JP2002043604A - Photoelectric converter - Google Patents

Photoelectric converter

Info

Publication number
JP2002043604A
JP2002043604A JP2000227640A JP2000227640A JP2002043604A JP 2002043604 A JP2002043604 A JP 2002043604A JP 2000227640 A JP2000227640 A JP 2000227640A JP 2000227640 A JP2000227640 A JP 2000227640A JP 2002043604 A JP2002043604 A JP 2002043604A
Authority
JP
Japan
Prior art keywords
electrode
crystalline semiconductor
semiconductor particles
conductivity type
photoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000227640A
Other languages
Japanese (ja)
Inventor
Makoto Sugawara
信 菅原
Takeshi Kyoda
豪 京田
Hisao Arimune
久雄 有宗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000227640A priority Critical patent/JP2002043604A/en
Priority to US09/866,069 priority patent/US6620996B2/en
Publication of JP2002043604A publication Critical patent/JP2002043604A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Light Receiving Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem that the conventional photoelectric converter using crystalline semiconductor particles has low reliability due to a short circuit occurring at an electrode forming time. SOLUTION: The photoelectric converter comprises many first conductivity type crystalline semiconductor particles arranged on a substrate to become one electrode, an insulating substance interposed between the crystalline semiconductor particles, second conductivity type regions formed on an upper part of the crystalline semiconductor particles, and another electrode connected to the second conductivity type region. In this converter, the another electrode is formed so that the crystalline semiconductor particles exist only on a region of 10% or less of the lower part of the other electrode. Thus, the converter having high reliability and high characteristics can be provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は光電変換装置に関
し、特に多数の結晶質半導体粒子を用いた光電変換装置
に関する。
The present invention relates to a photoelectric conversion device, and more particularly, to a photoelectric conversion device using a large number of crystalline semiconductor particles.

【0002】[0002]

【従来の技術】従来から提案されている結晶質半導体粒
子を用いた光電変換装置を図4及び図5に示す。
2. Description of the Related Art FIGS. 4 and 5 show photoelectric conversion devices using crystalline semiconductor particles that have been conventionally proposed.

【0003】図4に示すように、米国特許第45145
80号公報によれば、鋼基板8の周囲にアルミニウム膜
7を形成し、粉砕シリコン粒子9をアルミニウム膜7に
接合し、絶縁物質層3、n形シリコン部10、透明導電
層11を順次形成した光電変換装置が開示されている。
[0003] As shown in FIG.
According to Japanese Patent Publication No. 80, an aluminum film 7 is formed around a steel substrate 8, a ground silicon particle 9 is bonded to the aluminum film 7, and an insulating material layer 3, an n-type silicon part 10, and a transparent conductive layer 11 are sequentially formed. The disclosed photoelectric conversion device is disclosed.

【0004】特許第2641800号公報には、図5に
示すように、ステンレス基板12上に低融点の錫層13
を形成し、この錫層13上に第1導電形の結晶質半導体
粒子2を配設し、この結晶質半導体粒子2上に第2導電
形の非晶質半導体層14を前記錫層13との間に絶縁物
質層3を介して形成する光電変換装置が開示されてい
る。また、前記錫層13を短冊状に形成し、マスクを用
いて絶縁物質層3を形成することによりセルを直列に接
続する方法が開示されている。
Japanese Patent No. 2641800 discloses a low melting point tin layer 13 on a stainless steel substrate 12 as shown in FIG.
Is formed, the first conductive type crystalline semiconductor particles 2 are disposed on the tin layer 13, and the second conductive type amorphous semiconductor layer 14 is formed on the crystalline semiconductor particles 2 with the tin layer 13. There is disclosed a photoelectric conversion device formed with an insulating material layer 3 interposed therebetween. Further, there is disclosed a method in which cells are connected in series by forming the tin layer 13 in a strip shape and forming the insulating material layer 3 using a mask.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、図4に
示す米国特許第4514580号公報の光電変換装置で
は、バスバーやフィンガー等の電極に関してどのような
パターンでもよいとの記述があるのみであり、好適な補
助電極に関しての具体的な記述はない。
However, in the photoelectric conversion device disclosed in U.S. Pat. No. 4,514,580 shown in FIG. 4, there is only a description that any pattern may be used for electrodes such as bus bars and fingers. There is no specific description about the auxiliary electrode.

