JPH01220477A - Photoelectric conversion device - Google Patents

Photoelectric conversion device

Info

Publication number
JPH01220477A
JPH01220477A JP63046460A JP4646088A JPH01220477A JP H01220477 A JPH01220477 A JP H01220477A JP 63046460 A JP63046460 A JP 63046460A JP 4646088 A JP4646088 A JP 4646088A JP H01220477 A JPH01220477 A JP H01220477A
Authority
JP
Japan
Prior art keywords
metal
film
protective film
semiconductor layer
solder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63046460A
Other languages
Japanese (ja)
Inventor
Noritoshi Yamaguchi
文紀 山口
Masatoki Tomita
賢時 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP63046460A priority Critical patent/JPH01220477A/en
Publication of JPH01220477A publication Critical patent/JPH01220477A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To make soldering of an outer lead wire rigid, by forming a linking part for a metal electrode and a metal film that can be soldered on an insulating and protecting film, exposing the metal film that can be soldered on a heat resisting protecting film, and forming opening parts where solder layers are provided. CONSTITUTION:An insulating and protecting film 5 is formed so as to cover an amorphous semiconductor layer 3 and a metal electrode 4 so that the metal electrode 4 and a part of an output terminal 41 are exposed to form a linking part 51 for conduction to a metal film 6 and the exposed parts. Opening parts 71 and 72 where the specified sizes of the metal films 6 are exposed are formed in a heat resisting protecting film 7. In this constitution, the metal electrode 4 is not eroded with solder when a solder layer 8 is formed. An outer lead wire can be rigidly soldered. The device can be bonded and mounted on a circuit board.

Description

【発明の詳細な説明】 〔産業の利用分野〕 本発明は光照射を受けると光起電力を発生したり、導電
率の変化を発生したりする光電変換装置、即ち太陽電池
、光センサーに関するものであり、外部リード線を強固
に半田付は可能にしたり、回路基板に接着実装可能なチ
ップ化できる従来にない電極構造を有する光電変換装置
である。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a photoelectric conversion device that generates photovoltaic force or changes in conductivity when irradiated with light, that is, solar cells and optical sensors. This photoelectric conversion device has an unprecedented electrode structure that allows external lead wires to be firmly soldered and can be made into a chip that can be adhesively mounted on a circuit board.

〔発明の背景〕[Background of the invention]

本出願人は、外部リード線を強固に半田付は可能にする
光電変換装置である光起電力装置を既に提案した。
The present applicant has already proposed a photovoltaic device, which is a photoelectric conversion device that allows external lead wires to be firmly soldered.

第5図はその断面構造であり、ガラス基板50上に透明
電極52、P−I−N接合した非晶質半導体層53、金
属電極54及び耐熱保護膜55が形成されている。
FIG. 5 shows its cross-sectional structure, in which a transparent electrode 52, a P-I-N bonded amorphous semiconductor layer 53, a metal electrode 54, and a heat-resistant protective film 55 are formed on a glass substrate 50.

上述の金属電極54は非晶質半導体層53とオーミック
コンタクトし、非晶質半導体層53にダメージを少ない
薄膜技法により形成され、且つ直接半田デイツプ又は半
田付けが可能な材料としてニッケルが使用されている。
The metal electrode 54 described above is in ohmic contact with the amorphous semiconductor layer 53, is formed by a thin film technique that causes less damage to the amorphous semiconductor layer 53, and uses nickel as a material that can be directly soldered or soldered. There is.

そして光起電力装置の出力は透明電極52の延長部56
上に形成されたニッケルの出力端子57と、耐熱保護膜
55から露出した金属電極54との間から得られる。
The output of the photovoltaic device is then an extension 56 of the transparent electrode 52.
It is obtained from between the nickel output terminal 57 formed above and the metal electrode 54 exposed from the heat-resistant protective film 55.

