JPH0471346B2 - - Google Patents

Info

Publication number
JPH0471346B2
JPH0471346B2 JP58237235A JP23723583A JPH0471346B2 JP H0471346 B2 JPH0471346 B2 JP H0471346B2 JP 58237235 A JP58237235 A JP 58237235A JP 23723583 A JP23723583 A JP 23723583A JP H0471346 B2 JPH0471346 B2 JP H0471346B2
Authority
JP
Japan
Prior art keywords
flexible film
conductor lead
solar cell
conductor
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58237235A
Other languages
Japanese (ja)
Other versions
JPS60128647A (en
Inventor
Tadao Kushima
Tasao Soga
Takaya Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58237235A priority Critical patent/JPS60128647A/en
Publication of JPS60128647A publication Critical patent/JPS60128647A/en
Publication of JPH0471346B2 publication Critical patent/JPH0471346B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37099Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37099Material
    • H01L2224/371Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/37138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/37155Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37099Material
    • H01L2224/371Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/37138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/3716Iron [Fe] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • H01L2224/848Bonding techniques
    • H01L2224/8485Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)
  • Wire Bonding (AREA)

Description

【発明の詳細な説明】 (利用分野) 本発明は可撓性フイルム導体リードおよびこれ
を用いた太陽電池装置に関するものであり、特
に、ICなどのリード接続や、平面上に配置され、
電気的には直列接続される複数の太陽電池のリー
ド接続を、効率良く実施することのできる可撓性
フイルム導体リードおよびこれを用いた太陽電池
装置に関するものである。
Detailed Description of the Invention (Field of Application) The present invention relates to a flexible film conductor lead and a solar cell device using the same.
The present invention relates to a flexible film conductor lead that can efficiently connect the leads of a plurality of solar cells that are electrically connected in series, and a solar cell device using the flexible film conductor lead.

(発明の背景) 従来より用いられている、太陽電池素子と導体
リードとの直列方向の電気的接続部の構造を、第
1図aおよびbに示す。
(Background of the Invention) The structure of a conventionally used electrical connection between a solar cell element and a conductor lead in the series direction is shown in FIGS. 1a and 1b.

第1図aは、前記電気的接続部を示す斜視図、
第1図bは第1図aの導体リードに沿つて切断し
た断面図である。
FIG. 1a is a perspective view showing the electrical connection part,
FIG. 1b is a sectional view taken along the conductor lead of FIG. 1a.

これらの図において、1は太陽電池素子、2a
は前記太陽電池素子1の表面に形成された亀甲状
の導電(電極)パターン、2bは前記太陽電池素
子1の裏面に形成された導電(電極)パターン、
3は前記太陽電池素子1の表面または裏面の導電
パターンに接続される導体リード、4は前記導体
リード3の屈折部、5は前記導体リード3の表面
に形成されたはんだメツキ層である。
In these figures, 1 is a solar cell element, 2a is
2b is a hexagonal conductive (electrode) pattern formed on the front surface of the solar cell element 1; 2b is a conductive (electrode) pattern formed on the back surface of the solar cell element 1;
3 is a conductor lead connected to the conductive pattern on the front or back side of the solar cell element 1; 4 is a bent portion of the conductor lead 3; and 5 is a solder plating layer formed on the surface of the conductor lead 3.

第1図a,bに示すような、太陽電池素子1の
導体リード3による直列接続は、つぎのような工
程で行なわれていた。
The series connection of the solar cell elements 1 using the conductor leads 3 as shown in FIGS. 1a and 1b has been performed in the following steps.

(1) 予め、共晶系のはんだメツキ層5等をほどこ
した導体リード3に、階段状の屈折部4を加工
する。
(1) Step-shaped bent portions 4 are formed on conductor leads 3 on which a eutectic solder plating layer 5 and the like have been applied in advance.

(2) 予め、共晶系のはんだメツキ層や、浸漬法に
よる共晶系の予備はんだ層、あるいは印刷法に
よるペーストはんだ層等を、表面および裏面の
導電パターン2a,2b上にほどこした太陽電
池素子1の裏面から、隣接する太陽電池素子の
表面、すなわち受光面へと延びるように、直列
方向に、前記導体リード3および太陽電池素子
1を順々に配置する。
(2) A solar cell in which a eutectic solder plating layer, a eutectic preliminary solder layer using a dipping method, or a paste solder layer using a printing method is applied on the conductive patterns 2a and 2b on the front and back surfaces in advance. The conductor leads 3 and the solar cell elements 1 are arranged in series in order so as to extend from the back surface of the element 1 to the front surface of the adjacent solar cell element, that is, the light-receiving surface.

(3) 前記のように配置した組立体を、H2やN2
あるいはArガス等の抵抗体加熱方式雰囲気炉
に収納して加熱し、太陽電池素子1と導体リー
ド3とを導電接続させる。
(3) The assembly arranged as above is exposed to H 2 , N 2 ,
Alternatively, the solar cell element 1 and the conductor leads 3 are electrically connected by storing and heating the solar cell element 1 in a resistor heating atmosphere furnace such as Ar gas.

このため、従来の装置では、はんだ溶融(180
℃以上)に要す時間が、数十秒から数十分かか
り、生産効率が悪く、量産が難かしいという欠点
があつた。
For this reason, in conventional equipment, solder melting (180
℃ or higher), it takes several tens of seconds to several tens of minutes, production efficiency is poor, and mass production is difficult.

また前記のように、導体リード4が、隣接の太
陽電池素子間にまたがる構造の単体リードである
ため、その自動供給方法が難かしく、大量生産性
に乏しい状態であつた。
Further, as described above, since the conductor lead 4 is a single lead having a structure extending between adjacent solar cell elements, it is difficult to automatically supply the conductor lead 4, and mass productivity is poor.

さらに、導体リード4の材質が、フアーニ
(Fe−42%Ni合金)材であるため、熱膨張率は小
さいが、剛性が大きく、導体リード4の接続後に
おける太陽電池素子1の受光面電極2aへの応力
が大となり、電極2aの剥れや素子の割れが発生
する問題が多かつた。
Furthermore, since the material of the conductor lead 4 is a Furni (Fe-42%Ni alloy) material, the coefficient of thermal expansion is small but the rigidity is large, and the light-receiving surface electrode 2a of the solar cell element 1 after the conductor lead 4 is connected. There were many problems such as peeling of the electrode 2a and cracking of the element.