【0006】また、図5に示す特許第2641800号
公報の光電変換装置では、補助電極に関して適宜金属の
集電極を形成するとの記述がるのみであり、好適な電極
に関しての具体的な記述はない。
Further, in the photoelectric conversion device disclosed in Japanese Patent No. 2641800 shown in FIG. 5, there is only a description that a metal collecting electrode is appropriately formed with respect to the auxiliary electrode, and there is no specific description about a suitable electrode. .

【0007】上記従来技術に鑑み、本発明の光電変換装
置によれば、結晶質半導体粒子を用いた光電変換装置の
好適な電極を提供することを目的とする。
In view of the above prior art, according to the photoelectric conversion device of the present invention, it is an object of the present invention to provide a suitable electrode of the photoelectric conversion device using crystalline semiconductor particles.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、請求項1に係る光電変換装置によれば、一方の電極
となる基板上に、第1導電形の結晶質半導体粒子を多数
配設し、この結晶質半導体粒子間に絶縁物質を介在さ
せ、この結晶質半導体粒子の上部に第2導電形領域を形
成し、この第2導電形領域に他方の電極を接続して設け
た光電変換装置において、前記他方の電極をその下部の
10%以下の領域においてのみ前記結晶質半導体粒子が
存在するように形成したことを特徴とする。
According to a first aspect of the present invention, there is provided a photoelectric conversion device, wherein a large number of crystalline semiconductor particles of the first conductivity type are arranged on a substrate serving as one electrode. An insulating material is interposed between the crystalline semiconductor particles, a second conductivity type region is formed above the crystalline semiconductor particles, and the other electrode is connected to the second conductivity type region. In the conversion device, the other electrode is formed so that the crystalline semiconductor particles are present only in a region of 10% or less below the other electrode.

【0009】[0009]

【発明の実施の形態】以下、本発明の実施形態を図面に
基づいて詳細に説明する。図1において、1は基板、2
は第1導電形の結晶質半導体粒子、3は絶縁物質、4は
第2導電形の半導体領域、5は保護層、6は他方の電極
である。
Embodiments of the present invention will be described below in detail with reference to the drawings. In FIG. 1, 1 is a substrate, 2
Is a crystalline semiconductor particle of the first conductivity type, 3 is an insulating material, 4 is a semiconductor region of the second conductivity type, 5 is a protective layer, and 6 is the other electrode.

【0010】前記基板1は、一方の電極となるものであ
り、金属、セラミック、樹脂等からなる。セラミックや
樹脂等の絶縁物質を基板として用いる場合はその表面に
アルミニウム等の導電層を形成する必要がある。
The substrate 1 serves as one electrode and is made of metal, ceramic, resin, or the like. When an insulating material such as ceramic or resin is used as a substrate, it is necessary to form a conductive layer such as aluminum on the surface.

【0011】基板1上に結晶質半導体粒子2を多数配設
する。この第1導電形の結晶質半導体粒子2は、Si、
Ge等にp形を呈するB、Al、Ga等が微量元素含ま
れているものである。結晶質半導体粒子2の形状として
は多角形を持つもの、曲面を持つもの等がある。粒径分
布としては均一、不均一を問わないが、均一の場合は粒
径を揃える為の工程が必要になるため、コスト的には不
均一の場合が有利である。更に凸曲面を持つことによっ
て光の光線角度の依存性も小さい。
A large number of crystalline semiconductor particles 2 are arranged on a substrate 1. The crystalline semiconductor particles 2 of the first conductivity type include Si,
Ge or the like contains a trace element of B, Al, Ga or the like exhibiting a p-type. The crystalline semiconductor particles 2 may have a polygonal shape or a curved shape. The particle size distribution may be uniform or non-uniform, but if uniform, a process for adjusting the particle size is required, so that non-uniformity is advantageous in terms of cost. Further, by having a convex curved surface, the dependence on the light ray angle of light is small.