上述の光起電力装置に外部リード線58を半田59付け
すると、該外部リード線58の引っ張り強度としては0
.3〜2.0kg重の力(平均1.0kg重の力)の強
度が達成された。 しかしながら、薄膜技法によって形
成されたニッケルの金属電極54は、膜厚に制限があり
、半田デイツプ時に半田のニッケル食いが生じてしまい
、0.3〜2.0kg重以上の電極強度が得られず、し
かも引っ張り強度のばらつきが大きいため、回路基板に
接着実装可能なチップ化に若干の信頼性を欠いていた。
When the external lead wire 58 is soldered 59 to the photovoltaic device described above, the tensile strength of the external lead wire 58 is 0.
.. Intensities of 3-2.0 kg force (average 1.0 kg force) were achieved. However, the nickel metal electrode 54 formed by the thin film technique has a limited film thickness, and the solder nicks into the nickel during solder dipping, making it impossible to obtain an electrode strength of 0.3 to 2.0 kg or more. Moreover, because of the large variation in tensile strength, there was a slight lack of reliability in making chips that could be adhesively mounted on circuit boards.

〔本発明の目的〕[Object of the present invention]

本発明は、上述の問題点に鑑み案出されたものであり、
その目的は外部リード線を強固に半田付は可能にしたり
、回路基板に接着実装可能なチップ化できる新規な電極
構造を有する光電変換装置を提供するものである。
The present invention was devised in view of the above problems, and
The purpose is to provide a photoelectric conversion device that has a novel electrode structure that allows external lead wires to be firmly soldered and that can be made into a chip that can be adhesively mounted on a circuit board.

〔問題点を解決するだめの具体的な手段〕本発明によれ
ば、上述の問題点を解決するために、基板上に被着され
た非晶質半導体層の光照射によって光起電力または導電
率の変化を発生する光電変換装置において、該非晶質半
導体層上に金属電極、絶縁保護膜、半田接合可能な金属
膜、及び耐熱保護膜を順次形成するとともに、該絶縁保
護膜には金属電極と半田接合可能な金属膜とを導通する
連通部が形成され、該耐熱保護膜には半田接合可能な金
属膜を露出し、半田層が設けられる開口部が形成されて
いる光電変換装置が提供される。
[Specific Means for Solving the Problems] According to the present invention, in order to solve the above-mentioned problems, photovoltaic force or conductivity is generated by light irradiation of an amorphous semiconductor layer deposited on a substrate. In a photoelectric conversion device that generates a rate change, a metal electrode, an insulating protective film, a solderable metal film, and a heat-resistant protective film are sequentially formed on the amorphous semiconductor layer, and a metal electrode is formed on the insulating protective film. A photoelectric conversion device is provided, in which a communication portion is formed to conduct electrical connection between the heat-resistant protective film and a solderable metal film, and the heat-resistant protective film has an opening in which the solderable metal film is exposed and a solder layer is provided. be done.

〔実施例〕〔Example〕

以下、本発明の光電変換装置を図面に基づいて詳細に説
明する。
Hereinafter, the photoelectric conversion device of the present invention will be explained in detail based on the drawings.

第1図は本発明の光電変換装置である光起電力装置の構
造を示す断面図である。
FIG. 1 is a sectional view showing the structure of a photovoltaic device which is a photoelectric conversion device of the present invention.

本発明の光起電力装置は、透明絶縁基板1、透明電極2
、非晶質シリコンから成る非晶質半導体層3、金属電極
4、絶縁保護膜5、半田接合可能な金属膜6、及び耐熱
保護膜7とから構成され、前記透明電極2には出力端子
41が形成されている延長部21が形成されている。
The photovoltaic device of the present invention includes a transparent insulating substrate 1, a transparent electrode 2
, an amorphous semiconductor layer 3 made of amorphous silicon, a metal electrode 4, an insulating protective film 5, a solderable metal film 6, and a heat-resistant protective film 7, and the transparent electrode 2 has an output terminal 41. An extension portion 21 is formed.

透明絶縁基板1はガラス、透光性セラミック、などが使
用されている。
The transparent insulating substrate 1 is made of glass, translucent ceramic, or the like.

