JP4206264B2 - Method for manufacturing photoelectric conversion device - Google Patents

Method for manufacturing photoelectric conversion device Download PDF

Info

Publication number
JP4206264B2
JP4206264B2 JP2002368835A JP2002368835A JP4206264B2 JP 4206264 B2 JP4206264 B2 JP 4206264B2 JP 2002368835 A JP2002368835 A JP 2002368835A JP 2002368835 A JP2002368835 A JP 2002368835A JP 4206264 B2 JP4206264 B2 JP 4206264B2
Authority
JP
Japan
Prior art keywords
photoelectric conversion
substrate
conversion device
electrode
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002368835A
Other languages
Japanese (ja)
Other versions
JP2004200512A (en
Inventor
豪 京田
健一 岡田
久雄 有宗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002368835A priority Critical patent/JP4206264B2/en
Publication of JP2004200512A publication Critical patent/JP2004200512A/en
Application granted granted Critical
Publication of JP4206264B2 publication Critical patent/JP4206264B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は光電変換装置に関し、特に隣接する光電変換装置に接続された光電変換装置に関する。
【0002】
【従来の技術】
従来の粒状結晶半導体を用いた光電変換装置を図8および図9に示す。例えば、図8に示すように、第1のアルミニウム箔17に開口を形成し、その開口にp形中心核の上にn形表皮部を持つシリコン球16を挿入し、このシリコン球16の裏側のn形表皮部を除去し、第1のアルミニウム箔17の裏面側に酸化物絶縁層(不図示)を形成し、シリコン球16の裏側の酸化物絶縁層を除去し、シリコン球16と第2のアルミニウム箔18とを接合し、第1のアルミニウム箔17と第2のアルミニウム箔18の端部19同志を重ねて超音波等で接合する光電変換装置が開示されている(例えば特許文献1参照)。
【0003】
また、図9(a)に示すように、素子を形成した組合せ体20同士を隣接する一方の組合せ体20の周辺部21aの上又は下に隣接する組合せ体20の周辺部21bを重ねて交互に電気的に接続する。また、電気的な接続構造として図9(b)に示すように周辺部21aが立ち上がっており他方の周辺部21bは立ち下がって形成され、その外側で接続する場合と、図9(c)に示すように周辺部21aが立ち上がっており、他方の周辺部21bは立ち下がって形成され、その内側で接続される場合が開示されている(例えば特願2002―164554号明細書参照)。
【0004】
【特許文献1】
特開昭61−124179号公報参照
【0005】
【発明が解決しようとする課題】
しかしながら、図8に示すような光電変換装置においては、第1のアルミニウム箔17と第2のアルミニウム箔18との端部19同志を超音波等で接合するが、シリコン球16を第2のアルミニウム箔18に接合するときの処理温度がアルミニウムとシリコンの共晶温度である577℃以下であるため、シリコン球16と第2のアルミニウム箔18との接合が不安定であり、第1のアルミニウム箔17と第2のアルミニウム箔18との端部19を超音波融着する際に、シリコン球16が第2のアルミニウム箔18から剥離する等の問題があった。
【0006】
また、図9に示すような光電変換装置においては、組合せ体での両辺にわたって接続部の段差があるため、太陽光の入射角度によっては段差による陰が発生してその分発電できなくなるという問題があった。
【0007】
本発明は上記従来技術における問題点に鑑みてなされたものであり、その目的は、電極の接着強度が強く、接続部の段差を少なくした光電変換装置を提供することにある。
【0008】
【課題を解決するための手段】
上記目的を達成するために、本発明の請求項1に係る光電変換装置の製造方法は、一方の電極層を有する、アルミニウム又はアルミニウム合金を含んでなる基板上に第一導電形を呈するシリコンを含んでなる半導体と逆導電形を呈する半導体とを形成し、前記基板の裏面に合金半田を被覆した取り出し電極を接続する光電変換装置の製造方法において、
前記取り出し電極が接続される前記基板の裏面部位に、銅或いはニッケルの薄片を接触させて577℃以上の熱処理を施し、前記薄片を前記基板の裏面部位に拡散させた後、前記基板の裏面部位に前記取り出し電極を接続したことを特徴とする。
【0009】
また、前記基板の銅あるいはニッケルが拡散されている部分が突出した突出部であり、この突出部と隣接する光電変換装置の取り出し電極とが重ね合わせて接続されていることが望ましい。
【0010】
また、前記隣接する光電変換装置の基板の突出部分に取り出し電極が形成されており、前記基板の銅あるいはニッケルが拡散されている部分と重ね合わせて接続されていることが望ましい。
【0014】
また、前記取り出し電極が被覆されている合金半田が、少なくともSn、Cu、Ni、Ag、Biから選ばれた合金ハンダから成ることが望ましい。
【0016】
また、前記第一導電形を呈する半導体が粒状結晶シリコンから成ることが望ましい。
【0017】
また、前記逆導電形を呈する半導体がシリコン薄膜から成ることが望ましい。
【0018】
また、前記粒状結晶半導体の平均粒径が0.2〜0.6mmであることが望ましい。
【0019】
本発明の光電変換装置によれば、アルミニウム基板と取り出し電極とが高い接着強度で接続することが可能となり、また、接続箇所を一部分にすることによって隣接する光電変換装置との段差を小さくすることが可能となることによって、従来の光電変換装置と比較して太陽光の光線角度で影響されない光電変換装置を製造することが可能となる。
【0020】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて詳細に説明する。
図6および図7は、本発明に係る光電変換装置の一実施形態を示す図である。図6および図7において、1は基板、2は粒状結晶半導体、3は絶縁物質、4は半導体層、5は透明導電層、6は基板のアルミニウムと粒状結晶半導体のシリコンとの合金層、7および8は上部電極、9は取出電極である。
【0021】
基板1はアルミニウム或いはアルミニウム合金から成る。基板1の材料がアルミニウム以外の金属の場合、図7に示すように、その材料とアルミニウムから成る電極層1’との構成とする。アルミニウム電極層1’には第2の添加元素としてシリコン、マグネシウム、マンガン、クロム、チタン、ニッケル、亜鉛、銀、銅から選ばれた1種もしくは複数種の元素を添加してもよい。このような元素をアルミニウム電極層1’に添加すると、結晶半導体粒子2が接合するときの溶融過多を防止することができる。
【0022】
第一導電形の結晶半導体粒子2を基板1上に多数配設する。この結晶半導体粒子2は、Siにp形を呈するB、Al、Ga等、またはn形を呈するP、As等が微量元素含まれているものである。
【0023】
結晶半導体粒子2の粒径は、0.2〜0.8mmがよい。0.8mmを越えると切削部も含めた従来の結晶板型の光電変換装置のシリコン使用量と変わらなくなり、結晶半導体粒子を用いるメリットがなくなる。また、0.2mmよりも小さいと基板1へのアッセンブルがしにくくなるという別の問題が発生する。結晶半導体粒子2の粒径は、シリコン使用量との関係から0.2〜0.6mmがより好適である。
【0024】
基板1上に結晶半導体粒子2を多数配設し、その後結晶半導体粒子2上に一定の荷重を掛けて基板1のアルミニウムと結晶半導体粒子2のシリコンとの共晶温度577℃以上に加熱することによって、接合助層を飛散させながら基板1と結晶半導体粒子2の合金層6を介して基板1と結晶半導体粒子2を接合させる。
【0025】
絶縁物質3は、正極と負極の分離を行うための絶縁材料からなり、例えばSiO2、B23、Al23、CaO、MgO、P25、Li2O、SnO、ZnO、BaO、TiO2等を任意な成分とする主材料の低温焼成用ガラス材料単体、上記材料の1種または複数種から成るフィラーを複合したガラス組成物、或いは耐熱性樹脂を主成分とする絶縁物質などを用いる。
【0026】
上記絶縁材料を粒状結晶半導体2の上から塗布して、アルミニウムとシリコンの共晶温度である577℃以下の温度で加熱することによって絶縁物質3を充填する。絶縁物質3を充填した後、粒状結晶半導体2の表面を洗浄するために、弗酸を含む洗浄液で洗浄する。
【0027】