さらに、H2やN2、Arガス等の抵抗体加熱方式
雰囲気炉は、一般に、大型のコンベア炉であるた
め、ガスや電力などエネルギーの消耗が多いばか
りではなく、前記したように接続終了までかなり
の時間を要するなど、量産に不向きでありという
欠点があつた。
Furthermore, resistor heating atmosphere furnaces using H 2 , N 2 , Ar gas, etc. are generally large conveyor furnaces, which not only consume a lot of energy such as gas and electricity, but also consume a lot of energy until the connection is completed, as mentioned above. It had the disadvantage of being unsuitable for mass production, such as requiring a considerable amount of time.

第2図は太陽電池素子1の導体リード3による
直列接続の他の従来例を示す断面図である。同図
において、第1図と同一の符号は、同一または同
等部分をあらわしている。
FIG. 2 is a sectional view showing another conventional example of series connection of solar cell elements 1 using conductor leads 3. In this figure, the same reference numerals as in FIG. 1 represent the same or equivalent parts.

この図において、6は基板、7は、前記基板6
の上面の所定位置に、太陽電池素子1の導電パタ
ーン2bと対向するように、所定のバターンで形
成された基板導体である。
In this figure, 6 is a substrate, and 7 is the substrate 6.
It is a substrate conductor formed in a predetermined pattern at a predetermined position on the upper surface of the solar cell element 1 so as to face the conductive pattern 2b of the solar cell element 1.

また、8は可撓性フイルム、9は前記可撓性フ
イルム8の下面の所定位置に、太陽電池素子1の
導電パターン2aおよび前記基板導体7と対向す
るように所定のパターンで形成された導体リード
であり、これらは可撓性フイルム導体リード20
を構成する。
Further, 8 is a flexible film, and 9 is a conductor formed in a predetermined pattern at a predetermined position on the lower surface of the flexible film 8 so as to face the conductive pattern 2a of the solar cell element 1 and the substrate conductor 7. These are flexible film conductor leads 20.
Configure.

第2図に示すような、太陽電池素子1の基板導
体7および導体リード9による直列接続は、つぎ
のような工程で行なわれていた。
The series connection of the substrate conductor 7 and the conductor lead 9 of the solar cell element 1 as shown in FIG. 2 has been performed in the following steps.

(1) 第2図に示すように、基板6上の導体7に合
せて、太陽電池素子1を配列する。
(1) As shown in FIG. 2, the solar cell elements 1 are arranged in line with the conductors 7 on the substrate 6.

(2) 例えば、はんだメツキをほどこした銅箔の導
体を、可撓性フイルム8に貼り合せて導体リー
ド9とした可撓性フイルムを導体リード20
を、太陽電池素子1表面の電極パターン2a、
および基板6上の導体7に合せて、太陽電池素
子1の表面からかぶせる。
(2) For example, a conductor made of solder-plated copper foil is laminated to a flexible film 8 to form a conductor lead 9, and a flexible film is used as a conductor lead 20.
, the electrode pattern 2a on the surface of the solar cell element 1,
Then, it is covered from the surface of the solar cell element 1 along with the conductor 7 on the substrate 6.

(3) 加熱により、太陽電池素子1及び基板6に、
フイルム導体リード20を貼り合せる。その
際、太陽電池素子同士の間では、フイルム導体
リード20の可撓性によつて、あるいは図中に
矢印で示したように、加圧力を加えることによ
つて、双方の導体7,9が接触し、またはんだ
が加熱によつて溶けて両方の導体7,9を接続
する。
(3) By heating, the solar cell element 1 and the substrate 6,
A film conductor lead 20 is attached. At that time, both conductors 7 and 9 are connected between the solar cell elements by the flexibility of the film conductor lead 20 or by applying pressure as shown by the arrow in the figure. contact and the solder melts due to heating, connecting both conductors 7,9.

しかし、第2図の導体リード構造では、基板6
の熱容量が大きく、従つて、はんだが一旦溶けて
から再び凝固するまでに、かなりの時間がかかる
ことになる。
However, in the conductor lead structure shown in FIG.
has a large heat capacity, and therefore it takes a considerable amount of time for the solder to solidify once it has melted.

このため、高速度で、基板導体7および可撓性
フイルム導体リード20を、太陽電池素子1の導
体パターン2a,2bに接続することを要求され
る、大量生産体制への実用化ができないという欠
点があつた。
Therefore, the drawback is that it cannot be put to practical use in a mass production system that requires connecting the substrate conductor 7 and the flexible film conductor lead 20 to the conductor patterns 2a, 2b of the solar cell element 1 at high speed. It was hot.

第3図は、導体リード3を用いた、太陽電池素
子1の直列接続の、さらに他の従来例を示す断面
図である。同図において、第2図と同一の符号
は、同一または同等部分をあらわしている。
FIG. 3 is a sectional view showing still another conventional example of series connection of solar cell elements 1 using conductor leads 3. In this figure, the same reference numerals as in FIG. 2 represent the same or equivalent parts.

この図において、10は、太陽電池素子1の上
側および下側の各可撓性フイルム導体リード20
が、相互に相手側の方へ突出すことにより、それ
ぞれの導体リード9が互いに接続された部分であ
る。
In this figure, reference numeral 10 denotes each flexible film conductor lead 20 on the upper and lower sides of the solar cell element 1.
are the parts where the respective conductor leads 9 are connected to each other by protruding toward the other side.

第3図に示すような、太陽電池素子1の表裏導
体パターン2a,2bおよび導体リード9による
直列接続は、つぎのような工程で行なわれてい
た。
The series connection of the front and back conductor patterns 2a, 2b of the solar cell element 1 and the conductor leads 9, as shown in FIG. 3, was performed in the following steps.

(1) 適当な基台または治具板の上に、導体リード
9(例えば、はんだ層)が上になるように、第
1の可撓性フイルム導体リード20を配置し、
その上に太陽電池素子1を、その裏側電極パタ
ーン2bが前記導体リード9と接触するよう
に、配列する。
(1) Place the first flexible film conductor lead 20 on a suitable base or jig plate with the conductor lead 9 (for example, a solder layer) facing upward;
The solar cell elements 1 are arranged thereon so that their back side electrode patterns 2b are in contact with the conductor leads 9.