透明電極2は金属酸化物の透明導電膜で、透明絶縁基F
j、1上に所定形状に形成されている。具体的には、こ
の透明電極2及び延長部21は透明絶縁基板1の一主面
上にマスクを装着し、酸化錫、酸化インジウム、酸化イ
ンジウム錫などの透明導電膜を被着したり、絶縁基板1
の一主面上に酸化錫、酸化インジウム、酸化インジウム
錫などの透明導電膜を被着した後、レジスト・エツチン
グ処理したりして所定パターンに形成される。
The transparent electrode 2 is a transparent conductive film made of metal oxide, and has a transparent insulating group F.
j, is formed in a predetermined shape on 1. Specifically, the transparent electrode 2 and the extension part 21 are formed by attaching a mask to one main surface of the transparent insulating substrate 1 and coating a transparent conductive film such as tin oxide, indium oxide, or indium tin oxide, or by applying an insulating film. Board 1
After a transparent conductive film of tin oxide, indium oxide, indium tin oxide, etc. is deposited on one main surface of the film, a predetermined pattern is formed by resist etching.

非晶質半導体層3は光照射により正孔、電子を発生する
ためにP−1−N接合されている。具体的には、非晶質
半導体層3はシリコン化合物ガスを主原料とするプラズ
マCvD法や光CVD法等で被着される非晶質シリコン
などから成る。
The amorphous semiconductor layer 3 is connected to a P-1-N junction in order to generate holes and electrons when irradiated with light. Specifically, the amorphous semiconductor layer 3 is made of amorphous silicon or the like deposited by a plasma CVD method or a photoCVD method using silicon compound gas as the main raw material.

金属電極4は非晶質半導体層とオーミンクコンタクト可
能な金属、例えばニッケル、アルミニウム、クロム、チ
タン等で形成され、非晶質半導体層3に所定形状に形成
されている。また、金属電極4と同時に透明電極の延長
部21上に出力端子41が形成されている。具体的には
、金属電極4及び出力端子41は非晶質半導体層3及び
透明電極2上にマスクを装着し、上述の金属を抵抗加熱
法等の薄膜技法により被着したり、非晶質半導体層3及
び透明電極2の面上にアルニウム、ニッケル、チタン、
クロム等の金属膜を薄膜技法により被着した後、レジス
ト・エツチング処理したりして所定パターンに形成され
る。この金属電極4の膜厚は0.1〜1.0μmである
The metal electrode 4 is made of a metal capable of making ohmink contact with the amorphous semiconductor layer, such as nickel, aluminum, chromium, titanium, etc., and is formed in a predetermined shape on the amorphous semiconductor layer 3. Furthermore, an output terminal 41 is formed on the extension portion 21 of the transparent electrode at the same time as the metal electrode 4 . Specifically, the metal electrode 4 and the output terminal 41 are formed by attaching a mask to the amorphous semiconductor layer 3 and the transparent electrode 2, and depositing the above-mentioned metal by a thin film technique such as resistance heating, or Aluminum, nickel, titanium,
After a metal film such as chromium is deposited using a thin film technique, it is formed into a predetermined pattern by resist etching. The film thickness of this metal electrode 4 is 0.1 to 1.0 μm.

絶縁保護膜5は、少なくとも金属電極4及び出力端子4
1の一部を露出して金属膜6とを導通する連通部51が
形成されるように、非晶質半導体層3、金属電極4及び
出力端子41上を被い、形成される。具体的には、エポ
キシ樹脂、フェノール樹脂、アクリル樹脂等の絶縁樹脂
がスクリーン印刷法等の厚膜技法によって、膜厚10〜
100μmで形成されたり、酸化シリコン、窒化シリコ
ン等の絶縁膜が薄膜技法によって形成される。
The insulating protective film 5 covers at least the metal electrode 4 and the output terminal 4.
The amorphous semiconductor layer 3, the metal electrode 4, and the output terminal 41 are formed so as to expose a portion of the amorphous semiconductor layer 3, the metal electrode 4, and the output terminal 41 so as to form a communication portion 51 that is electrically connected to the metal film 6. Specifically, insulating resins such as epoxy resins, phenolic resins, and acrylic resins are coated with film thicknesses of 10 to 10% using thick film techniques such as screen printing.
The insulating film may be formed to have a thickness of 100 μm or may be made of silicon oxide, silicon nitride, or the like using a thin film technique.

