JPS63478A - Formation of thin film - Google Patents

Formation of thin film

Info

Publication number
JPS63478A
JPS63478A JP14335186A JP14335186A JPS63478A JP S63478 A JPS63478 A JP S63478A JP 14335186 A JP14335186 A JP 14335186A JP 14335186 A JP14335186 A JP 14335186A JP S63478 A JPS63478 A JP S63478A
Authority
JP
Japan
Prior art keywords
substrate
light
soft
thin film
rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14335186A
Other languages
Japanese (ja)
Inventor
Masao Nakao
中尾 昌夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP14335186A priority Critical patent/JPS63478A/en
Publication of JPS63478A publication Critical patent/JPS63478A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To form a fine semiconductor wire, etc., with which a quantum effect is anticipated by supplying gaseous raw materials onto a substrate in a vacuum vessel, projecting soft X-rays of a specific wavelength having a spatial intensity distribution thereto to form the thin film selectively on the substrate. CONSTITUTION:The substrate 6 is fixed to the sample holder 1 in the vacuum vessel 2 and the substrate 6 is heated by a heater contained in the sample holder 1. The gaseous raw materials are supplied from gas cells 4, 5 onto the substrate 6 and at the same time, radiation light is projected thereto by using synchrotron radiation light. Monochromatic light, interference fringe or standing wave is utilized for said radiation light and the spatial intensity distribution is made to provide the soft X-rays having several - several 100Angstrom wavelength. The thin film-like material is thereby selectively grown and formed only in the place where the light intensity is higher than certain intensity. The fine semiconductor wire or fine metallic wire with which the quantum effect is anticipated is thus obtd.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、主に半導体材料もしくは金属材料から成る薄
膜の形成方法に属し、特に量子効果の期待される半導体
細線もしくは金属細線の作成に有効な成長方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial application field The present invention mainly relates to a method for forming thin films made of semiconductor materials or metal materials, and is particularly applicable to the production of thin semiconductor wires or thin metal wires that are expected to have quantum effects. It is about effective growth methods.

(ロ)従来の技術 薄膜状物質の基板上への形成方法として、光励起CVD
 (chemical  vapor  deposi
tion)法が開発されている(例えば、応用物理筒5
2巻筒78<1983>5ba頁〜566頁参照)。光
励起により期待される効果は、大別して、光による加熱
作用と光化学反応の誘起である。従来行なわれている方
法では、はぼ全てが前者の効果を利用するものであシ、
応用としては、基板の大面積化などに限られてい友。
(b) Conventional technology As a method of forming a thin film material on a substrate, photo-excited CVD is used.
(chemical vapor deposition
tion) method has been developed (for example, applied physics cylinder 5
(See 2-Volume Tube 78 <1983> pages 5ba to 566). The effects expected from photoexcitation can be broadly classified into heating effects and induction of photochemical reactions. Most of the conventional methods utilize the former effect;
Applications are limited to increasing the area of substrates.

一方、後者についてば、プロセスの低温化やマイクロエ
レクトロニクスへの応用が考えられる。
On the other hand, regarding the latter, lowering the process temperature and application to microelectronics can be considered.

光化学反応を誘起するには、一般に紫外頭VC,あるい
はさらに短波長の光が必要である。ところが、従来この
領域の光源として利用されているのけ水銀ランプとエキ
シマレーザ−のみで、波長・強度ともに問題があった。
In order to induce a photochemical reaction, ultraviolet VC or even shorter wavelength light is generally required. However, conventionally only mercury lamps and excimer lasers have been used as light sources in this area, and they have had problems with both wavelength and intensity.

(ハ)発明が解決しようきする問題点 光励起CVD法において、プロセスの低温化や極めて空
間分解能の高い選択成長を可能とするためKは、軟X線
領域の光が有効である。この領域では、波長が数〜故1
00Aの程度であり、固体中の電子のド・ブロイ波長と
同程度となる。
(c) Problems to be Solved by the Invention In the photo-excited CVD method, light in the soft X-ray region is effective for K in order to enable low process temperatures and selective growth with extremely high spatial resolution. In this region, the wavelength ranges from a few to 1
00A, which is about the same as the de Broglie wavelength of electrons in a solid.