(2) 太陽電池素子1を蔽い、かつその導体リード
9が太陽電池素子1の表側電極パターン2aと
接触し、さらに前記第1の可撓性フイルム導体
リード20の導体リード9とも、第3図示のよ
うに接触し得るように、太陽電池素子1の上面
から、第2の可撓性フイルム導体リード20を
かぶせる。
(2) Covers the solar cell element 1, and its conductor lead 9 contacts the front electrode pattern 2a of the solar cell element 1, and also the conductor lead 9 of the first flexible film conductor lead 20 and the third A second flexible film conductor lead 20 is placed over the top surface of the solar cell element 1 so that it can make contact as shown in the figure.

(3) このようにして得られた組立体の表裏両面か
ら、レーザ光を照射し、第1および第2の可撓
性フイルム導体リード20の導体リード9を加
熱溶融させ、全体を一体に固着、接続する。
(3) Laser light is irradiated from both the front and back sides of the assembly obtained in this way to heat and melt the conductor leads 9 of the first and second flexible film conductor leads 20 and fix the whole body together. ,Connecting.

しかし、この場合には、まず導体リード9が溶
けるので、特に、太陽電池素子1の表面側におい
て導電(電極)パターン2aと導体リード9との
相互位置がずれて、リード接続が不完全になり易
い欠点がある。
However, in this case, since the conductor leads 9 melt first, the mutual positions of the conductive (electrode) pattern 2a and the conductor leads 9 shift, especially on the front side of the solar cell element 1, resulting in incomplete lead connection. There is a simple drawback.

また、導体リード9の再凝固後には、表面に凸
凹を生じたり、また導体リード9と可撓性フイル
ム8との間に空隙を生じたりするので、見映えが
悪くなり、商品価値が低下するばかりでなく、場
合によつては、受光効率が低下するという欠点が
ある。
Furthermore, after the conductor leads 9 are resolidified, the surface becomes uneven and gaps are created between the conductor leads 9 and the flexible film 8, resulting in poor appearance and lower commercial value. In addition, in some cases, there is a drawback that the light receiving efficiency is lowered.

(発明の目的) 本発明は、前述の欠点を除去するためになされ
たものであり、その目的は、一般的には、ICな
どの半導体装置のリード接続、特に、平面上に配
置され、電気的には直列接続される複数の太陽電
池のリード接続を、レーザ光線を利用して効率良
く実施することのできる可撓性フイルム導体リー
ド、およびこれを用いた太陽電池装置ならびにそ
の製造方法を提供することにある。
(Object of the Invention) The present invention has been made in order to eliminate the above-mentioned drawbacks, and its purpose is generally to connect leads of semiconductor devices such as ICs, and in particular, to connect leads of semiconductor devices such as ICs, and in particular, to Specifically, it provides a flexible film conductor lead that can efficiently connect the leads of a plurality of solar cells connected in series using a laser beam, a solar cell device using the same, and a method for manufacturing the same. It's about doing.

(発明の概要) 前記の目的を達成するために、本発明は、可撓
性フイルムと、前記可撓性フイルムの一面に、積
層形成され、可撓性フイルム側の面に光吸収率を
高めるような表面加工が施された導体リード薄層
と、前記導体リード薄層の表面に積層形成された
はんだ層によつて可撓性フイルム導体リードを構
成した点に特徴がある。
(Summary of the Invention) In order to achieve the above object, the present invention includes a flexible film, and a layer formed on one side of the flexible film to increase the light absorption rate on the side of the flexible film. The present invention is characterized in that a flexible film conductor lead is constituted by a conductor lead thin layer subjected to such surface treatment and a solder layer laminated on the surface of the conductor lead thin layer.

また、本発明の他の特徴は、太陽電池装置を表
面および裏面に導電パターンを有する複数の太陽
電池素子、ならびに可撓性フイルムと、前記可撓
性フイルムの一面に、電気的に相互に絶縁された
状態で積層形成され、可撓性フイルム側の面に光
吸収率を高めるような表面加工が施された導体リ
ード薄層と、前記導体リード薄層の表面に積層形
成されたはんだ層とからなり、前記各太陽電池素
子を表裏から挾むように配置された、一対の可撓
性フイルム導体リードによつて構成し、前記可撓
性フイルム導体リードの導体リード薄層は、それ
ぞれ対応するはんだ層を介して前記太陽電池素子
の導電パターンに接続されると共に、前記太陽電
池素子の輪郭を越えて、互いに反対方向に延長さ
れ、一つの太陽電池素子の表面の導電パターンに
接続された可撓性フイルム導体リードの導体リー
ド薄層の延長部は、これに隣接する他の太陽電池
素子の裏面の導電パターンに接続された導体リー
ド薄層の延長部と導電接続されたことにある。
Another feature of the present invention is that the solar cell device includes a plurality of solar cell elements having conductive patterns on the front and back surfaces, a flexible film, and one surface of the flexible film that are electrically insulated from each other. a conductor lead thin layer formed in a laminated state in a state where the conductive lead thin layer is laminated in a state where the conductive lead thin layer is laminated on the surface of the flexible film side and subjected to a surface treatment to increase light absorption; and a solder layer laminated on the surface of the conductor lead thin layer. It consists of a pair of flexible film conductor leads arranged to sandwich each solar cell element from the front and back, and each conductor lead thin layer of the flexible film conductor lead has a corresponding solder layer. a flexible conductive pattern on the surface of one solar cell element, which is connected to the conductive pattern of the solar cell element through the conductive pattern, extends in opposite directions beyond the contour of the solar cell element, and is connected to the conductive pattern on the surface of one solar cell element; The extended portion of the conductive lead thin layer of the film conductor lead is conductively connected to the extended portion of the conductive lead thin layer connected to the conductive pattern on the back surface of another adjacent solar cell element.

(実施例) 以下に、図面を参照して、本発明を詳細に説明
する。第4図は本発明の一実施例の太陽電池装置
を導体リード3に沿つて切断した断面図、第5図
は第4図において用いられている本発明の可撓性
フイルム導体リードの拡大断面図である。
(Example) The present invention will be described in detail below with reference to the drawings. FIG. 4 is a cross-sectional view of a solar cell device according to an embodiment of the present invention taken along the conductor lead 3, and FIG. 5 is an enlarged cross-section of the flexible film conductor lead of the present invention used in FIG. It is a diagram.

なお、これらの図において、第3図と同一の符
号は、同一または同等部分をあらわしている。
In these figures, the same reference numerals as in FIG. 3 represent the same or equivalent parts.