半田接合可能な金属膜6は少なくとも前記絶縁保護膜5
から露出する金属電極4及び出力端子41上に所定形状
に形成される。金属膜6は後工程の半田形成時に、半田
にこの金属膜6が食われない充分な厚みが必要であり、
且つ製造の容易さからスクリーン印刷法等の厚膜技法が
適している。
The metal film 6 that can be soldered is at least the insulating protective film 5.
It is formed in a predetermined shape on the metal electrode 4 and output terminal 41 exposed from the top. The metal film 6 needs to have a sufficient thickness so that the metal film 6 will not be eaten away by solder during solder formation in the subsequent process.
In addition, thick film techniques such as screen printing are suitable for ease of manufacture.

材料として半田接合が可能であり、且つ金属電極4と低
抵抗で接合が可能な金属、例えば銅、銀、ニッケル、錫
等を樹脂溶液に分散させた導電ベーストを用いる。特に
前記絶縁保護膜5に樹脂を用いた場合、この金属膜6と
絶縁保護膜5との接着力が向上するからである。また、
製造上、絶縁保護膜5の硬化工程と金属膜6の硬化工程
とを同時に行え得るからである。該金属膜6は最低2.
30μm程度の厚みと成るように形成することが重要で
ある。
As a material, a conductive base is used in which a metal that can be soldered and can be joined to the metal electrode 4 with low resistance, such as copper, silver, nickel, tin, etc., is dispersed in a resin solution. This is because, especially when resin is used for the insulating protective film 5, the adhesive strength between the metal film 6 and the insulating protective film 5 is improved. Also,
This is because the curing process of the insulating protective film 5 and the curing process of the metal film 6 can be performed simultaneously in manufacturing. The metal film 6 has a minimum thickness of 2.
It is important to form it so that it has a thickness of about 30 μm.

耐熱保護膜7は、外部リード線や回路基板(いずれも図
示せず。)の接合を容易にする半田層8を金属膜6上の
所定位置に形成されるように制限するものであり、金属
膜6が所定位置に所定の大きさで露出する開口部71.
72が形成されている。具体的には、半田の融点温度で
ある170〜180°Cに耐え、半田と接合しない材料
であればよく、その形成方法も金属膜6や非晶質半導体
層3にダメージを与えない範囲で自由に設定できる。望
ましくは、絶縁保護膜5、金属膜6等と同様に耐熱の樹
脂ペーストでスクリーン印刷性テ形成すれば、製造上、
煩雑になることがなく、金属膜6と接着性が向上する。
The heat-resistant protective film 7 restricts the solder layer 8, which facilitates the bonding of external lead wires and circuit boards (none of which are shown), to be formed at a predetermined position on the metal film 6. An opening 71 through which the membrane 6 is exposed at a predetermined position and with a predetermined size.
72 is formed. Specifically, any material that can withstand the melting point temperature of solder, 170 to 180°C, and does not bond with solder may be used, and the method of forming the material may be within a range that does not damage the metal film 6 or the amorphous semiconductor layer 3. Can be set freely. Preferably, if the insulating protective film 5, the metal film 6, etc. are formed using a heat-resistant resin paste with screen printing properties, it will be easier to manufacture.
It does not become complicated and the adhesion to the metal film 6 is improved.

上述の構成により、耐熱保護膜7の開口部71.72か
ら露出する金属膜6を出力端子として、外部リード線を
半田付けすることができるが、外部リード線の半田付け
を容易にし、さらにチップ部品として、直接回路基板に
実装できるように、予め該開口部71.72に半田層8
を形成することが極めて有益である。
With the above-mentioned configuration, the metal film 6 exposed through the openings 71 and 72 of the heat-resistant protective film 7 can be used as an output terminal to which external lead wires can be soldered. A solder layer 8 is applied to the openings 71 and 72 in advance so that the component can be directly mounted on the circuit board.
It is extremely beneficial to form a

半田層8は、溶解した半田浴に上述の光起電力装置を浸
漬すればよく、耐熱保護膜7は半田を弾き、開口部71
.72のみに形成される。
The solder layer 8 can be formed by immersing the above photovoltaic device in a melted solder bath, and the heat-resistant protective film 7 repels the solder and forms the opening 71.
.. 72 only.

上述の構成をした光起電力装置の半田層8部分に外部リ
ード線を半田付けし、該リード線を引っ張り、電極等の
剥離を調べた。尚、開口部71.72の大きさは2mm
X2mmである。
External lead wires were soldered to the solder layer 8 portion of the photovoltaic device configured as described above, and the lead wires were pulled to examine peeling of electrodes and the like. Furthermore, the size of the openings 71 and 72 is 2 mm.
It is x2mm.