半導体層4は例えばSiからなり、気相成長法等で例えばシラン化合物の気相にn形を呈するリン系化合物の気相、またはp形を呈するホウ素系化合物の気相を微量導入して形成する。膜質としては結晶質、非晶質、結晶質と非晶質とが混在するのどちらでもよいが、光線透過率を考慮すると結晶質または結晶質と非晶質とが混在するものがよい。粒状結晶半導体2がない部分で入射光の一部が半導体層4を透過し、下部の基板1で反射して粒状結晶半導体2に照射されることで、光電変換装置全体に照射される光エネルギーを効率よく粒状結晶半導体2に照射することが可能となる。
【0028】
半導体層4中の微量元素の濃度は例えば1×1016〜1021atm/cm3台程度である。更に、半導体層4は粒状結晶半導体2の表面の凸曲面形状に沿って形成することが望ましい。粒状結晶半導体2の凸曲面状の表面に沿って形成することによってpn接合の面積を広く稼ぐことができ、粒状結晶半導体2の内部で生成したキャリアを効率よく収集することが可能となる。なお、その外郭に逆導電形、つまりn形を呈するP、As等、またはp形を呈するB、Al、Ga等が微量含まれている粒状結晶半導体2を用いる場合には、半導体層4はなくてもよく、その上に後述の透明導電層5を形成してもよい。
【0029】
半導体層4上、または粒状結晶半導体2として外郭に逆導電形の元素を微量含んでいる場合には粒状結晶半導体2上に、透明導電層5を形成する。透明導電層5は、SnO2、In23、ITO、ZnO、TiO2等から選ばれる1種または複数の酸化物系膜などからなり、スパッタリング法、気相成長法、あるいは塗布焼成法等で形成する。透明導電層5は膜厚を選べば反射防止膜としての効果も期待できる。透明導電層5は半導体層4あるいは粒状結晶半導体2の表面に沿って形成し、粒状結晶半導体2の凸曲面形状に沿って形成することが望ましい。粒状結晶半導体2の凸曲面状の表面に沿って形成するとpn接合の面積を広く稼ぐことができ、粒状結晶半導体2の内部で生成したキャリアを効率よく収集することができる。
【0030】
半導体層4あるいは透明導電層5上に保護層(不図示)を形成してもよい。このような保護層としては透明誘電体の特性を持つものがよく、CVD法やPVD法等で例えば酸化珪素、酸化セシウム、酸化アルミニウム、窒化珪素、酸化チタン、SiO2−TiO2、酸化タンタル、酸化イットリウム等を単一組成または複数組成で単層または組み合わせて半導体層4または透明導電層5上に形成する。保護層は光の入射面に接しているために透明性が必要であり、また半導体層4または透明導電層5と外部との間のリークを防止するために誘電体であることが必要である。なお、保護層の膜厚を最適化すれば反射防止膜としての機能も期待できる。
【0031】
直列抵抗値を低くするために、半導体層4または透明導電層5の上に上部電極として一定間隔のフィンガー電極部7およびバスバー電極部8から成るパターン電極を設けて直接または間接的に半導体層4と接続して変換効率を向上させる。電極材料としては、導電粉と少量の溶媒を含む熱硬化型樹脂をバインダーとする低温硬化の導電性ペーストを用いる。硬化に要する温度が400℃を越えると半導体層4が変質するために十分な変換効率が得られなくなる。形成方法としては、ディスペンサー、スクリーン印刷等がある。
【0032】
取出電極9はハンダ11で被覆された銅箔10からなり、バスバー電極部8上にハンダで接合する。ハンダはバスバー電極部8との接合を行う共に、銅箔10表面の腐食を防止する効果がある。ハンダを構成する材料としては環境の面からPb以外の少なくともSn、Cu、Ni、Ag、Biから選ばれた合金ハンダで行う。
【0033】
上記の通り形成した光電変換装置を複数用意し、一方の光電変換装置の取出電極9と隣接する光電変換装置の一方の電極を兼ねる基板1の裏面とを接続する。接続方法としてはハンダによる接合が容易であるが、基板1がアルミニウムからなる場合は、このままでは結晶半導体粒子2の接合時にシリコンがアルミニウムに溶け込むためにハンダによる接合では十分な接合強度が得られない。そこで、取り出し電極9と接続させる基板1の裏面の部分にハンダと接合可能な金属である銅或いはニッケルの薄片を接触させ、その後、基板1と結晶半導体粒子2の接合を行う。接合時の温度が577℃以上であるため、接合時に銅或いはニッケルが基板であるアルミニウムに溶け込んで拡散する。このようにして形成した拡散部13であれば、ハンダとの濡れ性が改善され、基板であるアルミニウムと取り出し電極9とのハンダによる接続が可能となる。
【0034】
図1は、取り出し電極9を光電変換装置から突出させた状態で形成し、隣接する光電変換装置の裏面の拡散部13に取り出し電極9を接触させて加熱によって接続する。取り出し電極9の突出する長さは2〜10mm程度がよい。
【0035】
図2は基板1に突出部12を設け、突出部12の裏面に形成した拡散部13と隣接する光電変換装置の取り出し電極9を接触させて加熱によって接続する。なお、図2における突出部12の形状は、幅2〜5mm長さ2〜10mmがよく、特に幅が5mmを越えるとその分光電変換のための有効面積が少なくなり、全体の面積当たりの変換効率が下がってしまう。
【0036】
また、図3は基板1に設けた突出部12上まで取り出し電極9を伸ばして設け、突出部12上の取り出し電極9と隣接する光電変換装置の裏面に形成した拡散部13を接触させて加熱によって接続する。この方法によれば、隣接する光電変換装置との重なる部分が一部分であり、その他の部分を部分的に変形させることによって隣接する光電変換装置の面の高さと同じにすることができ、隣接する光電変換装置同士による段差が一部分に押さえられる。なお、図3における突出部12の形状は、幅2〜10mm長さ2〜10mmがよく、特に幅が10mmを越えると隣接する光電変換装置との重なる部分が長くなり、太陽光の入射角度によっては重なり部による陰が長く生じて変換効率を落としてしまう。
【0037】
また、図1から図3における拡散部13の形成については、拡散させる金属厚みは数nmから数十μmであり、拡散後に金属箔が全面或いは一部分表面に残っていても差し支えない。なお、1μm以下の膜厚については蒸着、スパッタリング等の薄膜形成装置で基板裏面に形成する。また、全体の面積当たりの変換効率に差し支えない程度に光電変換装置同士の間隔を1〜5mm程度開けることも可能である。
【0038】
また、図4に示すように、隣接する光電変換装置同士による段差をなくすために、基板1に接続用穴14を設け、そこに隣接する光電変換装置の取り出し電極9を上面から通してかしめることによって金属箔や金属片を使用せずに機械的に接続する。接続用穴14はかしめるのに十分であればよく、例えば長さ3〜5mm幅1〜2mm程度である。
【0039】
また、図5に示すように、さらに厚い金属箔を使用する場合は、基板1の裏面に金属片15を超音波融着或いはレーザースポット溶接等で溶着させた後、隣接する光電変換装置の取り出し電極9とハンダ接合によって接続する。金属片15の基板1からの突出長さは0〜5mm程度であり、突出長さが0mmの場合は、隣接する光電変換装置の取り出し電極9を基板1の裏面でハンダで接続する。
【0040】
【実施例】
次に、本発明の光電変換装置の実施例を説明する。実施例として以下のようにして作製した試料を用いた。
【0041】
〔例1〕
板厚0.5mmの図1から図3に示す形状のアルミニウム合金基板の裏面の隣接する光電変換装置との接続箇所に、膜厚20μmの銅箔或いはニッケル箔を敷き、アルミニウム合金基板上に直径約0.2〜0.6mmのp形シリコン粒子を大気中でアルミニウムとシリコンの共晶温度である577℃以上の温度で約10分加熱してシリコン粒子をアルミニウム合金に接合した。その上に絶縁物質3を充填して基板全面に形成し、その後p形シリコン粒子の上部表面を洗浄、シリコン粒子2と絶縁物質3の上にn形結晶質シリコンと非晶質シリコンとの混晶の半導体層4を300nmの厚みに形成し、更に透明導電層5としてITO膜を80nmの厚みに形成した。透明導電層5上に銀粉を用いたエポキシ系導電性ペースト(フィンガー)と銀被覆銅粉を用いたフェノールエポキシ系導電性ペースト(バスバー)をディスペンサで塗布し、250℃で熱処理して硬化させることで上部電極(フィンガー、バスバー)を形成した。その上に幅2mm厚み0.1mmの銅リボンをハンダで100μm被覆した取出し電極をハンダ溶着でバスバー部に接合させて試料を作製した。なお、図1のような形態のときは、取出し電極9を基板から5mm突出するように形成した。図3のような形態のときは、取出し電極9を突出部12の長さに沿って形成した。
【0042】
以上のようにして作製した試料を図1から図3のように重ね合わせ、重なり部をハンダが溶融する温度まで加熱し、図1の形態を実施例1と2、図2の形態を実施例3と4、図3の形態を実施例5と6とした。なお、比較例として、金属箔を基板の裏面に敷かずに実施例1と同様に作製した。
【0043】
次に、図4に示すような長さ3mm幅1.5mmの接続用穴があらかじめ設けられたアルミニウム合金基板を用いて実施例1と同様に作製した。その後、隣接する光電変換装置の取り出し電極を接続用穴の上面から下面に通して折り曲げ、折り曲げ部分の基板の上面と下面から加圧して取り出し電極を基板にかしめ、実施例7とした。
【0044】
次に、光電変換装置を金属箔を基板の裏面に敷かずに実施例1と同様に作製した後、基板裏面の隣接する光電変換装置との接続箇所に、膜厚50μmの銅箔或いはニッケル箔を超音波溶着で取り付けた。その後、図5のように重ね合わせ、重なり部にハンダが溶融する温度まで加熱して実施例8と9とした。
【0045】
以上の試料において、接続部の接続強度を光電変換装置同士を左右からプッシュプルゲージで引っ張ったときの強度で評価した結果を表1に示す。
【0046】
【表1】

