into the tube 1 together with the H2 gas 5l/min, the carrier gas, from the input port 1a on the top of the reaction tube 1. The TMGaTMAl gas is flowed into the tube 1 together with the H2 gas 600ml/min from the second input port (1g). The growth of film on the substrate is completed by the effect of these gases. The stable film of crystal growth is obtained by the less As molar fraction, and the quantity of deposition of As chemical compound adhering to the susceptor is reduced. The crystal defects caused by the organic metal compound being apt to thermally decompose is also reduced. The organic metal compound thermally decomposes before arriving at the substrate and adheres on the surface of the crystal, and the crystal defects caused thereby decreases.

Description

【発明の詳細な説明】 (づ 産業上の利用分野 本発明は化合物半導体の気相成長方法に関するもので、
安定でしかも結晶欠陥の少ないGaAs、GaA1As
9の気相成長方法を提供しようとするものである。
[Detailed Description of the Invention] (d) Industrial Application Field The present invention relates to a method for vapor phase growth of compound semiconductors.
GaAs and GaA1As are stable and have few crystal defects.
This paper attempts to provide 9 vapor phase growth methods.

(ロ)従来の技術 化合物半導体、例えば砒化ガリウム(GaAS)の気相
成長方法の1つに、ガリウム(Ga)源としてGa企属
をメチ/L’基(−CH8)と結合し有機化合物として
揮発性を持たせたトリメチルガリウム(TMGa )を
用い、砒素(As )源としてAsの水素化合物である
アルシン(AsH8)ヲ、ま九、キャリアガスに水素を
用い、熱分解によってGaAs基板上にGaAs結晶を
成長させる方法が知られている(例えば特開昭58−2
13415号公報参照)。
(b) Conventional technology One of the vapor phase growth methods for compound semiconductors, such as gallium arsenide (GaAS), involves combining Ga as a gallium (Ga) source with a methi/L' group (-CH8) to form an organic compound. Using volatile trimethylgallium (TMGa) and arsine (AsH8), a hydrogen compound of As, as a source of arsenic (As), hydrogen was used as a carrier gas, and GaAs was deposited on a GaAs substrate by thermal decomposition. Methods of growing crystals are known (for example, Japanese Patent Application Laid-Open No. 58-2
(See Publication No. 13415).

$4図は従来の気相成長装置の概要を示すものである。Figure $4 shows an outline of a conventional vapor phase growth apparatus.

反応管111は高純度石英で構成されており、原料ガス
の導入口(la)と、排ガスの排出口(lb)と、4枚
のGaAs基板(21を4面で支持する4角錐状のサセ
プタ13+を回転させる回転軸(4)を導入する貫通孔
(lc)とを備え、さらに外周部に冷媒である水を巡回
させる冷却水の注入口(1d)と、水路(le)と、排
水口(If)とを備えている。又、この反応管mの外側
にはサセプタ(3)上の基板(2)を誘導加熱するため
のヒータff1lを備え、サセプタ(3)を配備せる反
応管(1)の@ [(P)を一定温度(例えば700℃
)K保持するようにして贋る。(6)はサセプタ(3)
を回転制御するモータである。又、(7)は10*As
H11ガスの供給部、181191はTMGa 、TM
A/ガスの供給部、(10a)〜(10d)はキャリア
ガス(H2)の供給部、(lla−)〜(llb)はパ
ルプである。
The reaction tube 111 is made of high-purity quartz, and has a raw material gas inlet (la), an exhaust gas outlet (lb), and a quadrangular pyramid-shaped susceptor that supports four GaAs substrates (21) on four sides. It is equipped with a through hole (lc) for introducing a rotating shaft (4) for rotating the 13+, and further includes a cooling water inlet (1d) for circulating water as a refrigerant on the outer periphery, a water channel (le), and a drain port. (If). Also, a heater ff1l for induction heating the substrate (2) on the susceptor (3) is provided outside the reaction tube m, and a reaction tube (If) in which the susceptor (3) is disposed is provided. 1) @[(P) at a constant temperature (e.g. 700℃
) Fake it while keeping K. (6) is the susceptor (3)
This is a motor that controls the rotation of the Also, (7) is 10*As
H11 gas supply part, 181191 is TMGa, TM
A/Gas supply section, (10a) to (10d) are carrier gas (H2) supply sections, and (lla-) to (llb) are pulp.