その結果、光起電力装置の構成である透明電極2、非晶
質半導体層3、金属電極4、絶縁保護膜5、半田接合可
能な金属膜6、耐熱保護膜7及び半田層8の各接合界面
の剥離は全く生じず、1゜5〜3.0kg重の力(平均
2.0kg重の力)で外部リード線の切断や、半田層8
から抜けが生じるだけであった。しかも絶縁保護膜5の
連通部51と耐熱保護膜7の開口部72が重なり合う透
明電極2例の半田層8でも同様の結果が得られた。
As a result, each of the transparent electrode 2, amorphous semiconductor layer 3, metal electrode 4, insulating protective film 5, solderable metal film 6, heat-resistant protective film 7, and solder layer 8 that constitute the photovoltaic device is bonded. No peeling occurred at the interface, and a force of 1°5 to 3.0 kg (average force of 2.0 kg) was enough to cut the external lead wire or remove the solder layer 8.
There were only omissions. Furthermore, similar results were obtained for the solder layers 8 of two transparent electrodes in which the communicating portions 51 of the insulating protective film 5 and the openings 72 of the heat-resistant protective film 7 overlapped.

第2図は、耐熱保護膜7の開口部71を透明電極2例の
開口部72の近接した金属N6上に形成した実施例を示
す断面図である。
FIG. 2 is a sectional view showing an example in which an opening 71 of a heat-resistant protective film 7 is formed on a metal N6 adjacent to an opening 72 of two transparent electrodes.

これにより、+側の端子と一側の端子とを近接させるこ
とができ、外部リード線の半田付けが極めて容易となる
光起電力装置が達成される。
As a result, a photovoltaic device is achieved in which the + side terminal and the one side terminal can be brought close to each other, and the external lead wire can be extremely easily soldered.

第3図は、金属電極4上に形成される絶縁保護膜5を非
晶質半導体層3又は透明電極2が形成されていない透明
基板1上にまで延出させ、この延出された絶縁保護膜5
上にまで金属層6を形成し、少なくとも非晶質半導体層
3が形成されていない部分で耐熱保護膜7の開口部71
をした実施例を示す断面図である。
FIG. 3 shows that the insulating protection film 5 formed on the metal electrode 4 is extended onto the transparent substrate 1 on which the amorphous semiconductor layer 3 or the transparent electrode 2 is not formed, and this extended insulating protection film 5 is formed on the metal electrode 4. membrane 5
The metal layer 6 is formed up to the top, and the opening 71 of the heat-resistant protective film 7 is formed at least in the part where the amorphous semiconductor layer 3 is not formed.
FIG. 3 is a sectional view showing an example in which

これにより、該耐熱保護膜7の開口部71に半田層8を
形成する際、溶解した半田浴に非晶質半導体層3が形成
されていない部分だけを浸漬すればよく、非晶質半導体
層3に過剰な熱影響を与えず、迅速に製造可能な光起電
力装置が達成される。
As a result, when forming the solder layer 8 in the opening 71 of the heat-resistant protective film 7, it is only necessary to immerse only the part where the amorphous semiconductor layer 3 is not formed in the melted solder bath, and the amorphous semiconductor layer A photovoltaic device is achieved that can be manufactured quickly without excessive thermal effects on the photovoltaic device.

第4図は本発明の光電変換装置である光センサーの断面
図である。尚、第1図の光起電力装置と同一構造部分は
同一符号で示す。
FIG. 4 is a sectional view of an optical sensor which is a photoelectric conversion device of the present invention. Note that the same structural parts as those of the photovoltaic device shown in FIG. 1 are designated by the same reference numerals.

本発明の光センサーは、透明絶縁基板1、非晶質シリコ
ンから成る非晶質半導体層3、金属電極4a、4b、絶
縁保護膜5、半田接合可能な金属膜6a、6b、及び耐
熱保護膜7とから構成されている。
The optical sensor of the present invention includes a transparent insulating substrate 1, an amorphous semiconductor layer 3 made of amorphous silicon, metal electrodes 4a and 4b, an insulating protective film 5, a solderable metal film 6a and 6b, and a heat-resistant protective film. It consists of 7.