Figure 0004206264
【0047】
比較例1では、ハンダ溶着では接続強度が得られなかった。これは、基板の裏面がアルミニウム合金であり、しかもシリコン粒子2との接合の際にシリコンが基板に拡散しているためにハンダとの濡れ性が悪くなったからである。
【0048】
一方、実施例1から実施例9までの試料ではどれも十分な接続強度が得られ、シリコン粒子2および絶縁物質3の剥離は見られなかった。このことから、隣接する光電変換装置と接続する基板の裏面部にハンダと接合する金属を拡散して、隣接する光電変換装置の取り出し電極とをハンダで接合することが可能であり、また、隣接する光電変換装置と接続する基板の裏面部と隣接する光電変換装置の取り出し電極との間にハンダと接合する金属を介在させることによってハンダで接合することが可能であることがわかった。更に、基板に接続穴を設けて、隣接する光電変換装置の取り出し電極を接続穴に通してかしめる方法も有効であることがわかった。
【0049】
以上のことから、本発明の光電変換装置によれば、光電変換装置同士の接続をハンダ接合という容易な手法を用いて十分な強度で接続できることが確認できた。
【0050】
【発明の効果】
以上のように、請求項1に係る光電変換装置によれば、アルミニウム合金基板の裏面の隣接する光電変換装置との接続箇所にハンダと接合可能な金属を拡散することによって、隣接する光電変換装置の取り出し電極とハンダ接合という容易な方法で十分な接合強度を保って接続することが可能となる。
【0051】
また、請求項4に係る光電変換装置によれば、基板に接続穴を設けて、隣接する光電変換装置の取り出し電極を接続穴に通してかしめることから、十分な強度を保って接続することができる。
【0052】
また、請求項5に係る光電変換装置によれば、隣接する光電変換装置と接続する基板の裏面部と隣接する光電変換装置の取り出し電極との間にハンダと接合する金属を介在させることによって隣接する光電変換装置の取り出し電極とハンダ接合という容易な方法で十分な接合強度を保って接続することが可能となる。
【図面の簡単な説明】
【図1】本発明の光電変換装置の接続方法の一実施形態を示す断面図である。
【図2】本発明の光電変換装置の接続方法の他の実施形態を示す断面図である。
【図3】本発明の光電変換装置の接続方法の他の実施形態を示す断面図である。
【図4】本発明の光電変換装置の接続方法の他の実施形態を示す断面図である。
【図5】本発明の光電変換装置の接続方法の他の実施形態を示す断面図である。
【図6】本発明の光電変換装置の一実施形態を示す断面図である。
【図7】本発明の光電変換装置の他の実施形態を示す断面図である。
【図8】従来の光電変換装置を示す断面図である。
【図9】従来の光電変換装置を示す断面図である。
【符号の説明】
1 ・・・・基板
1’・・・・アルミニウムから成る電極層
2 ・・・・第一導電形の粒状結晶半導体
3 ・・・・絶縁物質
4 ・・・・逆導電形の半導体層
5 ・・・・透明導電層
6 ・・・・基板のアルミニウムと粒状結晶半導体のシリコンとの合金層
7 ・・・・上部電極(フィンガー部)
8 ・・・・上部電極(バスバー部)
9 ・・・・取出電極
10 ・・銅箔
11 ・・ハンダ
12 ・・突出部
13 ・・拡散部
14 ・・接続用穴
15 ・・接続片
16 ・・中心が第一導電形で外郭が逆導電形の粒状結晶半導体
17 ・・第1のアルミニウム箔
18 ・・第2のアルミニウム箔
19 ・・第1のアルミニウム箔と第2のアルミニウム箔の接合部
20 ・・組合せ体
21a、21b、21c、21d ・・周辺部
22 ・・重なり部
23、24 ・・導体
25 ・・絶縁体[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a photoelectric conversion device, and more particularly to a photoelectric conversion device connected to an adjacent photoelectric conversion device.
[0002]
[Prior art]
A conventional photoelectric conversion device using a granular crystal semiconductor is shown in FIGS. For example, as shown in FIG. 8, an opening is formed in the first aluminum foil 17, and a silicon sphere 16 having an n-type skin portion on the p-type central core is inserted into the opening. The n-type skin portion is removed, an oxide insulating layer (not shown) is formed on the back side of the first aluminum foil 17, the oxide insulating layer on the back side of the silicon sphere 16 is removed, and the silicon sphere 16 and the first A photoelectric conversion device is disclosed in which two aluminum foils 18 are joined and end portions 19 of the first aluminum foil 17 and the second aluminum foil 18 are overlapped and joined by ultrasonic waves or the like (for example, Patent Document 1). reference).
[0003]
Further, as shown in FIG. 9 (a), the combination bodies 20 in which the elements are formed are alternately overlapped with the adjacent peripheral portions 21b of the adjacent combination bodies 20 on or under the peripheral portion 21a of the adjacent one of the combination bodies 20. Electrically connect to As an electrical connection structure, as shown in FIG. 9 (b), the peripheral portion 21a rises and the other peripheral portion 21b is formed to fall, and the connection is made on the outside, as shown in FIG. 9 (c). As shown, the peripheral portion 21a rises, and the other peripheral portion 21b is formed to fall and be connected inside thereof (see, for example, Japanese Patent Application No. 2002-164554).
[0004]
[Patent Document 1]
See JP-A-61-124179.
[Problems to be solved by the invention]
However, in the photoelectric conversion device as shown in FIG. 8, the end portions 19 of the first aluminum foil 17 and the second aluminum foil 18 are joined together by ultrasonic waves or the like, but the silicon sphere 16 is attached to the second aluminum foil. Since the processing temperature when bonding to the foil 18 is 577 ° C. or less, which is the eutectic temperature of aluminum and silicon, the bonding between the silicon sphere 16 and the second aluminum foil 18 is unstable, and the first aluminum foil There was a problem that the silicon sphere 16 was peeled off from the second aluminum foil 18 when the end 19 of the 17 and the second aluminum foil 18 was ultrasonically fused.
[0006]
In addition, in the photoelectric conversion device as shown in FIG. 9, there is a step in the connecting portion over both sides of the combined body. there were.
[0007]
The present invention has been made in view of the above-described problems in the prior art, and an object of the present invention is to provide a photoelectric conversion device in which the adhesion strength of the electrodes is high and the level difference of the connection portion is reduced.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, a method for manufacturing a photoelectric conversion device according to claim 1 of the present invention is a method of manufacturing silicon having a first conductivity type on a substrate having one electrode layer and containing aluminum or an aluminum alloy. in the method of the containing form a semiconductor exhibiting semiconductor and opposite conductivity type comprising, a photoelectric conversion device that connects the extraction electrode coated with alloy solder on a back surface of the substrate,
After a copper or nickel flake is brought into contact with the back surface portion of the substrate to which the extraction electrode is connected and subjected to heat treatment at 577 ° C. or more, the thin piece is diffused to the back surface portion of the substrate, and then the back surface portion of the substrate The take-out electrode is connected to .
[0009]
Further, it is desirable that a portion where copper or nickel is diffused on the substrate is a protruding portion, and the protruding portion and an extraction electrode of an adjacent photoelectric conversion device are overlapped and connected.
[0010]
In addition, it is desirable that an extraction electrode is formed on the protruding portion of the substrate of the adjacent photoelectric conversion device, and the electrode is overlapped and connected to a portion of the substrate where copper or nickel is diffused.
[0014]
Further, it is desirable that the alloy solder covered with the extraction electrode is made of an alloy solder selected from at least Sn, Cu, Ni, Ag and Bi.
[0016]
Further, it is desirable that the semiconductor exhibiting the first conductivity type is made of granular crystalline silicon.
[0017]
In addition, it is desirable that the semiconductor exhibiting the reverse conductivity type is made of a silicon thin film.
[0018]
Moreover, it is desirable that the average grain size of the granular crystal semiconductor is 0.2 to 0.6 mm.
[0019]
According to the photoelectric conversion device of the present invention, the aluminum substrate and the extraction electrode can be connected with high adhesive strength, and the difference between the adjacent photoelectric conversion devices can be reduced by making the connection part a part. As a result, it becomes possible to manufacture a photoelectric conversion device that is not affected by the angle of sunlight as compared with a conventional photoelectric conversion device.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