この装置を使ってGaAs結晶を成長させるKはサセプ
タ(3)にGaAs基板(2)を装着した後、サセプタ
をヒータ(5)によシ所定温度に加熱したのち、TMQ
a、AsH3をキャリアガスであるH2と共に反応管(
1)内に供給し、熱分解させて基板上KGaAs結晶を
成長させる。このとき、結晶性を均一にするためサセプ
タ(3)を回転させ、また熱分解を効率よく行うため反
応管T1)内の水路(i e )K冷却水を流して反応
管全体を冷却+る。第5図は不純物添加をしない場合の
GaAs成畏膜の不純物濃度とAsH3の供給量の相関
を示す。ここで、GaAs基板は700℃に加熱してお
り、AsH3の濃度10@(AsH810*、H290
%)、TMGaQ供給量I X 10−4モ/v/分一
定としている。この図より、不純物濃度のバラツキの少
ないN型成長膜は、AsHBガス流量が400m1:7
分から1200m//分のとき得られることがわかる。
K, who grows GaAs crystal using this equipment, attaches the GaAs substrate (2) to the susceptor (3), heats the susceptor to a predetermined temperature with the heater (5), and then uses the TMQ
a, AsH3 is mixed with carrier gas H2 in a reaction tube (
1) A KGaAs crystal is grown on the substrate by thermal decomposition. At this time, in order to make the crystallinity uniform, the susceptor (3) is rotated, and in order to perform thermal decomposition efficiently, the cooling water in the water channel (i e ) K in the reaction tube T1) is flowed to cool the entire reaction tube. . FIG. 5 shows the correlation between the impurity concentration of the GaAs film and the supply amount of AsH3 when no impurity is added. Here, the GaAs substrate is heated to 700°C, and the concentration of AsH3 is 10@(AsH810*, H290
%), and the TMGaQ supply amount I x 10-4 mo/v/min is assumed to be constant. From this figure, the N-type grown film with little variation in impurity concentration has an AsHB gas flow rate of 400 m1:7.
1200 m//min.

流量が400trl’/分より少なくなると不純物濃度
の再現性が悪くなる。
When the flow rate is less than 400 trl'/min, the reproducibility of the impurity concentration deteriorates.

第6図は上記装置を使って新たにトリメチ〃ア〃ミニウ
ム(TM、+1’)を加えて不純物を添加することなく
結晶成長させたG a O,s+A10.7As膜の不
純物濃度とAsH3の供給量の相関を示す。
Figure 6 shows the impurity concentration and AsH3 supply of a GaO,s+A10.7As film grown using the above-mentioned apparatus without adding any impurities by newly adding trimethyaminium (TM, +1'). Shows correlation between quantities.

ここで、GaAs基板は700℃に加熱しており、TM
AJ 、TMGaを夫々0.2 5 X 1 0−’モ
/v/分、0.75X10 −eyv1分で供給し、A
sH1lガスの濃度を10g6としている。なお、キャ
リアガスとしてH2を5 l1分で流した。同図より、
不純物濃度のバラツキの少いN型G a 0.7AJO
,llAs成長膜はAsHaガス流量が3000m//
分以上の大量のガスが必要となることが解る。
Here, the GaAs substrate is heated to 700°C, and the TM
AJ and TMGa were supplied at a rate of 0.25×10-'mo/v/min and 0.75×10-eyv1 min, respectively.
The concentration of sH1l gas is set to 10g6. Note that H2 was flowed as a carrier gas at 5 liters for 1 minute. From the same figure,
N-type Ga 0.7AJO with little variation in impurity concentration
,llAs grown film has an AsHa gas flow rate of 3000 m//
It can be seen that a large amount of gas is required for more than 1 minute.