従って、この波長領域で強度の強い光源を用意して、こ
れを光励起反応容器に導入する方法および装置xtを開
発することができれば、量子効果の期待される半導体細
線もしくけ金属細線の作成KF5用することができる。
Therefore, if we can prepare a light source with high intensity in this wavelength range and develop a method and apparatus xt for introducing it into a photoexcitation reaction vessel, it would be possible to create semiconductor thin wires or thin metal wires with expected quantum effects for KF5. can do.

に)問題点を解決するための手段 本発明は、光源としてシンクロトロン放射光を用い、真
空容器中におかれた基板上に原料ガスを供給するととも
に、放射光を照射して薄膜状物質を形成するものである
。その際、放射光を単色化し、干渉縞あるいけ定在波な
どを利用した強度分布を作っておくと、ある強さより光
強度の強い場所だけ選択的な成長が生ずる。シンクロト
ロン放射光は可視からX線におよぶ白色光であり、故1
0A前後の軟X線を使えば干渉縞の間隔も数1OAとな
り、量子効果の期待される[lo人のサイズの″P導体
細線もしくは企図NJ線を作成することができる。
B) Means for Solving the Problems The present invention uses synchrotron radiation as a light source, supplies raw material gas onto a substrate placed in a vacuum container, and irradiates the synchrotron radiation to form a thin film material. It is something that forms. At that time, if the synchrotron radiation is made monochromatic and an intensity distribution is created using interference fringes or standing waves, selective growth will occur only in areas where the light intensity is stronger than a certain level. Synchrotron synchrotron radiation is white light ranging from visible to X-rays.
If soft X-rays around 0A are used, the spacing between the interference fringes will be several 1OA, making it possible to create thin P-conductor wires or planned NJ wires of the size of human beings, which are expected to produce quantum effects.

なお、将来実現することが期待されているX線レーザー
を光源に使っても、同様の効果が得られる。
Note that similar effects can be obtained by using an X-ray laser as a light source, which is expected to be realized in the future.

(剖作用 一般に、軟x11j領域の光のエネルギーは、原子また
は分子の内殻準位の電子を励起することができ、熱エネ
ルギーがなくとも化学反応を進行させることができる。
(Analysis) In general, the energy of light in the soft x11j region can excite electrons in the inner shell levels of atoms or molecules, and chemical reactions can proceed even without thermal energy.

基板上に吸着されたガス分子は、光のエネルギーを吸収
して励起状態となり、分解などの反応を起こして薄膜の
成長が生ずる。
Gas molecules adsorbed on the substrate absorb light energy and become excited, causing reactions such as decomposition and the growth of a thin film.

他方、光が当らない場所では、一度吸着されたガス分子
は再び解離し何の付着も生じない。尚、軟X線より更に
波長の短かいX線領域の光は物質を透過するので不適当
である。
On the other hand, in a place not exposed to light, the gas molecules once adsorbed dissociate again and no adhesion occurs. Note that light in the X-ray region with a shorter wavelength than soft X-rays is unsuitable because it passes through substances.

(へ)実施例 次に、この発明の実施例を図面を参考にしながら詳述す
る。
(f) Embodiments Next, embodiments of the present invention will be described in detail with reference to the drawings.

第1図は、この発明全実施するための装置の構成例であ
る。基板16)を固定した試料ホルダー(])が真空容
器(2)の中に取り付けられ、試料ホルダー(liには
基板(6)を加熱するためのヒータが内蔵されている。
FIG. 1 shows an example of the configuration of an apparatus for carrying out the entire invention. A sample holder (]) to which a substrate 16) is fixed is attached in a vacuum container (2), and a heater for heating the substrate (6) is built into the sample holder (li).

真空容器(2)は、シンクロトロン放射光のビームライ
ンと接続されており、途中には、それ自体周知の多層膜
干渉計からなるX線干渉計が置かれている。ま之、ぶ料
ガスを導入するため、ガス導lv+41と(6)が用意
されている。尚、図番t31は液体窒素シェラウドであ
る。
The vacuum container (2) is connected to a synchrotron radiation beam line, and an X-ray interferometer consisting of a well-known multilayer interferometer is placed along the way. However, in order to introduce fuel gas, gas conduits lv+41 and (6) are prepared. Note that the drawing number t31 is a liquid nitrogen sheroud.