6 and 7 are diagrams showing an embodiment of the photoelectric conversion device according to the present invention. 6 and 7, 1 is a substrate, 2 is a granular crystal semiconductor, 3 is an insulating material, 4 is a semiconductor layer, 5 is a transparent conductive layer, 6 is an alloy layer of aluminum of the substrate and silicon of the granular crystal semiconductor, 7 Reference numerals 8 and 8 are upper electrodes, and 9 is an extraction electrode.
[0021]
The substrate 1 is made of aluminum or an aluminum alloy. When the material of the substrate 1 is a metal other than aluminum, as shown in FIG. 7, the material and the electrode layer 1 ′ made of aluminum are used. One or more elements selected from silicon, magnesium, manganese, chromium, titanium, nickel, zinc, silver, and copper may be added to the aluminum electrode layer 1 ′ as the second additive element. When such an element is added to the aluminum electrode layer 1 ′, excessive melting when the crystalline semiconductor particles 2 are joined can be prevented.
[0022]
A large number of crystalline semiconductor particles 2 of the first conductivity type are disposed on the substrate 1. The crystalline semiconductor particles 2 contain trace elements such as B, Al, Ga, etc. exhibiting p-type in Si, or P, As, etc. exhibiting n-type.
[0023]
The particle size of the crystalline semiconductor particles 2 is preferably 0.2 to 0.8 mm. If the thickness exceeds 0.8 mm, the amount of silicon used in a conventional crystal plate type photoelectric conversion device including a cutting portion is not changed, and the merit of using crystalline semiconductor particles is lost. On the other hand, if it is smaller than 0.2 mm, another problem that it is difficult to assemble the substrate 1 occurs. The particle size of the crystalline semiconductor particles 2 is more preferably 0.2 to 0.6 mm in relation to the amount of silicon used.
[0024]
A large number of crystalline semiconductor particles 2 are disposed on the substrate 1 and then heated to a eutectic temperature of 577 ° C. or higher between aluminum of the substrate 1 and silicon of the crystalline semiconductor particles 2 by applying a certain load on the crystalline semiconductor particles 2. Thus, the substrate 1 and the crystalline semiconductor particles 2 are bonded via the alloy layer 6 of the substrate 1 and the crystalline semiconductor particles 2 while scattering the bonding assistant layer.
[0025]
The insulating material 3 is made of an insulating material for separating the positive electrode and the negative electrode. For example, SiO 2 , B 2 O 3 , Al 2 O 3 , CaO, MgO, P 2 O 5 , Li 2 O, SnO, ZnO, A low-temperature firing glass material as a main material containing BaO, TiO 2 or the like as an optional component, a glass composition in which a filler composed of one or more of the above materials is combined, or an insulating material mainly composed of a heat-resistant resin Etc. are used.
[0026]
The insulating material 3 is filled by applying the insulating material from above the granular crystal semiconductor 2 and heating it at a temperature not higher than 577 ° C. which is the eutectic temperature of aluminum and silicon. After filling the insulating material 3, in order to clean the surface of the granular crystal semiconductor 2, it is cleaned with a cleaning liquid containing hydrofluoric acid.
[0027]
The semiconductor layer 4 is made of, for example, Si, and is formed by introducing a small amount of a vapor phase of a phosphorus-based compound exhibiting an n-type or a boron-based compound exhibiting a p-type into a vapor phase of a silane compound, for example, by a vapor deposition method. To do. The film quality may be crystalline, amorphous, or a mixture of crystalline and amorphous, but considering the light transmittance, a crystalline or a mixture of crystalline and amorphous is preferable. A part of incident light is transmitted through the semiconductor layer 4 in a portion where the granular crystal semiconductor 2 is not present, reflected by the lower substrate 1 and irradiated onto the granular crystal semiconductor 2, thereby irradiating the entire photoelectric conversion device with light energy. Can be efficiently irradiated onto the granular crystal semiconductor 2.
[0028]
The concentration of the trace element in the semiconductor layer 4 is, for example, about 1 × 10 16 to 10 21 atm / cm 3 . Furthermore, the semiconductor layer 4 is desirably formed along the convex curved surface shape of the surface of the granular crystal semiconductor 2. By forming along the convex curved surface of the granular crystal semiconductor 2, the area of the pn junction can be increased widely, and carriers generated inside the granular crystal semiconductor 2 can be efficiently collected. In the case of using a granular crystal semiconductor 2 that contains a trace amount of B, Al, Ga, or the like having a reverse conductivity type, that is, P, As, etc. exhibiting n-type, or P-type exhibiting p-type, the semiconductor layer 4 The transparent conductive layer 5 described later may be formed thereon.
[0029]
When the semiconductor layer 4 or the granular crystal semiconductor 2 contains a small amount of an element of reverse conductivity type on the outer surface, the transparent conductive layer 5 is formed on the granular crystal semiconductor 2. The transparent conductive layer 5 is made of one or more oxide films selected from SnO 2 , In 2 O 3 , ITO, ZnO, TiO 2, etc., and includes a sputtering method, a vapor phase growth method, a coating baking method, and the like. Form with. The transparent conductive layer 5 can be expected to have an effect as an antireflection film if the film thickness is selected. The transparent conductive layer 5 is preferably formed along the surface of the semiconductor layer 4 or the granular crystal semiconductor 2 and is formed along the convex curved surface shape of the granular crystal semiconductor 2. When formed along the convex curved surface of the granular crystal semiconductor 2, the area of the pn junction can be increased, and carriers generated inside the granular crystal semiconductor 2 can be collected efficiently.
[0030]
A protective layer (not shown) may be formed on the semiconductor layer 4 or the transparent conductive layer 5. Such a protective layer preferably has a transparent dielectric property, such as silicon oxide, cesium oxide, aluminum oxide, silicon nitride, titanium oxide, SiO 2 —TiO 2 , tantalum oxide, CVD, PVD, etc. Yttrium oxide or the like is formed on the semiconductor layer 4 or the transparent conductive layer 5 as a single layer or a combination of single or multiple compositions. The protective layer needs to be transparent because it is in contact with the light incident surface, and it needs to be a dielectric in order to prevent leakage between the semiconductor layer 4 or the transparent conductive layer 5 and the outside. . In addition, if the thickness of the protective layer is optimized, a function as an antireflection film can be expected.
[0031]