(ハ)発明が解決しようとする問題点 上述の通り不純物濃度の再現性の良い結晶成長膜を得る
Kは不純物添加をしないGaAsでは400m//分以
上、不純物添加をしないGa06’r A z o、a
 A Sでは’JK3000m//分以上の大量のAs
H3ガスを必要とする。さらに、AsH1lガスの流量
が多くなるのく比例してA11H8ガスが熱分解する際
に発生するAs加合物がサセプタに付着し結晶成長膜の
欠陥の原因となる。As加合物の析出をおさえるためサ
セプタをさらに加熱する方法がとられるが、これを行う
と例えば800℃以上にすると成長膜の再蒸発が激しく
なって結晶成長速度が減少する問題がある上、結晶成長
膜の電子移動度が減少するという問題がある。
(c) Problems to be solved by the invention As mentioned above, to obtain a crystal grown film with good reproducibility of impurity concentration, K is 400 m//min or more for GaAs without addition of impurities, and Ga06'r A z o without addition of impurities. ,a
A large amount of As over 'JK3000m//min'
Requires H3 gas. Furthermore, as the flow rate of AsH1l gas increases, As adducts generated when A11H8 gas is thermally decomposed adhere to the susceptor and cause defects in the crystal growth film. In order to suppress the precipitation of As additives, a method is used to further heat the susceptor, but if this is done, for example, if the temperature exceeds 800°C, there is a problem that re-evaporation of the grown film becomes intense and the crystal growth rate decreases. There is a problem in that the electron mobility of the crystal grown film decreases.

本発明はこの点く留意してなされたもので、結晶成長膜
の欠陥が少ない化合物半導体を安定に成長する方法を提
供しようとするものである。
The present invention has been made with this point in mind, and it is an object of the present invention to provide a method for stably growing a compound semiconductor with fewer defects in a crystal grown film.

に)問題点を解決するための手段 零発#!4は従来有機金属化合物ガスと共にサセプタ上
の基板上で熱分解していた水素化物ガスを、この基板上
領域に達する以前にこの基板上@域で受ける温度よシも
高い温度で予じめ活性化させ、その状態でこの基板上領
域はもたらしそこで有機金属化合物ガスと共に熱分解さ
せて基板上に化合物半導体の結晶成長を行うことを特徴
とするものである。
) Zero means to solve the problem #! 4 activates the hydride gas, which has conventionally been thermally decomposed on the substrate on the susceptor together with the organometallic compound gas, at a temperature higher than the temperature experienced on the substrate before reaching the area on the substrate. The method is characterized in that the region on the substrate is brought into contact with the organic metal compound gas and thermally decomposed together with the organometallic compound gas to grow crystals of the compound semiconductor on the substrate.

(句作用 結晶成長させるべき基板上に熱分解のためにもたらされ
る水素化物ガスは熱分解時に受ける温度よりも高い温度
が付年され予じめ活性化されていてその状態で有機金属
化合物ガスと共に熱分解されるので、大量の水素化物ガ
スを流入させることなく不純物濃度のバラツキの少ない
化合物半導体を成長させることができる。
(The hydride gas brought to the substrate on which the crystal is to be grown due to thermal decomposition is heated to a higher temperature than that experienced during thermal decomposition and activated in advance, and in that state it is combined with the organometallic compound gas. Since it is thermally decomposed, a compound semiconductor with less variation in impurity concentration can be grown without introducing a large amount of hydride gas.

(へ)実施例 先ず本発明方法を実施する気相成長装置の概要を第1図
の構成図に従い説明する。第1図中、4!J4図に示す
従来装置の構成要素と同一機能をもつものについては同
一符号を付し説明を省略する。
(f) Example First, the outline of a vapor phase growth apparatus for carrying out the method of the present invention will be explained with reference to the block diagram shown in FIG. In Figure 1, 4! Components having the same functions as those of the conventional device shown in FIG.

反応管(ljは第2の原料ガスの導入口(1f)を備え
、導入口(la)からは水素化物ガスであるAsH3ガ
ス(濃度10%)とキャリアガス(I(2)を導入し、
第2導入口(1))からは有機金属化合物であるTMG
aやTMAJとキャリアガスを導入するようにしている
。反応管illのサセプタ(3)を配している部分の上
方域には予熱部を構成するため表面がSICでコーティ
ングされている円筒状カーボンよりなる予熱体(I乃を
配し、この予熱体は反応管+lの外測に設置した予熱コ
イ/L’峙て誘導加熱されるように構成されている。サ
セ°デタ(3)は約700℃に1また予熱体01Jは約
850℃に加熱され、基板付近及び予熱体付付をそれぞ
れ同温度に保持する。反応管+11に隣接して示す特性
(Qは反応管内部の領域(9)における温度分布を示し
ている。
The reaction tube (lj) is equipped with an inlet (1f) for the second raw material gas, and AsH3 gas (concentration 10%), which is a hydride gas, and a carrier gas (I (2)) are introduced from the inlet (la),
TMG, which is an organometallic compound, is introduced from the second inlet (1)).
A, TMAJ, and a carrier gas are introduced. A preheating body (I) made of cylindrical carbon whose surface is coated with SIC is placed in the upper region of the part of the reaction tube ill where the susceptor (3) is arranged to constitute a preheating part. The preheating coil/L' installed on the outside of the reaction tube +l is configured to be heated by induction.Sase data (3) is heated to about 700°C, and preheating body 01J is heated to about 850°C. The temperature near the substrate and the preheating body are maintained at the same temperature.Characteristics shown adjacent to reaction tube +11 (Q indicates temperature distribution in region (9) inside the reaction tube).

本装置を用いてG30.7A、10.8A$膜を成長さ
せるために、サセプタ(31上の4面に4枚のGaAs
基板(2)を装着した後、サセプタ(3)及び予熱体0
4を高周波加熱によりそれぞれ所定温度に加熱する。
In order to grow G30.7A and 10.8A$ films using this device, four GaAs sheets were placed on the four sides of the susceptor (31).
After mounting the substrate (2), the susceptor (3) and the preheater 0
4 is heated to a predetermined temperature by high frequency heating.

しかる後に、反応管(1)上部の導入口(la)より1
0%4度のAsHsガスをfヤリアガスであるH2ガス
51/分と共に流じ、又第2導入口(11)よりH2ガ
、c600m//分と共K T M G aTMA/ガ
スを下記の実施例の如く流し、基板上に上記膜を成長さ
せる。この成長膜を均一にするため、サセプタ(31は
モータ(6)で回転され、また熱分解を効率よく行う丸
め反応管(1)の水路(1e)に冷却水を巡回させるの
は従来例と同じである。
After that, 1 from the inlet (la) at the top of the reaction tube (1).
0% 4 degree AsHs gas was flowed together with H2 gas, which is f Yaria gas, at 51/min, and H2 gas and c600m//min were also flowed through the second inlet (11). The film is grown on the substrate by flowing as in the example. In order to make this grown film uniform, the susceptor (31) is rotated by a motor (6), and unlike conventional methods, cooling water is circulated through the water channel (1e) of the rounded reaction tube (1) for efficient thermal decomposition. It's the same.

〔第1実施例〕 サセプタ(3)と予熱体01Jをそれぞれ上述の如く7
00℃、850″CIC加熱後、4人口(1a)よシH
2ガス517分と共に10%濃度のAsH3ガス(As
H810%、H210%)を流し、反応管(1)の第2
導入口(IP)よりIXIQ−’モ/L//分のTMG
aをH2ガス600mJ/分と共に流し、GaAs基板
(2)上に不純物を添加しない結晶成長膜を形成した。
[First embodiment] The susceptor (3) and the preheating body 01J are each made of 7 as described above.
After heating at 00℃, 850″CIC, 4 population (1a)
2 gas 517 minutes and 10% concentration AsH3 gas (As
10% H8, 10% H2) was poured into the second reaction tube (1).
TMG of IXIQ-'mo/L//min from the inlet (IP)
A was flowed together with H2 gas at 600 mJ/min to form a crystal growth film to which no impurities were added on the GaAs substrate (2).

第2図は第1実施例における結晶成長膜の不純物濃度を
AsH3供給量との相関を示したものである。
FIG. 2 shows the correlation between the impurity concentration of the crystal grown film and the amount of AsH3 supplied in the first embodiment.

〔第2実施例〕 第2導入口(1p)から供給する原料ガスの状態以外は
全て!1%施例通りとしてこの第2導入口(1))から
600m//分のH2ガスと共にTMGa及びTMAJ
を夫々0.75X10  モルフ分、0.25X10 
 モ、/I//分流し、GaAs基板(2)上に不純物
を添加しないGa 0 、7A10 、8に8 鵬成長
膜を形成した。第3図は第2実施例における結晶成長膜
の不純物濃度とAsH3供給量との相関を示したもので
ある。
[Second Example] Everything except the state of the raw material gas supplied from the second inlet (1p)! 1% as in the example, TMGa and TMAJ with H2 gas from this second inlet (1) for 600 m//min.
0.75X10 morphs, 0.25X10 respectively
Mo, /I// was used to form a GaAs growth film on Ga 0 , 7A10 and 8 without adding impurities on the GaAs substrate (2). FIG. 3 shows the correlation between the impurity concentration of the crystal grown film and the amount of AsH3 supplied in the second example.

第2図、第3図から明らかな通り、上述の従来方法によ
る第5図、kI/I、6図の結果と比較して、安定な不
純物濃度の結晶成長膜を比較的少ないAsH3ガスで得
ることが可能となっている。第2実施例では組成比がG
 a 0−7A I!(1−8A sのものを例示した
が、本発明はGaχAJLχAs混晶(0くχ〈1)系
全般に、ガス流量並びにサセプタ及び予熱体の温度を調
整することくより適用可能である。
As is clear from FIGS. 2 and 3, a crystal grown film with a stable impurity concentration can be obtained with a relatively small amount of AsH3 gas compared to the results shown in FIGS. 5, kI/I, and 6 using the conventional method described above. It is now possible. In the second example, the composition ratio is G
a 0-7A I! (1-8A s is shown as an example, but the present invention is applicable to all GaχAJLχAs mixed crystal (0xχ<1) systems by adjusting the gas flow rate and the temperature of the susceptor and preheater.

(ト)発明の効果 本発明は基板に付与する水素化物(AsH8)を基板付
近くもたらされる前(該基板付近で輛見られる温度より
高い温度で活性化しているのでより少ないAsモ〃分率
で安定した結晶成長膜が得られるばかりでなに、AsH
3流量の減少によりサセプタに付着するAs化合物の・
析出量が減少しかつ熱分解しやすい有機金属化合物が基
板に達する前に熱分解して結晶表面に付着して生ずる結
晶欠陥が減少する効果がある。
(G) Effects of the Invention In the present invention, the hydride (AsH8) applied to the substrate is activated at a temperature higher than the temperature observed near the substrate before it is brought near the substrate, so the As moiety is lower. Why can you just obtain a stable crystal growth film with AsH?
3. As the As compound adheres to the susceptor due to a decrease in the flow rate,
This has the effect of reducing the amount of precipitation and reducing crystal defects that occur when organometallic compounds that are easily thermally decomposed are thermally decomposed and attached to the crystal surface before reaching the substrate.