透明絶縁基板1はガラス、透光性セラミック、などが使
用されている。
The transparent insulating substrate 1 is made of glass, translucent ceramic, or the like.

非晶質半導体層3は、光照射の強度に応じて、導電率が
変化するものであり、1層のみの単層であったり、P−
I−N接合、N−I−N接合、I−N接合等の多層構造
している。
The amorphous semiconductor layer 3 changes its electrical conductivity depending on the intensity of light irradiation, and may be a single layer or a P-
It has a multilayer structure such as an I-N junction, an N-I-N junction, and an I-N junction.

金属電極4a、4bは非晶質半導体層とオーミックコン
タクト可能な金属で形成され、非晶質半導体層3に所定
形状に形成されている。この金属電極4a、4bの膜厚
は0. 1〜1. 0prnである。
The metal electrodes 4a and 4b are made of a metal that can make ohmic contact with the amorphous semiconductor layer, and are formed in a predetermined shape on the amorphous semiconductor layer 3. The film thickness of these metal electrodes 4a, 4b is 0. 1-1. It is 0prn.

絶縁保護膜5は、少なくとも金属電極4a、4bの一部
を露出して金属膜6a、6bとを導通する連通部51a
、51bが形成されるように、非晶質半導体層3、金属
電極4a、4b上を被い、形成される。具体的には、エ
ポキシ樹脂、フェノール樹脂、アクリル樹脂等の絶縁樹
脂がスクリーン印刷法等の厚膜技法によって、膜厚10
〜100μmで形成される。
The insulating protective film 5 has a communication portion 51a that exposes at least a part of the metal electrodes 4a, 4b and connects the metal films 6a, 6b.
, 51b are formed so as to cover the amorphous semiconductor layer 3 and the metal electrodes 4a and 4b. Specifically, insulating resins such as epoxy resins, phenolic resins, and acrylic resins are coated with a film thickness of 10 mm using thick film techniques such as screen printing.
It is formed with a thickness of ~100 μm.

半田接合可能な金属膜6a、6bは、少なくとも前記絶
縁保護膜5から露出する金属電極4a。
The metal films 6a and 6b that can be soldered are at least the metal electrodes 4a exposed from the insulating protective film 5.

4b上に所定形状に形成される。金属膜6a、6bは金
属電極4a、4bと低抵抗で接合が可能な金属、例えば
銅、銀、ニッケル、錫等を樹脂溶液に分散させた導電ペ
ーストによって形成されている。
4b in a predetermined shape. The metal films 6a and 6b are formed of a conductive paste in which a metal that can be bonded to the metal electrodes 4a and 4b with low resistance, such as copper, silver, nickel, and tin, is dispersed in a resin solution.

耐熱保護膜7は、回路基板(図示せず。)の接合を容易
にする半田層8を金属膜6a、6b上の所定位置に形成
されるように制限するものであり、金属膜6が所定位置
に所定の大きさで露出する開口部71 a、  7 l
 bが形成されている。具体的には、半田の融点温度で
ある170〜180°Cに耐え、半田と接合しない材料
で形成される。
The heat-resistant protective film 7 restricts the solder layer 8, which facilitates bonding of a circuit board (not shown), to be formed at a predetermined position on the metal films 6a, 6b. Openings 71a, 7l exposed at predetermined positions and with predetermined sizes
b is formed. Specifically, it is made of a material that withstands the melting point temperature of solder, 170 to 180°C, and does not bond with solder.

望ましくは、絶縁保護膜5、金属膜6a、6b等と同様
に耐熱の樹脂ペーストでスクリーン印刷法で形成すれば
、製造上、煩雑になることがなく、金属膜6a、6bと
接着性が向上する。
Preferably, if it is formed using a screen printing method using a heat-resistant resin paste in the same way as the insulating protective film 5, metal films 6a, 6b, etc., it will not be complicated in manufacturing and the adhesion to the metal films 6a, 6b will be improved. do.

半田層8は、溶解した半田浴に上述の光センサーを浸漬
すればよく、耐熱保護膜7は半田を弾き、開口部71a
、71bのみに形成される。
The solder layer 8 can be formed by immersing the above-mentioned optical sensor in a melted solder bath, and the heat-resistant protective film 7 repels the solder and forms the opening 71a.
, 71b only.