第4図において、90は導体リード複合層であ
り、第5図にその拡大断面図を示すように、可撓
性フイルム8の一面に、接着剤層8aを介して
(または介さずに)、導体リード9およびはんだ
(メツキ)層9cを積層したものである。
In FIG. 4, 90 is a conductor lead composite layer, and as shown in an enlarged cross-sectional view in FIG. A conductor lead 9 and a solder (plating) layer 9c are laminated.

この場合、導体リード9の接着剤層8a側の表
面−すなわち、受光側の面は、光吸収率の改善の
ために、後述するような表面加工が施こされてい
る。
In this case, the surface of the conductor lead 9 on the adhesive layer 8a side, that is, the surface on the light receiving side, is subjected to a surface treatment as described below in order to improve the light absorption rate.

11a,11bは、レーザ光などの透過率の高
い、例えば石英などで構成された加圧体(もしく
は、治具)である。また、12はガラスなどで作
られ、レーザ光14などを誘導するオプテイカル
フアイバ、13は前記オプテイカルフアイバ12
の先端に設けられ、レーザ光集束機能をもつたヘ
ツド部である。
11a and 11b are pressurizing bodies (or jigs) made of, for example, quartz, which has a high transmittance for laser light and the like. Further, 12 is an optical fiber made of glass or the like and guides the laser beam 14, etc., and 13 is the optical fiber 12.
It is a head section that is installed at the tip of the laser beam and has a laser beam focusing function.

つぎに、第4図を参照して、本発明の一実施例
の太陽電池装置の製造方法について説明する。
Next, with reference to FIG. 4, a method for manufacturing a solar cell device according to an embodiment of the present invention will be described.

(1) 太陽電池素子1には、共晶はんだメツキ層や
浸漬法、あるいはリフロー法による共晶はんだ
層、もしくは印刷法によるベーストはんだ層等
で、予め導電または電極パターン2a,2bを
形成しておく。
(1) The solar cell element 1 has conductive or electrode patterns 2a, 2b formed in advance using a eutectic solder plating layer, a eutectic solder layer by dipping or reflow method, or a base solder layer by printing method. put.

(2) レーザ光等の透過率の高い可撓性フイルム8
(例えば、ポリエステルやポリイミド等)の一
面に、第5図に示すように、所定の分布で、部
分的に導体リード9(例えばCu箔、Cuメツキ
等)を積層形成し、さらにその表面に共晶はん
だメツキなどによるはんだ層9cを積層形成し
た、一対の可撓性フイルム導体リード20を、
一列に配置された複数個の前記太陽電池素子1
の表裏両面に、 (イ) それぞれの可撓性フイルム導体リード20
の導体リード複層90が、前記太陽電池素子
1の表面および裏面の導電パターン2a,2
bに重なり合い、 (ロ) それぞれの可撓性フイルム導体リード20
の導体リード複合層90が、前記太陽電池素
子1の輪郭を越えて互いに反対側へ延長し、
かつ、 (ハ) ある一つの太陽電池素子1の表面側の導体
リード複合層90と、これに隣接する他の太
陽電池素子1の裏面側の導体リード複合層9
0とが対向(もしくは接触)するように、 位置合せする。
(2) Flexible film 8 with high transmittance for laser light, etc.
As shown in FIG. 5, conductor leads 9 (for example, Cu foil, Cu plating, etc.) are partially laminated on one surface of (for example, polyester, polyimide, etc.) in a predetermined distribution. A pair of flexible film conductor leads 20 are laminated with a solder layer 9c formed by crystal solder plating or the like.
A plurality of the solar cell elements 1 arranged in a row
(a) Each flexible film conductor lead 20 is placed on both the front and back sides of the
The conductor lead multi-layer 90 covers the conductive patterns 2a, 2 on the front and back surfaces of the solar cell element 1.
(b) Each flexible film conductor lead 20
conductor lead composite layers 90 extending beyond the contour of the solar cell element 1 to opposite sides;
and (c) the conductor lead composite layer 90 on the front side of one solar cell element 1 and the conductor lead composite layer 9 on the back side of another solar cell element 1 adjacent thereto.
Align so that it faces (or touches) 0.

(3) つぎに、該一対の可撓性フイルム導体リード
20の外側より、透明加圧体11a,11b
(例えば、石英ガラス材等よりなる)ではさみ、
太陽電池素子1の導電パターン2a,2bに、
それぞれの導体リード90を密着させる。
(3) Next, from the outside of the pair of flexible film conductor leads 20, the transparent pressurizing bodies 11a and 11b are
scissors (for example, made of quartz glass material, etc.),
In the conductive patterns 2a and 2b of the solar cell element 1,
The respective conductor leads 90 are brought into close contact.

なお、その際、前述のように対向、もしくは
接触しているある一つの太陽電池素子1の表面
側の導体リード複合層90の延長部と、これに
隣接する他の太陽電池素子1の裏面側の導体リ
ード複合層90の延長部とも密着させる。
In this case, as described above, the extended portion of the conductor lead composite layer 90 on the front side of one solar cell element 1 that faces or is in contact with the other solar cell element 1 and the back side of another solar cell element 1 adjacent thereto. The conductor lead composite layer 90 is also brought into close contact with the extended portion of the conductor lead composite layer 90 .

このためには、第4図に明示したように、上
下の透明加圧体11a,11bは、くびれ部1
0に該当する個所に突起部を備えていることが
望ましい。
For this purpose, as clearly shown in FIG. 4, the upper and lower transparent pressure bodies 11a and 11b are
It is desirable that a protrusion be provided at a location corresponding to 0.

(4) 最後に、高エネルギー光熱源発生装置(図示
せず)からの光熱線14(例えば、YAGレー
ザ光線)を、オプテイカルフアイバー12等で
誘導し、さらにヘツド部13で光熱線を絞り、
透明加圧体11a,11bを透過して可撓性フ
イルム導体リード20の導体リード複合層90
に到達させる。
(4) Finally, a photothermal beam 14 (for example, a YAG laser beam) from a high-energy photothermal source generator (not shown) is guided by an optical fiber 12 or the like, and further narrowed by a head section 13,
The conductor lead composite layer 90 of the flexible film conductor lead 20 passes through the transparent pressurizing bodies 11a and 11b.
reach.

前記光熱線14は、ここで吸収されて熱に変換
される。前記のようにして導体リード9を加熱
し、各々のはんだ層を溶融させて接続する。
The light heat ray 14 is absorbed here and converted into heat. The conductor leads 9 are heated as described above to melt and connect each solder layer.