この装置を使って、ヒ化ガリウム(GaAs )細線を
作成した例について説明する。作成条件は下記の通りで
ある。
An example of creating a gallium arsenide (GaAs) thin wire using this device will be described. The preparation conditions are as follows.

基板 GaAsウェハー(100)面 ノンドープ、 高抵抗 基板温度    約500℃ ガス導入量 アルシン(AsH8)   Icc/mfnトリメチル
ガリウム 0.2cc/min成長時真空度    5
X 10−’To r r成長速度        0
.2μm/h光源 シンクロトロン放射光 2.5GeV電子蓄積リン多ケ
ンシユレ ーターライン 放射光波長     10〜100A(可変、1%バン
ド巾) 放射光強度    フォトン数 1014〜1015個 (蓄積電流100mAの 時) 軟X線は、上εχX線干渉計より第2図て示す如く、強
弱のくり返しパターンからなる空間的強度分布をもった
ものに変調されて基板(6)の表面に達する。従って、
基板(6)の表面には、ある値以上の強度の軟X線照射
を受けたところのみ、GaAs細線(7)が堆積する。
Substrate GaAs wafer (100) surface Non-doped, high resistance Substrate temperature Approximately 500℃ Gas introduced amount arsine (AsH8) Icc/mfn Trimethylgallium 0.2cc/min Degree of vacuum during growth 5
X 10-'To r r growth rate 0
.. 2μm/h light source synchrotron radiation 2.5GeV electron storage phosphorus multi-ensulator line synchrotron radiation wavelength 10-100A (variable, 1% band width) synchrotron radiation intensity number of photons 1014-1015 (at storage current 100mA) soft The X-rays reach the surface of the substrate (6) after being modulated by the εχ X-ray interferometer into a spatial intensity distribution consisting of a repeating pattern of intensity as shown in FIG. Therefore,
GaAs thin wires (7) are deposited on the surface of the substrate (6) only in areas exposed to soft X-ray irradiation with an intensity above a certain value.

Jlil OAの軟X線を使えば、上記空間的強度分布
におけるパターンのくり返し間隔も最小、故1OAとな
るのでGaAs細線(7)の幅も同程度になる。尚、よ
り大々る幅のGaAS細線金得るために、故100Ai
での波長の軟X線が適宜用いられる。
If Jlil OA's soft X-rays are used, the repetition interval of the pattern in the above spatial intensity distribution will be the minimum, hence 1 OA, and the width of the GaAs thin line (7) will also be about the same. In addition, in order to obtain a larger width of GaAS thin wire, the late 100Ai
Soft X-rays with a wavelength of

以上は半導体m?8J1の12を長について述べたが、
本発明は金属細線の成長にも適用される。即ち、例tl
d’、反Eガスとしてトリメチルアルミニウムやトリメ
チルアルミニウムを用いれば、サファイやあるいは半導
体又はその他の基板上に同様にしてアルミニウム細線を
成長できる。
Is the above semiconductor m? I mentioned the length of 12 of 8J1,
The invention also applies to the growth of thin metal wires. That is, example tl
d', If trimethylaluminum or trimethylaluminum is used as the anti-E gas, thin aluminum wires can be grown on sapphire, semiconductor, or other substrates in the same manner.

(ト)発明の効果 本発明の方法では、軟xm@域の光を使うため、従来の
方法に比べ、より微細な選択的成長が可能となる。また
、物質によっては、内aFIb起されることにより、光
の熱作用では生成し得ない非平衡相が形成される場合が
ある。
(g) Effects of the Invention Since the method of the present invention uses light in the soft xm@ region, finer selective growth is possible compared to conventional methods. Furthermore, depending on the substance, a non-equilibrium phase that cannot be generated by the thermal action of light may be formed due to the activation of aFIb.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明を実施するための装置の側面図、第
2図は干渉縞を用いた半導体細線作成の概念図である。 +1)・・・試料ホルダー、 (2)・・・真空容器、
(3)・・・液体窒素シュラウド、+41+51・・・
ガスセル、(6)・・・基板、 (7)・・・GaAs
細線。
FIG. 1 is a side view of an apparatus for carrying out the present invention, and FIG. 2 is a conceptual diagram of the production of semiconductor thin wires using interference fringes. +1)...sample holder, (2)...vacuum container,
(3)...Liquid nitrogen shroud, +41+51...
Gas cell, (6)...Substrate, (7)...GaAs
Thin line.