In order to reduce the series resistance value, a patterned electrode composed of a finger electrode portion 7 and a bus bar electrode portion 8 having a predetermined interval is provided as an upper electrode on the semiconductor layer 4 or the transparent conductive layer 5 to directly or indirectly form the semiconductor layer 4. To improve conversion efficiency. As the electrode material, a low temperature curing conductive paste using a thermosetting resin containing conductive powder and a small amount of solvent as a binder is used. When the temperature required for curing exceeds 400 ° C., the semiconductor layer 4 is altered, so that sufficient conversion efficiency cannot be obtained. Examples of the forming method include dispenser and screen printing.
[0032]
The extraction electrode 9 is made of a copper foil 10 covered with solder 11, and is joined to the bus bar electrode portion 8 with solder. The solder is effective in preventing the corrosion of the surface of the copper foil 10 while joining to the bus bar electrode portion 8. The solder is made of an alloy solder selected from at least Sn, Cu, Ni, Ag, and Bi other than Pb from the viewpoint of the environment.
[0033]
A plurality of photoelectric conversion devices formed as described above are prepared, and the extraction electrode 9 of one photoelectric conversion device is connected to the back surface of the substrate 1 that also serves as one electrode of the adjacent photoelectric conversion device. As a connecting method, bonding by solder is easy. However, when the substrate 1 is made of aluminum, if the crystal semiconductor particles 2 are bonded as they are, silicon melts into aluminum, so that sufficient bonding strength cannot be obtained by soldering. . Therefore, a thin piece of copper or nickel, which is a metal that can be bonded to solder, is brought into contact with the back surface portion of the substrate 1 to be connected to the extraction electrode 9, and then the substrate 1 and the crystalline semiconductor particles 2 are bonded. Since the temperature at the time of bonding is 577 ° C. or higher, copper or nickel is dissolved and diffused in aluminum as a substrate at the time of bonding. With the diffusion portion 13 formed in this way, the wettability with the solder is improved, and the connection between the aluminum substrate and the extraction electrode 9 by soldering becomes possible.
[0034]
In FIG. 1, the extraction electrode 9 is formed so as to protrude from the photoelectric conversion device, and the extraction electrode 9 is brought into contact with the diffusion portion 13 on the back surface of the adjacent photoelectric conversion device and connected by heating. The protruding length of the extraction electrode 9 is preferably about 2 to 10 mm.
[0035]
In FIG. 2, a protrusion 12 is provided on the substrate 1, and a diffusion part 13 formed on the back surface of the protrusion 12 is brought into contact with an extraction electrode 9 of an adjacent photoelectric conversion device to be connected by heating. The shape of the protrusion 12 in FIG. 2 is preferably 2 to 5 mm in width and 2 to 10 mm in length. Particularly, when the width exceeds 5 mm, the effective area for photoelectric conversion is reduced correspondingly, and the conversion per whole area is reduced. Efficiency is reduced.
[0036]
Further, FIG. 3 shows that the extraction electrode 9 is extended to the protrusion 12 provided on the substrate 1, and the diffusion electrode 13 formed on the back surface of the photoelectric conversion device adjacent to the extraction electrode 9 on the protrusion 12 is brought into contact with heating. Connect by. According to this method, a portion that overlaps with the adjacent photoelectric conversion device is a part, and the other portions are partially deformed to be the same as the height of the surface of the adjacent photoelectric conversion device. A step due to the photoelectric conversion devices is suppressed to a part. In addition, the shape of the protrusion part 12 in FIG. 3 should have a width of 2 to 10 mm and a length of 2 to 10 mm. In particular, when the width exceeds 10 mm, the overlapping portion with the adjacent photoelectric conversion device becomes long, and depending on the incident angle of sunlight. Causes a long shadow due to the overlapping portion, which reduces conversion efficiency.
[0037]
1 to 3, the thickness of the metal to be diffused is several nanometers to several tens of micrometers, and the metal foil may remain on the entire surface or a part of the surface after the diffusion. A film thickness of 1 μm or less is formed on the back surface of the substrate by a thin film forming apparatus such as vapor deposition or sputtering. Moreover, it is also possible to open the space | interval of photoelectric conversion apparatuses about 1-5 mm to such an extent that the conversion efficiency per whole area may be prevented.
[0038]
Further, as shown in FIG. 4, in order to eliminate a step between adjacent photoelectric conversion devices, a connection hole 14 is provided in the substrate 1, and the extraction electrode 9 of the adjacent photoelectric conversion device is caulked from above. By mechanically connecting without using metal foil or metal pieces. The connection hole 14 only needs to be sufficient for caulking, and is, for example, about 3 to 5 mm long and 1 to 2 mm wide.
[0039]
Further, as shown in FIG. 5, when using a thicker metal foil, the metal piece 15 is welded to the back surface of the substrate 1 by ultrasonic welding or laser spot welding, and then the adjacent photoelectric conversion device is taken out. The electrode 9 is connected by solder bonding. The protruding length of the metal piece 15 from the substrate 1 is about 0 to 5 mm. When the protruding length is 0 mm, the take-out electrode 9 of the adjacent photoelectric conversion device is connected to the back surface of the substrate 1 with solder.
[0040]
【Example】
Next, examples of the photoelectric conversion device of the present invention will be described. As an example, a sample prepared as follows was used.
[0041]
[Example 1]
A copper foil or nickel foil with a film thickness of 20 μm is laid on the connection point with the adjacent photoelectric conversion device on the back surface of the aluminum alloy substrate having the shape shown in FIGS. The silicon particles were bonded to the aluminum alloy by heating about 0.2 to 0.6 mm of p-type silicon particles in the atmosphere at a temperature equal to or higher than 577 ° C., which is the eutectic temperature of aluminum and silicon, for about 10 minutes. Then, the insulating material 3 is filled on the entire surface of the substrate, and then the upper surface of the p-type silicon particles is cleaned, and the n-type crystalline silicon and amorphous silicon are mixed on the silicon particles 2 and the insulating material 3. A crystal semiconductor layer 4 was formed to a thickness of 300 nm, and an ITO film as a transparent conductive layer 5 was formed to a thickness of 80 nm. An epoxy conductive paste (finger) using silver powder and a phenol epoxy conductive paste (bus bar) using silver-coated copper powder are applied on the transparent conductive layer 5 with a dispenser and heat-treated at 250 ° C. to be cured. The upper electrode (finger, bus bar) was formed. A sample was prepared by joining a take-out electrode on which a copper ribbon having a width of 2 mm and a thickness of 0.1 mm was coated with 100 μm of solder to the bus bar portion by solder welding. In the case shown in FIG. 1, the extraction electrode 9 was formed so as to protrude 5 mm from the substrate. In the case of the configuration as shown in FIG. 3, the extraction electrode 9 is formed along the length of the protruding portion 12.