なお、この場合、照射用のYAGレーザ光線1
4は、焦点位置よりも前方で、それぞれの導体リ
ード9に照射されるように調整し、かつ照射面の
寸法が、それぞれの導体リード9の横幅以下にな
るようにすることが望ましい。
In this case, YAG laser beam 1 for irradiation
4 is preferably adjusted so that each conductor lead 9 is irradiated with the light in front of the focal point position, and the dimension of the irradiated surface is preferably equal to or less than the width of each conductor lead 9.

また、YAGレーザ光線14は十分に高エネル
ギーであるので、第4図に矢印で示したように、
これを導体リード9の長さ方向に高速移動させた
り、あるいは透明加圧体毎に高速移動させたりし
ても、高速接続を達成し得るものである。
Furthermore, since the YAG laser beam 14 has sufficiently high energy, as shown by the arrow in FIG.
High-speed connection can be achieved by moving this at high speed in the length direction of the conductor lead 9, or by moving each transparent pressure member at high speed.

なお、石英製の加圧体は、YAGレーザ光線を
連続照射しても、昇温せず、YAGレーザ光線と
石英材の組合せは、極めて有効である。
Note that the pressure body made of quartz does not rise in temperature even when continuously irradiated with YAG laser beams, and the combination of YAG laser beams and quartz material is extremely effective.

前に述べたように、本発明の可撓性フイルム導
体リード20においては、高エネルギー光熱線
(例えば、YAGレーザ光熱線)に対する透過率の
良い可撓性フイルム材8に、接着剤8aを介して
接着される。フレキシブルな導体リード9(例え
ばCu箔)の、該フイルム8の側に面する表面を、
前記高エネルギー光熱線(YAGレーザ光線)が
高効率で受光できるように、加工しておく。
As mentioned above, in the flexible film conductor lead 20 of the present invention, the flexible film material 8 having good transmittance to high-energy photothermal rays (for example, YAG laser photothermal rays) is bonded to the flexible film material 8 through the adhesive 8a. It is glued. The surface of the flexible conductor lead 9 (for example, Cu foil) facing the film 8 is
It is processed so that the high-energy photothermal beam (YAG laser beam) can be received with high efficiency.

前記の表面加工は、化学薬品処理等で粗形表面
とするか、又は酸化処理等で黒色酸化膜9aを形
成させることによつて行なうことができる。
The surface processing described above can be performed by roughening the surface by chemical treatment or the like, or by forming a black oxide film 9a by oxidation treatment or the like.

つぎに、第6図を参照して、前記の表面加工の
有効性について説明する。
Next, the effectiveness of the surface treatment described above will be explained with reference to FIG.

第6図a,bは、本発明の可撓性フイルム導体
リードに、YAGレーザ光熱線を照射させた状態
を説明するための、可撓性フイルム導体リードの
断面図である。
FIGS. 6a and 6b are cross-sectional views of the flexible film conductor lead of the present invention, for explaining the state in which the YAG laser photothermal ray is irradiated onto the flexible film conductor lead.

第6図aは、可撓性フイルム導体リード20の
Cu製の導体リード9の表面に、光吸収率向上処
理を施こさ無い状態で、YAGレーザ光熱線14
を照射させた状態を示している。
FIG. 6a shows the flexible film conductor lead 20.
The surface of the conductor lead 9 made of Cu is coated with the YAG laser heating wire 14 without any light absorption improvement treatment.
It shows the state where it is irradiated.

ポリエステルフイルムなどの透明フイルム8を
透過したYAGレーザ光熱線14は、Cu製の導体
リード9の表面を照射してこれを加熱する。この
場合、Cuなどの金属は、材質的に、レーザ光等
に対する反射率が大きい(逆にいえば、光吸収率
が小さい。このことは、表面が鏡面であると、特
にはなはだしい)。
The YAG laser beam 14 transmitted through a transparent film 8 such as a polyester film irradiates and heats the surface of a conductor lead 9 made of Cu. In this case, metals such as Cu have a high reflectance for laser beams and the like (in other words, they have a low light absorption rate. This is particularly noticeable when the surface is a mirror surface).

このため、伝熱輪14bを十分に大きくして、
導体リード9での発熱をはんだ(メツキ)層9c
に伝導させ、導体リード複合層90のはんだ層9
cおよび太陽電池素子1の導電パターン2a(は
んだ層)を溶融させるためには、非常に高密度
(高出力)の光エネルギーを照射させなければな
らないという問題がある。
For this reason, the heat transfer ring 14b is made sufficiently large,
The heat generated in the conductor lead 9 is removed by the solder (plating) layer 9c.
conduction to the solder layer 9 of the conductor lead composite layer 90
There is a problem in that extremely high density (high output) light energy must be irradiated in order to melt conductive pattern 2a (solder layer) of solar cell element 1.

第6図bは、レーザ光等に対する光吸収率を高
めるため、該可撓性フイルム導体リード20の
Cu導体リードの9の表面に酸化処理膜(黒色膜)
9aを形成させた状態で、このCu導体リード9
の表面からYAGレーザ光熱線14を照射させた
場合の、可撓性フイルム導体リード20の断面図
である。
FIG. 6b shows the flexible film conductor lead 20 in order to increase the light absorption rate for laser light etc.
Oxidation treatment film (black film) on the surface of Cu conductor lead 9
With the Cu conductor lead 9a formed,
FIG. 2 is a cross-sectional view of the flexible film conductor lead 20 when the surface thereof is irradiated with a YAG laser beam 14.

この場合、照射されたYAGレーザ光熱線14
は、Cu導体リード9の表面に形成された黒色酸
化処理膜9aの存在により、表面での反射が極め
て少なくなる。
In this case, the irradiated YAG laser heat beam 14
Due to the presence of the black oxide film 9a formed on the surface of the Cu conductor lead 9, reflection on the surface is extremely reduced.

すなわち、エネルギー光の吸収が大となるた
め、高効率でCu導体リード9を加熱し、伝熱輪
14bを十分に大きくすることができる。従つ
て、接続させるはんだ層9cを、ごく短時間で溶
融させることができる。
That is, since the absorption of energy light is increased, the Cu conductor lead 9 can be heated with high efficiency, and the heat transfer ring 14b can be made sufficiently large. Therefore, the solder layer 9c to be connected can be melted in a very short time.