上述の構成により、耐熱保護膜7の開口部712.71
bから露出する金属膜6a、6bをバイアス電圧印加の
電極として、外部リード線を半田付けすることができる
が、特に本発明の光センサーは電子部品として直接回路
基板に実装できるチップ部品として使用でき、電極外の
外部衝撃に対しても極めて有益である。
With the above configuration, the openings 712, 71 of the heat-resistant protective film 7
External lead wires can be soldered to the metal films 6a and 6b exposed from the metal films 6a and 6b as electrodes for applying a bias voltage, but in particular, the optical sensor of the present invention cannot be used as a chip component that can be directly mounted on a circuit board as an electronic component. , is also extremely beneficial against external shocks outside the electrode.

尚、上述の光センサーの実施例でも第2図のように耐熱
保護膜7の開口部71a、71bを互いに近接したり、
第3図のように非晶質半導体層3が形成されていない部
分に耐熱保護膜7の開口部71a、71bを形成したり
しても構わない。
In addition, in the embodiment of the optical sensor described above, the openings 71a and 71b of the heat-resistant protective film 7 are placed close to each other as shown in FIG.
As shown in FIG. 3, openings 71a and 71b of the heat-resistant protective film 7 may be formed in portions where the amorphous semiconductor layer 3 is not formed.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明は基板上に被着された非晶質半導
体層の光照射によって光起電力または導電率の変化を発
生する光電変換装置において、該非晶質半導体層上に金
属電極、絶縁保護膜、半田接合可能な金属膜、及び耐熱
保護膜を順次形成するとともに、該絶縁保護膜には金属
電極と半田接合可能な金属膜とを導通する連通部が形成
され、該耐熱保護膜には半田接合可能な金属膜を露出し
、半田層が設けられる開口部が形成されているため、半
田層の形成の際に、金属電極が半田に食われることが全
くなく、透明電極、非晶質半導体層、金属電極、絶縁保
護膜、半田接合可能な金属膜、耐熱保護膜及び半田層の
各接合界面の剥離は全く生じず、外部リード線を強固に
半田付は可能にしたり、回路基板に接着実装可能なチッ
プ部品としての光電変換装置ができる。
As described above, the present invention provides a photoelectric conversion device that generates a photovoltaic force or a change in conductivity by irradiating an amorphous semiconductor layer deposited on a substrate with a metal electrode on the amorphous semiconductor layer. An insulating protective film, a solderable metal film, and a heat-resistant protective film are sequentially formed, and a communication portion is formed in the insulating protective film to conduct the metal electrode and the solderable metal film, and the heat-resistant protective film Since the opening is formed to expose the metal film that can be soldered and the solder layer is provided, the metal electrode will not be eaten by the solder when forming the solder layer, and the transparent electrode and non-transparent electrode will not be eaten by the solder. There is no peeling at the bonding interface between the crystalline semiconductor layer, metal electrode, insulating protective film, solderable metal film, heat-resistant protective film, and solder layer. A photoelectric conversion device can be created as a chip component that can be adhesively mounted on a substrate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の光電変換装置である光起電力装置の構
造を示す断面図である。第2図及び第3図は本発明の光
電変換装置である光起電力装置の他の実施例を示す部分
断面図である。第4図は本発明の光電変換装置である光
センサーの構造を示す断面図である。 第5図は従来の光起電力装置の構造を示す断面図である
。 1、、、、、、、、透明絶縁基板 2、、、、、、、、透明電極 3、、、、、、、、非晶質半導体層 4:4a:4b 、 、 、 、 、金属電極5、、、
、、、、、絶縁保護膜 6:6a:6b、、、金属膜 7、.00.、、、耐熱保護膜
FIG. 1 is a sectional view showing the structure of a photovoltaic device which is a photoelectric conversion device of the present invention. FIGS. 2 and 3 are partial cross-sectional views showing other embodiments of the photovoltaic device which is the photoelectric conversion device of the present invention. FIG. 4 is a sectional view showing the structure of an optical sensor which is a photoelectric conversion device of the present invention. FIG. 5 is a sectional view showing the structure of a conventional photovoltaic device. 1. Transparent insulating substrate 2 Transparent electrode 3 Amorphous semiconductor layer 4:4a:4b Metal electrode 5 ,,,
, , , insulating protective film 6:6a:6b, ,metal film 7, . 00. ,,,Heat-resistant protective film