[0042]
The samples prepared as described above are overlapped as shown in FIGS. 1 to 3, and the overlapping portion is heated to a temperature at which the solder is melted. The embodiment shown in FIG. 3 and 4 and the embodiment shown in FIG. As a comparative example, a metal foil was produced in the same manner as in Example 1 without placing it on the back surface of the substrate.
[0043]
Next, it produced similarly to Example 1 using the aluminum alloy board | substrate with which the connection hole of length 3mm as shown in FIG. Then, the take-out electrode of the adjacent photoelectric conversion device was bent from the upper surface to the lower surface of the connection hole, and pressed from the upper surface and the lower surface of the substrate at the bent portion, and the take-out electrode was caulked to the substrate to obtain Example 7.
[0044]
Next, after producing a photoelectric conversion device in the same manner as in Example 1 without placing a metal foil on the back surface of the substrate, a copper foil or nickel foil having a film thickness of 50 μm is formed at a connection position with the adjacent photoelectric conversion device on the back surface of the substrate. Were attached by ultrasonic welding. Thereafter, as shown in FIG. 5, the layers were superposed and heated to a temperature at which the solder was melted in the overlapped portions to obtain Examples 8 and 9.
[0045]
Table 1 shows the results of evaluating the connection strength of the connection portion in the above samples by the strength when the photoelectric conversion devices are pulled from left and right with a push-pull gauge.
[0046]
[Table 1]
Figure 0004206264
[0047]
In Comparative Example 1, connection strength was not obtained by solder welding. This is because the back surface of the substrate is an aluminum alloy, and silicon is diffused into the substrate at the time of bonding with the silicon particles 2, so that the wettability with the solder is deteriorated.
[0048]
On the other hand, in all the samples from Example 1 to Example 9, sufficient connection strength was obtained, and peeling of the silicon particles 2 and the insulating material 3 was not observed. From this, it is possible to diffuse the metal bonded to the solder to the back surface portion of the substrate connected to the adjacent photoelectric conversion device, and to bond the take-out electrode of the adjacent photoelectric conversion device with the solder. It has been found that soldering can be performed by interposing a metal to be bonded to solder between the back surface portion of the substrate connected to the photoelectric conversion device to be connected and the take-out electrode of the adjacent photoelectric conversion device. Further, it was found that a method of providing a connection hole in the substrate and caulking the take-out electrode of the adjacent photoelectric conversion device through the connection hole was also effective.
[0049]
From the above, according to the photoelectric conversion device of the present invention, it was confirmed that the photoelectric conversion devices can be connected with sufficient strength by using an easy technique called solder bonding.
[0050]
【The invention's effect】
As described above, according to the photoelectric conversion device according to claim 1, the adjacent photoelectric conversion device is diffused by diffusing the metal that can be joined to the solder to the connection portion with the adjacent photoelectric conversion device on the back surface of the aluminum alloy substrate. Thus, it is possible to connect the lead-out electrode to the lead electrode with an easy method such as solder bonding while maintaining sufficient bonding strength.
[0051]
Further, according to the photoelectric conversion device according to claim 4, since the connection hole is provided in the substrate and the take-out electrode of the adjacent photoelectric conversion device is caulked through the connection hole, the connection is made with sufficient strength. Can do.
[0052]
Further, according to the photoelectric conversion device according to claim 5, the metal is bonded to the solder between the back surface portion of the substrate connected to the adjacent photoelectric conversion device and the take-out electrode of the adjacent photoelectric conversion device. Therefore, it is possible to connect the take-out electrode of the photoelectric conversion device with a sufficient bonding strength by an easy method of solder bonding.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view illustrating an embodiment of a method for connecting photoelectric conversion devices according to the present invention.
FIG. 2 is a cross-sectional view showing another embodiment of a method for connecting photoelectric conversion devices of the present invention.
FIG. 3 is a cross-sectional view showing another embodiment of a method for connecting photoelectric conversion devices according to the present invention.
FIG. 4 is a cross-sectional view showing another embodiment of a method for connecting photoelectric conversion devices according to the present invention.
FIG. 5 is a cross-sectional view showing another embodiment of a method for connecting photoelectric conversion devices of the present invention.
FIG. 6 is a cross-sectional view showing one embodiment of a photoelectric conversion device of the present invention.
7 is a cross-sectional view showing another embodiment of the photoelectric conversion device of the present invention. FIG.
FIG. 8 is a cross-sectional view showing a conventional photoelectric conversion device.
FIG. 9 is a cross-sectional view showing a conventional photoelectric conversion device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... substrate 1 '... electrode layer 2 which consists of aluminum ... granular crystal semiconductor 3 of 1st conductivity type ... insulating material 4 ... semiconductor layer 5 of reverse conductivity type ... Transparent conductive layer 6 ... Alloy layer 7 of aluminum of substrate and silicon of granular crystal semiconductor ... Upper electrode (finger part)
8 ··· Upper electrode (bus bar)
9... Extraction electrode 10.. Copper foil 11.. Solder 12.. Protrusion 13.. Diffusion part 14. Conductive granular crystal semiconductor 17 ··· First aluminum foil 18 · · Second aluminum foil 19 · · Joint portion 20 of first aluminum foil and second aluminum foil · · Combinations 21a, 21b, 21c, 21d · · Peripheral portion 22 · · Overlapping portions 23 and 24 · · Conductor 25 · · Insulator