Claims (1)

【特許請求の範囲】[Claims] (1)真空容器中で、基板上に原料ガスを供給すると同
時に、数ないし数100Åの波長をもつ軟X線を照射し
て行なう光励起CVD法において、空間的強度分布を有
する軟X線を用いて、選択的成長を行なうことを特徴と
する薄膜形成方法。
(1) In the photoexcitation CVD method, which is performed by supplying raw material gas onto the substrate in a vacuum container and simultaneously irradiating soft X-rays with a wavelength of several to several hundred angstroms, soft X-rays with a spatial intensity distribution are used. A thin film forming method characterized by performing selective growth.
JP14335186A 1986-06-19 1986-06-19 Formation of thin film Pending JPS63478A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14335186A JPS63478A (en) 1986-06-19 1986-06-19 Formation of thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14335186A JPS63478A (en) 1986-06-19 1986-06-19 Formation of thin film

Publications (1)

Publication Number Publication Date
JPS63478A true JPS63478A (en) 1988-01-05

Family

ID=15336764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14335186A Pending JPS63478A (en) 1986-06-19 1986-06-19 Formation of thin film

Country Status (1)

Country Link
JP (1) JPS63478A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01228540A (en) * 1988-03-08 1989-09-12 Seiko Epson Corp X-ray chemical reaction treatment
JPH04355926A (en) * 1991-01-10 1992-12-09 Nec Corp Thermal cvd method
EP0548905A2 (en) * 1991-12-24 1993-06-30 Hitachi, Ltd. Atomic devices and logical circuits and method of manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01228540A (en) * 1988-03-08 1989-09-12 Seiko Epson Corp X-ray chemical reaction treatment
JPH04355926A (en) * 1991-01-10 1992-12-09 Nec Corp Thermal cvd method
EP0548905A2 (en) * 1991-12-24 1993-06-30 Hitachi, Ltd. Atomic devices and logical circuits and method of manufacturing the same
EP0548905A3 (en) * 1991-12-24 1995-09-06 Hitachi Ltd Atomic devices and logical circuits and method of manufacturing the same

Similar Documents

Publication Publication Date Title
EP0184352A1 (en) Method of surface treatment
JPS60206445A (en) Photochemical gaseous phase growing method
JPS60206019A (en) Method and device for forming layer by light decomposing andprecipitating
JPS62243768A (en) Formation of deposited film
JPS63478A (en) Formation of thin film
JPS5982732A (en) Manufacture for semiconductor device
JPS632327A (en) Etching of fine pattern
GB2190541A (en) A method for the production of semiconductor devices
WO1997048499A1 (en) GaAs SUBSTRATE WITH A PASSIVATING EPITAXIAL GALLIUM SULFIDE FILM AND METHODS FOR FORMING SAME
JPS5961919A (en) Manufacture of thin film
JPH01280323A (en) Vapor phase epitaxial growth system
Hayashi Photoassisted doping of nitrogen into ZnSe using ethyl azide
JPS634454B2 (en)
JPH03274275A (en) Device for forming thin film utilizing organometallic gas
JPS61236691A (en) Vapor phase synthesis of diamond
JPS59208065A (en) Depositing method of metal by laser
JPS60137898A (en) Production of thin diamond film
JPS62138390A (en) Molecular beam epitaxy
JPH06199595A (en) Method for synthesizing diamond
JPS60728A (en) Method of molecular beam epitaxial growth
JPH0324259A (en) Direct plotting device by laser
JPS61201694A (en) Vapor phase synthesis method for diamond
JP2995339B2 (en) How to make a thin film
JPH0474867A (en) Production of thin aluminum nitride film
JPS6399522A (en) Selective doping method