Claims (1)

【特許請求の範囲】  基板上に被着された非晶質半導体層の光照射によって
光起電力または導電率の変化を発生する光電変換装置に
おいて、 前記非晶質半導体層上に金属電極、絶縁保護膜、半田接
合可能な金属膜、及び耐熱保護膜を順次形成するととも
に、該絶縁保護膜には金属電極と半田接合可能な金属膜
とを導通する連通部が形成され、該耐熱保護膜には半田
接合可能な金属膜を露出するように開口部が形成されて
いることを特徴とする光電変換装置。
[Scope of Claims] A photoelectric conversion device that generates a photovoltaic force or a change in conductivity by light irradiation of an amorphous semiconductor layer deposited on a substrate, further comprising a metal electrode and an insulating layer on the amorphous semiconductor layer. A protective film, a solderable metal film, and a heat-resistant protective film are sequentially formed, and a communication portion is formed in the insulating protective film to connect the metal electrode and the solderable metal film. A photoelectric conversion device characterized in that an opening is formed to expose a metal film that can be soldered.
JP63046460A 1988-02-29 1988-02-29 Photoelectric conversion device Pending JPH01220477A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63046460A JPH01220477A (en) 1988-02-29 1988-02-29 Photoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63046460A JPH01220477A (en) 1988-02-29 1988-02-29 Photoelectric conversion device

Publications (1)

Publication Number Publication Date
JPH01220477A true JPH01220477A (en) 1989-09-04

Family

ID=12747774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63046460A Pending JPH01220477A (en) 1988-02-29 1988-02-29 Photoelectric conversion device

Country Status (1)

Country Link
JP (1) JPH01220477A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04155972A (en) * 1990-10-19 1992-05-28 Taiyo Yuden Co Ltd Photovoltaic device
US6888209B2 (en) * 2002-09-20 2005-05-03 Casio Computer Co., Ltd. Semiconductor package and method of fabricating the same
JP2007317840A (en) * 2006-05-25 2007-12-06 Sanyo Electric Co Ltd Photovoltaic device, and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04155972A (en) * 1990-10-19 1992-05-28 Taiyo Yuden Co Ltd Photovoltaic device
US6888209B2 (en) * 2002-09-20 2005-05-03 Casio Computer Co., Ltd. Semiconductor package and method of fabricating the same
JP2007317840A (en) * 2006-05-25 2007-12-06 Sanyo Electric Co Ltd Photovoltaic device, and its manufacturing method

Similar Documents

Publication Publication Date Title
JP2744847B2 (en) Improved solar cell and method for manufacturing the same
US3501832A (en) Method of making electrical wiring and wiring connections for electrical components
JPS63252427A (en) Stable ohmic contact which is contacted with thin film of ii-vi semiconductor containing p-type tellurium
US6471816B1 (en) Method of solar battery output section fabrication
JPH07231015A (en) Semiconductor device and its manufacture
JPS60240171A (en) Solar electric generator
JP2007250564A (en) Ceramic circuit module and method of manufacturing same
JPH01220477A (en) Photoelectric conversion device
JPS59208789A (en) Solar cell
JPH07263733A (en) Thin film photoelectric conversion device and manufacture thereof
JPH01246877A (en) Photoelectric conversion device
JPH0629564A (en) Manufacture of solar battery apparatus
JP2000196117A (en) Manufacture of photoelectric conversion device
JPS60220317A (en) Liquid crystal display element
JPH03101234A (en) Manufacture of semiconductor device
JP2761730B2 (en) Photoelectric conversion device
JP2021125603A (en) Solar cell string and manufacturing method of solar cell string
JP4206264B2 (en) Method for manufacturing photoelectric conversion device
TWI653644B (en) Conductive tape, solar cell string and solar cell module
JPS6244532Y2 (en)
GB1559247A (en) Photovoltaic cell array
JPS61163671A (en) Thin-film solar cell
JPH04225575A (en) Photovoltaic power device
JP3573869B2 (en) Method for manufacturing photovoltaic device
JPS60150636A (en) Contact electrode for power semiconductor element