Claims (7)

一方の電極層を有する、アルミニウム又はアルミニウム合金を含んでなる基板上に第一導電形を呈するシリコンを含んでなる半導体と逆導電形を呈する半導体とを形成し、前記基板の裏面に合金半田を被覆した取り出し電極を接続する光電変換装置の製造方法において、
前記取り出し電極が接続される前記基板の裏面部位に、銅或いはニッケルの薄片を接触させて577℃以上の熱処理を施し、前記薄片を前記基板の裏面部位に拡散させた後、前記基板の裏面部位に前記取り出し電極を接続したことを特徴とする光電変換装置の製造方法
A semiconductor containing silicon having a first conductivity type and a semiconductor showing a reverse conductivity type are formed on a substrate containing aluminum or an aluminum alloy having one electrode layer, and alloy solder is formed on the back surface of the substrate. In the manufacturing method of the photoelectric conversion device for connecting the coated extraction electrode,
After a copper or nickel flake is brought into contact with the back surface portion of the substrate to which the extraction electrode is connected and subjected to heat treatment at 577 ° C. or more, the thin piece is diffused to the back surface portion of the substrate, and then the back surface portion of the substrate A method for manufacturing a photoelectric conversion device, characterized in that the extraction electrode is connected to the photoelectric conversion device .
前記基板の銅あるいはニッケルが拡散されている部分が突出した突出部であり、この突出部と前記隣接する光電変換装置の取り出し電極とが重ね合わせて接続されていることを特徴とする請求項1に記載の光電変換装置の製造方法2. A protruding portion is formed by protruding a portion of the substrate where copper or nickel is diffused, and the protruding portion and an extraction electrode of the adjacent photoelectric conversion device are overlapped and connected. The manufacturing method of the photoelectric conversion apparatus of description. 前記隣接する光電変換装置の基板の突出部に取り出し電極が形成されており、前記基板の銅あるいはニッケルが拡散されている部分と重ね合わせて接続されていることを特徴とする請求項1に記載の光電変換装置の製造方法The take-out electrode is formed in the protrusion part of the board | substrate of the said adjacent photoelectric conversion apparatus, It overlaps and connects with the part into which the copper or nickel of the said board | substrate is diffused, The connection of Claim 1 characterized by the above-mentioned. Method for manufacturing a photoelectric conversion device. 前記取り出し電極が被覆されている合金半田が少なくともSn、Cu、Ni、Ag、Biから選ばれた合金ハンダから成ることを特徴とする請求項1乃至のいずれかに記載の光電変換装置の製造方法 Producing a photoelectric conversion device according to any one of claims 1 to 3 alloy solder the lead-out electrode is coated, characterized in that it consists of at least Sn, Cu, Ni, Ag, an alloy solder which is selected from Bi Way . 前記第一導電形を呈する半導体が粒状結晶シリコンから成ることを特徴とする請求項1乃至のいずれかに記載の光電変換装置の製造方法 Process for producing a photovoltaic device according to any one of claims 1 to 4 semiconductor exhibiting the first conductivity type is characterized in that it consists of particulate silicon. 前記逆導電形を呈する半導体がシリコン薄膜から成ることを特徴とする請求項1乃至のいずれかに記載の光電変換装置の製造方法 Process for producing a photovoltaic device according to any one of claims 1 to 5 semiconductor exhibiting the opposite conductivity type is characterized in that it consists of silicon thin film. 前記粒状結晶半導体の平均粒径が0.2〜0.6mmであることを特徴とする請求項に記載の光電変換装置の製造方法6. The method for manufacturing a photoelectric conversion device according to claim 5 , wherein an average particle size of the granular crystal semiconductor is 0.2 to 0.6 mm.
JP2002368835A 2002-12-19 2002-12-19 Method for manufacturing photoelectric conversion device Expired - Fee Related JP4206264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002368835A JP4206264B2 (en) 2002-12-19 2002-12-19 Method for manufacturing photoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002368835A JP4206264B2 (en) 2002-12-19 2002-12-19 Method for manufacturing photoelectric conversion device