また、黒色酸化処理膜9aの代りに、表面を粗
面化加工しても、同様に、高エネルギー光熱線の
吸収率を大とすることができる。
Furthermore, instead of the black oxidized film 9a, even if the surface is roughened, the absorption rate of high-energy photothermal rays can be similarly increased.

このように、高エネルギー光熱線であるYAG
レーザ光線を照射して導体リードを接続する場
合、導体リード表面に黒色化処理(酸化膜形成
等)、または粗面化処理を施こして、表面の光吸
収率を高めておくことにより、局部的かつ瞬時
に、はんだ層を加熱、溶融、再凝固させることが
可能である。
In this way, YAG, which is a high-energy photothermal ray,
When connecting conductor leads by irradiating them with a laser beam, the surface of the conductor lead may be blackened (oxidized film formation, etc.) or roughened to increase the light absorption rate of the surface. It is possible to heat, melt, and resolidify the solder layer precisely and instantly.

それ故に、熱による外周部への影響もなく、良
好な接続部が、効率よく、かつ高速度で形成でき
る。従つて安価で高信頼性の太陽電池を製造する
ことができる。
Therefore, a good connection can be formed efficiently and at high speed without heat affecting the outer periphery. Therefore, inexpensive and highly reliable solar cells can be manufactured.

以上では、本発明を太陽電池装置に適用した場
合について述べたが、本発明の可撓性フイルム導
体リードはICやLSIなどのリード線接続にも適用
できることは明らかである。
Although the case where the present invention is applied to a solar cell device has been described above, it is clear that the flexible film conductor lead of the present invention can also be applied to lead wire connections of ICs, LSIs, and the like.

(効果) 本発明においては、以上の説明から明らかなよ
うに、下記のような効果がある。
(Effects) As is clear from the above description, the present invention has the following effects.

(1) 可撓性フイルム8とはんだ層9cとの間に導
体リード9を介在させたので、はんだ層9cが
溶融しても導体リード9は溶融せず、したがつ
て可撓性フイルム8とはんだ層9cとの間に空
隙が生ずることもないので、 (イ) 導体リードが位置れを生ずることがなく、
リード接続も確実となり、信頼性が向上する
ばかりでなく、 (ロ) 外観を損なうことがなく、商品価値を低下
させるおそれがない。
(1) Since the conductor lead 9 is interposed between the flexible film 8 and the solder layer 9c, the conductor lead 9 will not melt even if the solder layer 9c melts, and therefore the flexible film 8 and Since there is no gap between the solder layer 9c and the solder layer 9c, (a) the conductor lead does not become misaligned;
Not only is the lead connection secure and reliability improved, but also (b) there is no risk of deteriorating the appearance and reducing the product value.

(2) フレキシブルな導体リードを用いるので、リ
ードそれ自体の剛性が小さく、従つてICや、
太陽電池素子などの導電パターンへの歪が小と
なり、電極剥れや素子の割れなどの発生を防止
することができる。
(2) Since a flexible conductor lead is used, the rigidity of the lead itself is small, so it is difficult to
The strain on the conductive patterns of solar cell elements, etc. is reduced, and the occurrence of electrode peeling and element cracking can be prevented.

(3) 高速度で導体リード接続が可能になり、量産
性を大幅に向上できる。
(3) High-speed conductor lead connection is possible, greatly improving mass productivity.

(4) 素子へおリード接続に、従来から用いられて
いた雰囲気ガスや大型炉用の大電力が不必要と
なり、従つて省エネルギーをも達成することが
でき、低コストのプロセスを確立することがで
きる。
(4) To connect the leads to the element, the conventionally used atmospheric gas and large electric power for a large furnace are no longer required, and therefore energy savings can be achieved and a low-cost process can be established. can.

(5) 導体リード9の受光面側の表面を、黒化処理
または/および粗面加工することにより、その
光吸収率を高めてやれば、導体リード9の内側
に積層されたはんだ層9cを急速に(ほとんど
瞬時に)加熱溶融・再凝固させることが可能と
なり、より一層高速度のリード接続が可能とな
る。
(5) If the light-receiving surface side of the conductor lead 9 is blackened and/or roughened to increase its light absorption rate, the solder layer 9c laminated inside the conductor lead 9 can be It becomes possible to rapidly (almost instantaneously) heat, melt, and resolidify the material, making it possible to connect leads at even higher speeds.

また、本発明を太陽電池装置に適用した場合に
は、つぎのような効果が達成される。
Further, when the present invention is applied to a solar cell device, the following effects are achieved.

(1) 各太陽電池素子1の導電パターン2aと、可
撓性フイルム導体リード20との接続、及び隣
接する太陽電池素子間の導体リードの直列接続
を同一工程で実施できるもので、製造効率を向
上することができる。
(1) It is possible to connect the conductive pattern 2a of each solar cell element 1 to the flexible film conductor lead 20, and to connect the conductor leads between adjacent solar cell elements in series in the same process, improving manufacturing efficiency. can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は従来の太陽電池の構造および
製造方法を示す図、第4図は本発明の一実施例の
断面図、第5図は本発明の可撓性フイルム導体リ
ードの断面図、第6図a,bは本発明の効果を説
明するための可撓性フイルム導体リードの断面図
である。 1……太陽電池素子、2a,2b……導電パタ
ーン、3……導体リード、4……屈折部、5,9
c……はんだメツキ層、6……基板、7……基板
導体、8……可撓性フイルム、9……導体リー
ド、9a……酸化処理膜(黒色膜)、9c……は
んだ(メツキ)層、10……くびれ部、10a…
…突起部、11a,11b……透明加圧体、12
……オプテイカルフアイバー、13……ヘツド
部、14……YAGレーザ光熱線、14a……反
射光熱線、14b……伝熱輪、20……可撓性フ
イルム導体リード、90……導体リード複合層。
1 to 3 are diagrams showing the structure and manufacturing method of a conventional solar cell, FIG. 4 is a sectional view of an embodiment of the present invention, and FIG. 5 is a sectional view of a flexible film conductor lead of the present invention. 6A and 6B are cross-sectional views of a flexible film conductor lead for explaining the effects of the present invention. DESCRIPTION OF SYMBOLS 1... Solar cell element, 2a, 2b... Conductive pattern, 3... Conductor lead, 4... Refraction part, 5, 9
c... Solder plating layer, 6... Substrate, 7... Board conductor, 8... Flexible film, 9... Conductor lead, 9a... Oxidation treatment film (black film), 9c... Solder (plating) Layer, 10... Constriction, 10a...
...Protrusion, 11a, 11b...Transparent pressure body, 12
...Optical fiber, 13...Head part, 14...YAG laser photothermal wire, 14a...Reflective photothermal wire, 14b...Heating ring, 20...Flexible film conductor lead, 90...Conductor lead composite layer.