【図面の簡単な説明】[Brief explanation of drawings]

hl/IJ1図は本発明方法を実施する気相成長装置の
概略構成図、h42図と第3図は本発明方法の各異なる
実施例による結晶の不純物rJI!度とAsH3供給量
の相関図である。第4図は従来の気相成長装置の概略構
成図、第5図と第6図は従来方法による2種の結晶の不
純物濃度とAsH3供給量の相関図である。 (1)・・・反応管、(1’a)(IF)・・・原料導
入口、(2)・・・基板、(3)・・・サセプタ。
Figure hl/IJ1 is a schematic diagram of a vapor phase growth apparatus for carrying out the method of the present invention, and Figures h42 and 3 are crystal impurities rJI! according to different embodiments of the method of the present invention. FIG. FIG. 4 is a schematic configuration diagram of a conventional vapor phase growth apparatus, and FIGS. 5 and 6 are correlation diagrams of impurity concentrations of two types of crystals and AsH3 supply amount according to the conventional method. (1) Reaction tube, (1'a) (IF) Raw material inlet, (2) Substrate, (3) Susceptor.

Claims (1)

【特許請求の範囲】[Claims] (1)有機金属化合物ガスと水素化物ガスとを予熱され
ている基板上で熱分解して化合物半導体結晶を成長する
化合物半導体の気相成長方法において、前記水素化物ガ
スを前記基板上に、該基板上での処理温度よりも高い温
度で付与することを特徴とする化合物半導体の気相成長
方法。
(1) In a compound semiconductor vapor phase growth method in which a compound semiconductor crystal is grown by thermally decomposing an organometallic compound gas and a hydride gas on a preheated substrate, the hydride gas is deposited on the substrate and the compound semiconductor crystal is grown. A method for vapor phase growth of a compound semiconductor, characterized in that the temperature is applied at a temperature higher than the processing temperature on the substrate.
JP25696784A 1984-12-05 1984-12-05 Method of epitaxial growth of compound semiconductor Pending JPS61135111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25696784A JPS61135111A (en) 1984-12-05 1984-12-05 Method of epitaxial growth of compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25696784A JPS61135111A (en) 1984-12-05 1984-12-05 Method of epitaxial growth of compound semiconductor

Publications (1)

Publication Number Publication Date
JPS61135111A true JPS61135111A (en) 1986-06-23

Family

ID=17299856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25696784A Pending JPS61135111A (en) 1984-12-05 1984-12-05 Method of epitaxial growth of compound semiconductor

Country Status (1)

Country Link
JP (1) JPS61135111A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007081315A (en) * 2005-09-16 2007-03-29 Taiyo Nippon Sanso Corp Device for depositing semiconductor film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007081315A (en) * 2005-09-16 2007-03-29 Taiyo Nippon Sanso Corp Device for depositing semiconductor film

Similar Documents

Publication Publication Date Title
JPS6134928A (en) Growing process of element semiconductor single crystal thin film
JPH0319198B2 (en)
JPS61135111A (en) Method of epitaxial growth of compound semiconductor
JPS61275191A (en) Vapor-phase growth method for gaas thin film
JPH04187597A (en) Production of thin film of gallium nitride
JP3406504B2 (en) Semiconductor manufacturing method
JPH0713945B2 (en) Vapor growth method
JPH02126632A (en) Vapor phase epitaxy for compound semiconductor crystal layer and reaction tube therefor
JPS61134013A (en) Compound semiconductor crystal growth method
JP2753832B2 (en) III-V Vapor Phase Growth of Group V Compound Semiconductor
JPS625634A (en) Vapor growth method for compound semiconductor
JPH0547518B2 (en)
JPH09278596A (en) Vapor phase growing of iii-v compound semiconductor
JPS63266816A (en) Growing method for iii-v compound semiconductor crystal
JPH0239423A (en) Method of applying iii-v compound to semiconductor substrate
JPH07153705A (en) Vapor growth device
JPS6278192A (en) Production of n-type single crystal thin film
JPS62182195A (en) Method for growing iii-v compound semiconductor
JPS6389491A (en) Vapor growth device
JPS6144424A (en) Vapor growth of compound semiconductor
JPH0686355B2 (en) Group III-V vapor deposition method for group V compound semiconductors
JPS639742B2 (en)
JPH03112127A (en) Method of forming silicon carbide
JPH065516A (en) Method and apparatus for vapor growth of compound semiconductor crystal
JPS627692A (en) Selective growth method for semiconductor