Publications (2)

Publication Number Publication Date
JP2004200512A JP2004200512A (en) 2004-07-15
JP4206264B2 true JP4206264B2 (en) 2009-01-07

Family

ID=32765290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002368835A Expired - Fee Related JP4206264B2 (en) 2002-12-19 2002-12-19 Method for manufacturing photoelectric conversion device

Country Status (1)

Country Link
JP (1) JP4206264B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006041105A (en) * 2004-07-26 2006-02-09 Sharp Corp Solar cell and method of manufacturing the same
JP5094076B2 (en) * 2006-07-28 2012-12-12 京セラ株式会社 Photoelectric conversion device, method for manufacturing the same, and photoelectric conversion module
WO2013090562A2 (en) * 2011-12-13 2013-06-20 Dow Corning Corporation Photovoltaic cell and method of forming the same
KR101879374B1 (en) * 2017-02-22 2018-08-17 주식회사 탑선 Solar cell module
CN109599454B (en) * 2018-12-29 2024-08-27 苏州腾晖光伏技术有限公司 Back structure of solar cell

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02102746U (en) * 1989-02-02 1990-08-15
JPH05235391A (en) * 1991-03-07 1993-09-10 Mitsubishi Electric Corp Thin film solar cell and its manufacture and manufacture of semiconductor device
JPH06140651A (en) * 1992-10-27 1994-05-20 Canon Inc Solar cell module
JP3099604B2 (en) * 1993-09-28 2000-10-16 富士電機株式会社 Flexible photoelectric conversion module, its connection method and its manufacturing apparatus
JPH08264819A (en) * 1995-03-20 1996-10-11 Kanegafuchi Chem Ind Co Ltd Semiconductor device and manufacturing method thereof
JPH0982994A (en) * 1995-09-11 1997-03-28 Canon Inc Photovoltaic device and manufacture thereof
JP2002043604A (en) * 2000-07-27 2002-02-08 Kyocera Corp Photoelectric converter
JP2002222967A (en) * 2001-01-29 2002-08-09 Kyocera Corp Photoelectric converter
JP2002329874A (en) * 2001-04-26 2002-11-15 Kyocera Corp Manufacturing method of photoelectric conversion device

Also Published As

Publication number Publication date
JP2004200512A (en) 2004-07-15

Similar Documents

Publication Publication Date Title
US10056504B2 (en) Photovoltaic module
KR101568048B1 (en) Solar battery module
JP4024161B2 (en) Manufacturing method of solar cell module
JP3751539B2 (en) Thin film solar cell and manufacturing method thereof
JP5063099B2 (en) Solar cell module and method for manufacturing solar cell module
EP0527680B1 (en) Connection of glazing with an electroconductive layer
JP7455564B2 (en) How to manufacture solar cells
WO2012141073A1 (en) Solar cell module and method for manufacturing same
CN113302746A (en) Photovoltaic cell and photovoltaic chain and associated manufacturing method
JP2005244171A (en) Photoelectric converter, photoelectric conversion array, and photovoltaic device
JP4206264B2 (en) Method for manufacturing photoelectric conversion device
JP2023520119A (en) Solar cell and solar cell panel and manufacturing method thereof
JP2003347564A (en) Photoelectric converter
JP3006711B2 (en) Solar cell module
JPH0629564A (en) Manufacture of solar battery apparatus
JP2004063500A (en) Photoelectric converter and method of manufacturing the same
JP5977165B2 (en) Photoelectric conversion element
JP2021125603A (en) Solar cell string and manufacturing method of solar cell string
JP2005085924A (en) Photovoltaic device and its manufacturing method
JPH09213975A (en) Forming method of collecting electrode
JPS6317341B2 (en)
JP2002222967A (en) Photoelectric converter
JP2002198550A (en) Photoelectric conversion device
JPH01220477A (en) Photoelectric conversion device
JP2002222966A (en) Photoelectric converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080924

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081020

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees