JPS63176393A - Production of aluminum nitride thin film - Google Patents

Production of aluminum nitride thin film

Info

Publication number
JPS63176393A
JPS63176393A JP62008481A JP848187A JPS63176393A JP S63176393 A JPS63176393 A JP S63176393A JP 62008481 A JP62008481 A JP 62008481A JP 848187 A JP848187 A JP 848187A JP S63176393 A JPS63176393 A JP S63176393A
Authority
JP
Japan
Prior art keywords
thin film
aluminum
aluminum nitride
nitride thin
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62008481A
Other languages
Japanese (ja)
Inventor
Kenji Iijima
賢二 飯島
Atsushi Abe
阿部 惇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62008481A priority Critical patent/JPS63176393A/en
Publication of JPS63176393A publication Critical patent/JPS63176393A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/10Heating of the reaction chamber or the substrate
    • C30B25/105Heating of the reaction chamber or the substrate by irradiation or electric discharge
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/38Nitrides

Abstract

PURPOSE:To enable the formation of an aluminum nitride thin film having high crystallinity and low impurity content at a low temperature, by reacting excited aluminum or aluminum-containing compound with excited nitrogen or nitrogen-containing compound and dissociated hydrogen. CONSTITUTION:An aluminum nitride thin film can be formed on a substrate by reacting excited aluminum or aluminum-containing compound with excited nitrogen or nitrogen-containing compound and dissociated hydrogen. The excitation of the components can be carried out by using microwave plasma, arc discharge, laser excitation, ultraviolet irradiation, ECR plasma, etc.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は低温で結晶性、電気的特性の良い結晶化窒化ア
ルミニウム薄膜を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing a crystallized aluminum nitride thin film having good crystallinity and electrical properties at low temperatures.

従来の技術 基板材料、表面弾性波素子用材料、光学素子用材料とし
てすぐれた特性を持つ窒化アルミニウム薄膜は真空蒸着
、スパッタリング、あるいはCvD等の方法で作製され
ている。
Conventional technology Aluminum nitride thin films, which have excellent properties as substrate materials, surface acoustic wave device materials, and optical device materials, are produced by methods such as vacuum evaporation, sputtering, or CVD.

発明が解決しようとする問題点 いずれの薄膜形成法においても、アルミニウムと窒素の
反応により窒化アルミニウム薄膜が形成されるわけであ
るが、結晶化窒化アルミニウム薄膜の作製のためには基
板温度として800℃〜1000℃以上の温度が必要で
あり、プロセス上大きな欠点となっている。また、基板
の熱エネルギーのみでは原料の分解が不十分であったり
、基板表面での原子のマイグレイジョンが十分に行われ
ないため結晶性の点で満足のゆく薄膜が得られていると
は言いがたいのが現状である。
Problems to be Solved by the Invention In both thin film formation methods, an aluminum nitride thin film is formed by a reaction between aluminum and nitrogen, but in order to fabricate a crystallized aluminum nitride thin film, the substrate temperature must be 800°C. A temperature of ~1000°C or higher is required, which is a major drawback in terms of the process. In addition, it is difficult to obtain a thin film that is satisfactory in terms of crystallinity because the thermal energy of the substrate alone is insufficient to decompose the raw materials or migration of atoms on the substrate surface is not sufficient. The current situation is difficult to say.

本発明は、結晶性の良い不純物の少ない窒化アルミニウ
ム薄膜を低温で得るための方法を提供することを目的と
する。
An object of the present invention is to provide a method for obtaining an aluminum nitride thin film with good crystallinity and few impurities at a low temperature.

問題点を解決するための手段 アルミニウム、またはアルミニウムを含む化合物の励起
種と、窒素、または窒素を含む化合物の励起種と、解離
水素とを反応させることで基板上に低温で結晶性の良い
化合物薄膜を得る。
Means for solving the problem A compound with good crystallinity is formed on a substrate at a low temperature by reacting an excited species of aluminum or a compound containing aluminum with nitrogen or an excited species of a compound containing nitrogen and dissociated hydrogen. Obtain a thin film.

作用 励起種を用いた反応は基本的に活性化エネルギ−を持た
ない反応なので低温で窒化アルミニウムの合成が可能に
なる。さらに、解離水素の高い内部エネルギー(431
kJ/mol )により基板上での反応、マイグレーシ
ョン、表面不純物の除去が促進され、さらに水素原子に
よるダングリングボンドのパシベーション効果により、
低温で結晶性、電気特性の優れた薄膜形成が可能になる
Since reactions using active excited species basically have no activation energy, it is possible to synthesize aluminum nitride at low temperatures. Furthermore, the high internal energy of dissociated hydrogen (431
kJ/mol ) promotes reaction, migration, and removal of surface impurities on the substrate, and furthermore, the passivation effect of dangling bonds by hydrogen atoms
It becomes possible to form thin films with excellent crystallinity and electrical properties at low temperatures.

実施例 以下、図面を参照して、実施例にもとすき本発明の詳細
な説明する。
EXAMPLES Hereinafter, the present invention will be described in detail by way of examples with reference to the drawings.