Claims (1)

【特許請求の範囲】 1 可撓性フイルムと、 前記可撓性フイルムの一面に積層形成された導
体リード薄層と、 前記導体リード薄層の表面に積層形成されたは
んだ層とからなり、 前記導体リード薄層の前記可撓性フイルム側の
面には、光吸収率を高めるような表面加工が施さ
れたことを特徴とする可撓性フイルム導体リー
ド。 2 前記導体リード薄層およびはんだ層の積層体
は、電気的に互いに絶縁された複数の小片に分割
されたことを特徴とする前記特許請求の範囲第1
項記載の可撓性フイルム導体リード。 3 前記表面加工は、酸化による黒化処理である
ことを特徴とする前記特許請求の範囲第1項記載
の可撓性フイルム導体リード。 4 前記表面加工は、粗面化処理であることを特
徴とする前記特許請求の範囲第1項記載の可撓性
フイルム導体リード。 5 表面および裏面に導体パターンを有する複数
の太陽電池素子、ならびに、可撓性フイルムと、
前記可撓性フイルムの一面に、電気的に相互に絶
縁された状態で積層形成され、可撓性フイルム側
の面に光吸収率を高めるような表面加工が施され
た導体リード薄層と、前記導体リード薄層の表面
に積層形成されたはんだ層とからなり、前記各太
陽電池素子を表裏から挟むように配置された一対
の可撓性フイルム導体リードを具備し、 前記可撓性フイルム導体リードの導体リード薄
層は、それぞれ対応するはんだ層を介して前記太
陽電池素子の導電パターンに接続されると共に、
前記太陽電池素子の輪郭を越えて互いに反対方向
に延長され、一つの太陽電池素子の表面の導電パ
ターンに接続された一方の可撓性フイルム導体リ
ードの導体リード薄層の延長部分は、これに隣接
する他の太陽電池素子の裏面の導電パターンに接
続された他方の可撓性フイルム導体リードの導体
リード薄層の延長部分と導電接続されたことを特
徴とする太陽電池装置。 6 前記表面加工は、酸化よる黒化処理であるこ
とを特徴とする前記特許請求の範囲第5項記載の
太陽電池装置。 7 前記表面加工は、粗面化処理であることを特
徴とする前記特許請求の範囲第5項記載の太陽電
池装置。 8 可撓性フイルムと、前記可撓性フイルムの一
面に積層形成された導体リード薄層と、前記導体
リード薄層の表面に積層形成されたはんだ層とか
らなり、前記導体リード薄層の前記可撓性フイル
ム側の面には、光吸収率を高めるような表面加工
が施された可撓性フイルム導体リードを具備する
太陽電池装置の製造方法であつて、 表面および裏面に導電パターンを有する複数の
太陽電池素子を表裏から挟むように、前記可撓性
フイルム導体リード一組を、各可撓性フイルム導
体リードの導体リード薄層が、それぞれ対応する
はんだ層を介して前記太陽電池素子の導電パター
ンに重ね合わされると共に前記太陽電池素子の輪
郭を越えて互いに反対方向に延長され、一つの太
陽電池素子の表面の導電パターンに重ね合わされ
た一方の可撓性フイルム導体リードの導体リード
薄層の延長部を、これに隣接する他の太陽電池素
子の裏面の導電パターンに重ね合わされた他方の
可撓性フイルム導体リードの導体リード薄層の延
長部と対向するように配置し、 前記導体リード薄層の延長部同士が対向する部
分に相当する位置に突起を有する1組の透明加圧
体で、前記一組の可撓性フイルム導体リードを挟
んで加圧し、 各透明加圧体の外側から当該透明加圧体を介し
て可撓性フイルム導体リードにレーザ光線を照射
して各々のはんだ層を溶融し、予定のはんだ付け
を行うようにしたことを特徴とする太陽電池装置
の製造方法。 9 前記レーザ光線の照射は、レーザ光線および
透明加圧体の少なくとも一方を導体リード薄層の
長さ方向に移動させながら行われるようにしたこ
とを特徴とする前記特許請求の範囲第8項記載の
太陽電池装置の製造方法。
[Scope of Claims] 1. Consisting of a flexible film, a thin conductive lead layer laminated on one surface of the flexible film, and a solder layer laminated on the surface of the thin conductive lead layer, A flexible film conductor lead, characterized in that a surface of the thin conductor lead layer on the flexible film side is subjected to a surface treatment to increase light absorption. 2. Claim 1, wherein the laminate of the thin conductor lead layer and the solder layer is divided into a plurality of small pieces electrically insulated from each other.
Flexible film conductor lead as described in section. 3. The flexible film conductor lead according to claim 1, wherein the surface treatment is a blackening treatment by oxidation. 4. The flexible film conductor lead according to claim 1, wherein the surface treatment is a roughening treatment. 5. A plurality of solar cell elements having conductor patterns on the front and back surfaces, and a flexible film,
a conductor lead thin layer formed on one surface of the flexible film in a laminated manner in an electrically insulated state, and having a surface treatment to increase light absorption on the surface on the flexible film side; and a solder layer laminated on the surface of the conductor lead thin layer, and a pair of flexible film conductor leads arranged to sandwich each of the solar cell elements from the front and back, the flexible film conductor The conductor lead thin layers of the leads are connected to the conductive patterns of the solar cell element through respective corresponding solder layers, and
An extended portion of the conductor lead thin layer of one flexible film conductor lead extending in opposite directions beyond the contour of the solar cell element and connected to the conductive pattern on the surface of one solar cell element, 1. A solar cell device characterized in that the conductor lead thin layer of the other flexible film conductor lead is electrically connected to the extended portion of the conductor lead thin layer of the other flexible film conductor lead which is connected to the conductive pattern on the back surface of another adjacent solar cell element. 6. The solar cell device according to claim 5, wherein the surface treatment is blackening treatment by oxidation. 7. The solar cell device according to claim 5, wherein the surface treatment is a surface roughening treatment. 8 Consisting of a flexible film, a conductor lead thin layer laminated on one surface of the flexible film, and a solder layer laminated on the surface of the conductor lead thin layer, A method for manufacturing a solar cell device comprising a flexible film conductor lead whose surface on the flexible film side has been subjected to a surface treatment to increase light absorption rate, the solar cell device having a conductive pattern on the front and back surfaces. The set of flexible film conductor leads is sandwiched between the plurality of solar cell elements from the front and back, so that the conductor lead thin layer of each flexible film conductor lead is connected to the solar cell element through the corresponding solder layer. a conductor lead thin layer of one flexible film conductor lead superimposed on the conductive pattern and extending in opposite directions beyond the contour of the solar cell element, and superimposed on the conductive pattern on the surface of one solar cell element; The extension part of the conductor lead is arranged to face the extension part of the conductor lead thin layer of the other flexible film conductor lead superimposed on the conductive pattern on the back side of another adjacent solar cell element, and the conductor lead A pair of transparent pressurizing bodies having protrusions at positions corresponding to the areas where the extensions of the thin layers face each other sandwich and pressurize the pair of flexible film conductor leads, and the outer side of each transparent pressurizing body A method for manufacturing a solar cell device, characterized in that a laser beam is irradiated onto a flexible film conductor lead through the transparent pressurizing body to melt each solder layer and perform scheduled soldering. . 9. The irradiation with the laser beam is performed while moving at least one of the laser beam and the transparent pressurizing body in the length direction of the thin conductor lead layer. A method for manufacturing a solar cell device.
JP58237235A 1983-12-16 1983-12-16 Flexible film conductor lead and solar battery utilizing the same Granted JPS60128647A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58237235A JPS60128647A (en) 1983-12-16 1983-12-16 Flexible film conductor lead and solar battery utilizing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58237235A JPS60128647A (en) 1983-12-16 1983-12-16 Flexible film conductor lead and solar battery utilizing the same

Publications (2)

Publication Number Publication Date
JPS60128647A JPS60128647A (en) 1985-07-09
JPH0471346B2 true JPH0471346B2 (en) 1992-11-13

Family

ID=17012385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58237235A Granted JPS60128647A (en) 1983-12-16 1983-12-16 Flexible film conductor lead and solar battery utilizing the same

Country Status (1)

Country Link
JP (1) JPS60128647A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3099604B2 (en) * 1993-09-28 2000-10-16 富士電機株式会社 Flexible photoelectric conversion module, its connection method and its manufacturing apparatus
JP4240587B2 (en) * 1998-07-03 2009-03-18 株式会社エヌ・ピー・シー Tab lead soldering equipment
JP4527945B2 (en) * 2003-03-11 2010-08-18 株式会社メック Solar cell manufacturing equipment
US20040217488A1 (en) * 2003-05-02 2004-11-04 Luechinger Christoph B. Ribbon bonding
ATE543219T1 (en) * 2006-06-13 2012-02-15 Miasole PHOTOVOLTAIC MODULE WITH INTEGRATED POWER COLLECTION AND INTERMEDIATE CONNECTION
US20110197947A1 (en) 2008-03-20 2011-08-18 Miasole Wire network for interconnecting photovoltaic cells
US10026859B2 (en) 2010-10-04 2018-07-17 Beijing Apollo Ding Rong Solar Technology Co., Ltd. Small gauge wire solar cell interconnect
DE102011104159A1 (en) * 2011-06-14 2012-12-20 Institut Für Solarenergieforschung Gmbh METHOD FOR THE ELECTRICAL CONNECTION OF SEVERAL SOLAR CELLS AND PHOTOVOLTAIC MODULE
US11664472B2 (en) * 2018-04-06 2023-05-30 Maxeon Solar Pte. Ltd. Laser assisted metallization process for solar cell stringing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4832946A (en) * 1971-08-31 1973-05-04
JPS57208193A (en) * 1981-06-18 1982-12-21 Tokyo Shibaura Electric Co Method of soldering printed circuit board
JPS5841942A (en) * 1981-09-04 1983-03-11 セント・ラレン・サベツト・ナ・ナウクノ−テクニチエスキテ・サユツイ Weft yarn replacing apparatus
JPS58134481A (en) * 1982-02-05 1983-08-10 Hitachi Ltd Electrode connecting member for electric part and connecting method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4832946A (en) * 1971-08-31 1973-05-04
JPS57208193A (en) * 1981-06-18 1982-12-21 Tokyo Shibaura Electric Co Method of soldering printed circuit board
JPS5841942A (en) * 1981-09-04 1983-03-11 セント・ラレン・サベツト・ナ・ナウクノ−テクニチエスキテ・サユツイ Weft yarn replacing apparatus
JPS58134481A (en) * 1982-02-05 1983-08-10 Hitachi Ltd Electrode connecting member for electric part and connecting method

Also Published As

Publication number Publication date
JPS60128647A (en) 1985-07-09

Similar Documents

Publication Publication Date Title
US4562637A (en) Method of manufacturing solar battery
JP3285294B2 (en) Circuit module manufacturing method
US20140230878A1 (en) Method for electrically connecting several solar cells and photovoltaic module
JPH0471346B2 (en)
JPH07231015A (en) Semiconductor device and its manufacture
JP2009130118A (en) Semiconductor device, method for manufacturing the same, and solar battery
JPH07202241A (en) Solar battery, mounting method and manufacture thereof
JP2009130117A (en) Solar cell, semiconductor device link, and its connecting interconnect
JPH0479135B2 (en)
JPS6362912B2 (en)
JPH0685448A (en) Laser soldering method and device thereof
JPH05109824A (en) Method of mounting flip chip of electronic parts
JP2903697B2 (en) Semiconductor device manufacturing method and semiconductor device manufacturing apparatus
US6596964B2 (en) Method of attaching a component to a connection support by welding without the addition of material
JP2000196117A (en) Manufacture of photoelectric conversion device
JPS6012778A (en) Structure for element connection of semiconductor device and manufacture thereof
JPH02104119A (en) Method for mounting surface acoustic wave element
JPS6014479A (en) Manufacture of photoelectric conversion device
JPS62117391A (en) Connection of circuit substrate
JP5182746B2 (en) Power generation array for photoelectric conversion device, photoelectric conversion device, and manufacturing method thereof
JPS63237483A (en) Manufacture of photovoltaic element
JPS61103672A (en) Adhesion structure
JPS5949698B2 (en) How to seal electronic components
JPH0566755B2 (en)
JPH01220477A (en) Photoelectric conversion device