まず、本薄膜製造法による薄膜製造装置の構成を第1図
に示す。図中1はりアクタ−12はグラファイト製サセ
プタ、3は基板である。グラファイト製サセプタを高周
波誘導加熱により加熱し、熱伝導により基板を加熱した
。各ボンベからの原料ガスは、それぞれ41〜43の発
生部で活性化された。活性化の方法としては、本実施例
ではマイクロ波プラズマを用いたが、この他、アーク放
電、レーザー励起、紫外光照射、ECRプラズマ等を用
いてもよい。ヘリウムで希釈したトリメチルアルミニウ
ム(TMA)をボンベ51から、アンモニアガスをボン
ベ52から、そして水素ガスをボンベ53から供給した
。それぞれ流量はマスフローコントロラー61を用いて
調節した。基板には(0001)サファイアを用いた。
First, FIG. 1 shows the configuration of a thin film manufacturing apparatus using the present thin film manufacturing method. In the figure, 1 beam actor 12 is a graphite susceptor, and 3 is a substrate. A graphite susceptor was heated by high-frequency induction heating, and the substrate was heated by thermal conduction. The raw material gas from each cylinder was activated at generation points 41 to 43, respectively. Although microwave plasma was used in this embodiment as an activation method, other methods such as arc discharge, laser excitation, ultraviolet light irradiation, and ECR plasma may also be used. Trimethylaluminum (TMA) diluted with helium was supplied from a cylinder 51, ammonia gas from a cylinder 52, and hydrogen gas from a cylinder 53. Each flow rate was adjusted using a mass flow controller 61. (0001) sapphire was used for the substrate.

TMAおよびアンモニアは約10 ’mol/sinの
割合で供給した。
TMA and ammonia were supplied at a rate of about 10'mol/sin.

基板温度300℃以上で結晶化した窒化アルミニウムの
薄膜が得られた。表面は光学的に平面で300℃で成長
した薄膜はX線回折パターンにおいてC軸に垂直な面の
反射のみが非常に強く現れた。
A thin film of aluminum nitride crystallized at a substrate temperature of 300° C. or higher was obtained. The surface of the thin film was optically flat and was grown at 300° C. In the X-ray diffraction pattern, only the reflection on the plane perpendicular to the C axis appeared very strongly.

ラウェ写真を撮影したところ、第2図に示すような回折
パターンが得られた。X線のビーム径は約2II11で
あり、膜面に垂直に入射した。約5X5mmの窒化アル
ミニウム薄膜中ではいずれの位置においても第2図に示
すような回折パターンが得られたことから単結晶薄膜が
得られたことがわかる。この薄膜の電気抵抗を測定した
ところ10”Ω・Cl11と極めて高く、純度が高く欠
陥の少ない窒化アルミニウム薄膜が基板温度わずか30
0℃で形成されたことがわかる。
When a Laue photograph was taken, a diffraction pattern as shown in FIG. 2 was obtained. The beam diameter of the X-rays was approximately 2II11 and was incident perpendicularly to the film surface. It can be seen that a single crystal thin film was obtained since a diffraction pattern as shown in FIG. 2 was obtained at any position in the approximately 5×5 mm aluminum nitride thin film. When the electrical resistance of this thin film was measured, it was extremely high at 10"Ω・Cl11, and the aluminum nitride thin film with high purity and few defects was found to have a substrate temperature of only 30%.
It can be seen that it was formed at 0°C.

また、第11の構成も本発明の主旨を損なわない範囲に
おいて各種の変形が可能であることは明らかである。そ
して、本発明の主旨を損なわない範囲において本発明は
スパッタリング法、真空蒸着法等にも応用される。
Further, it is clear that various modifications can be made to the eleventh configuration without departing from the spirit of the present invention. The present invention may also be applied to sputtering methods, vacuum evaporation methods, etc., within the scope of not detracting from the gist of the present invention.

発明の効果 以上の説明から明らかな様に、本発明による薄膜形成法
では、解離水素原子の持つ大きな内部エネルギーが薄膜
形成に用いられるため低い基板温度で窒化アルミニウム
薄膜の形成が可能になる。
Effects of the Invention As is clear from the above explanation, in the thin film forming method according to the present invention, the large internal energy of dissociated hydrogen atoms is used for thin film formation, so that it is possible to form an aluminum nitride thin film at a low substrate temperature.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例で用いた試料作製装置の模式図
、第2図は薄膜のラウェ写真の転写図である。 1・・・リアクタ、2・・・サセプタ、3・・・基板、
41〜43・・・発生部、51・・・TMA、52・・
・NH3,53・・・H2,61・・・マスフローコン
トローラー、71・・・高周波コイル、81・・・排気
口。 代理人の氏名 弁理士 中尾敏男 ほか1名= ”    第1図 第2図
FIG. 1 is a schematic diagram of a sample preparation apparatus used in an example of the present invention, and FIG. 2 is a transfer diagram of a Laue photograph of a thin film. 1...Reactor, 2...Susceptor, 3...Substrate,
41-43... Generation part, 51... TMA, 52...
・NH3,53...H2,61...Mass flow controller, 71...High frequency coil, 81...Exhaust port. Name of agent: Patent attorney Toshio Nakao and one other person = ” Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] アルミニウム、またはアルミニウムを含む化合物の励起
種と、窒素、または窒素を含む化合物の励起種と、解離
水素とを反応させることにより基板上に窒化アルミニウ
ム薄膜を作製することを特徴とする窒化アルミニウム薄
膜の製造方法。
An aluminum nitride thin film is produced on a substrate by reacting an excited species of aluminum or a compound containing aluminum, nitrogen or an excited species of a compound containing nitrogen, and dissociated hydrogen. Production method.
JP62008481A 1987-01-16 1987-01-16 Production of aluminum nitride thin film Pending JPS63176393A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62008481A JPS63176393A (en) 1987-01-16 1987-01-16 Production of aluminum nitride thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62008481A JPS63176393A (en) 1987-01-16 1987-01-16 Production of aluminum nitride thin film

Publications (1)

Publication Number Publication Date
JPS63176393A true JPS63176393A (en) 1988-07-20

Family

ID=11694298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62008481A Pending JPS63176393A (en) 1987-01-16 1987-01-16 Production of aluminum nitride thin film

Country Status (1)

Country Link
JP (1) JPS63176393A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02141496A (en) * 1988-11-22 1990-05-30 Alps Electric Co Ltd Method for synthesizing aluminum nitride
JPH04136173A (en) * 1990-09-25 1992-05-11 Alps Electric Co Ltd Method for depositing synthetic film
JP2008019140A (en) * 2006-07-14 2008-01-31 Ngk Insulators Ltd METHOD FOR FORMING AlN SINGLE CRYSTAL FILM
JP2008159958A (en) * 2006-12-26 2008-07-10 Showa Denko Kk Manufacturing method of group iii nitride semiconductor, manufacturing method of group iii nitride semiconductor light-emitting element, group iii nitride semiconductor light-emitting element and lamp
WO2009096270A1 (en) * 2008-01-31 2009-08-06 Canon Anelva Corporation AlN HETEROEPITAXIAL CRYSTAL, METHOD FOR PRODUCING THE SAME, BASE SUBSTRATE FOR GROUP III NITRIDE FILM USING THE CRYSTAL, LIGHT-EMITTING DEVICE, SURFACE ACOUSTIC WAVE DEVICE, AND SPUTTERING APPARATUS

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02141496A (en) * 1988-11-22 1990-05-30 Alps Electric Co Ltd Method for synthesizing aluminum nitride
JPH04136173A (en) * 1990-09-25 1992-05-11 Alps Electric Co Ltd Method for depositing synthetic film
JP2008019140A (en) * 2006-07-14 2008-01-31 Ngk Insulators Ltd METHOD FOR FORMING AlN SINGLE CRYSTAL FILM
JP2008159958A (en) * 2006-12-26 2008-07-10 Showa Denko Kk Manufacturing method of group iii nitride semiconductor, manufacturing method of group iii nitride semiconductor light-emitting element, group iii nitride semiconductor light-emitting element and lamp
WO2009096270A1 (en) * 2008-01-31 2009-08-06 Canon Anelva Corporation AlN HETEROEPITAXIAL CRYSTAL, METHOD FOR PRODUCING THE SAME, BASE SUBSTRATE FOR GROUP III NITRIDE FILM USING THE CRYSTAL, LIGHT-EMITTING DEVICE, SURFACE ACOUSTIC WAVE DEVICE, AND SPUTTERING APPARATUS

Similar Documents

Publication Publication Date Title
US4421592A (en) Plasma enhanced deposition of semiconductors
JPS63188938A (en) Method for vapor growth of gallium nitride compound semiconductor
Bedair et al. Laser selective deposition of GaAs on Si
JP2002234799A (en) Method of producing silicon carbide film and method of producing silicon carbide multilayer film structure
JPH06293593A (en) Synthesis method by plasma cvd method and epitaxial aln synthesized by the method
JPS63176393A (en) Production of aluminum nitride thin film
JPH0347971A (en) Method for synthesis by plasma cvd
JPS63176395A (en) Production of gallium nitride thin film
JPS62171990A (en) Production of thin film of crystals
JPS63176400A (en) Production of boron nitride thin film
JPS63176394A (en) Production of silicon nitride thin film
US4609424A (en) Plasma enhanced deposition of semiconductors
JPS6149392B2 (en)
JP3728466B2 (en) Method for producing single crystal diamond film
JPS61286297A (en) Chemical vapor deposition process
JP3760175B2 (en) Diamond film formation method
JPS63188932A (en) Method for vapor growth of gallium nitride compound semiconductor
JPS63188933A (en) Method for vapor growth of gallium nitride compound semiconductor
JP3374525B2 (en) Method and apparatus for forming aluminum nitride thin film
JPS6027699A (en) Preparation of single crystal film of silicon carbide
JPH0572742B2 (en)
JP3195093B2 (en) Method of forming diamond film
JPS63288998A (en) Formation of single crystalline silicon carbide
JPS61176111A (en) Manufacture of compound semiconductor thin film
JPS63145778A (en) Production of drum-shaped hexagonal boron nitride film