【0012】結晶質半導体粒子2の間には、絶縁物質3
を介在させる。この絶縁物質3は、正極負極の分離を行
うための絶縁材料からなる。例えばSiO2、Al
23、PbO、B23、ZnO等を任意な成分とするガ
ラススラリ−を用いた絶縁物質等がある。絶縁物質3は
基板1上に形成したときはある程度の固さ又は粘性が必
要であり、押し込まれた結晶質半導体粒子2を一時的に
保持する必要がある。
An insulating material 3 is provided between the crystalline semiconductor particles 2.
Intervene. The insulating material 3 is made of an insulating material for separating the positive electrode and the negative electrode. For example, SiO 2 , Al
There is an insulating material using a glass slurry containing optional components such as 2 O 3 , PbO, B 2 O 3 , and ZnO. When the insulating material 3 is formed on the substrate 1, it needs to have a certain degree of hardness or viscosity, and it is necessary to temporarily hold the pressed crystalline semiconductor particles 2.

【0013】前記第1導電形の結晶質半導体粒子2の上
部には、第2導電形領域4を形成する。この第2導電形
領域4は、例えば気相成長法等により層状に形成され、
例えばシラン化合物の気相にn形を呈するリン系化合物
の気相を微量導入して形成する。なお、この第2導電形
領域4となる層は、単結晶質、多結晶質、微結晶質、非
晶質のいずれでも良い。この場合、層中の微量元素の濃
度は、例えば1×10 16〜1022atm/cm3程度で
ある。また、この第2導電形領域4は、第1導電形の結
晶質半導体粒子2の上部に、イオン注入法や熱拡散法な
どによって、第2導電形を呈する微量元素を注入して形
成し、さらに透明導電膜で全体を被覆するようにしても
よい。
On the crystalline semiconductor particles 2 of the first conductivity type
In the portion, the second conductivity type region 4 is formed. This second conductivity type
The region 4 is formed in a layer shape by, for example, a vapor growth method or the like,
For example, a phosphorus-based compound exhibiting n-type in the gas phase of a silane compound
Is formed by introducing a small amount of the gaseous phase. The second conductivity type
The layer to be the region 4 is monocrystalline, polycrystalline, microcrystalline, non-crystalline,
Any of crystalline may be used. In this case, the concentration of trace elements in the layer
The degree is, for example, 1 × 10 16-10twenty twoatm / cmThreeAbout
is there. In addition, the second conductivity type region 4 is connected to the first conductivity type region.
An ion implantation method or a thermal diffusion method is
Injecting a trace element exhibiting the second conductivity type
And then cover the whole with a transparent conductive film
Good.

【0014】前記第2導電形領域4上に保護膜5が形成
される。この保護膜5は透明誘電体の特性を持つものが
良く、CVD法やPVD法等によって例えば酸化珪素、
酸化セシウム、酸化アルミニウム、窒化珪素、酸化チタ
ン、SiO2−TiO2、酸化タンタル、酸化イットリウ
ム等を単一組成又は複数組成で単層又は組み合わせて第
2導電形領域4上に形成する。光の入射面に接している
ために保護層5は透明性が必要である。
A protective film 5 is formed on the second conductivity type region 4. The protective film 5 preferably has the property of a transparent dielectric, and is made of, for example, silicon oxide,
Cesium oxide, aluminum oxide, silicon nitride, titanium oxide, SiO 2 —TiO 2 , tantalum oxide, yttrium oxide, or the like is formed on the second conductivity type region 4 in a single layer or in a single layer or in combination. Since the protective layer 5 is in contact with the light incident surface, the protective layer 5 needs to have transparency.

【0015】前記保護膜5の一部を除去して、前記第2
導電形領域4に接続して他方の電極6が形成される。こ
の他方の電極6は、その下方の10%以下の領域のみに
しか結晶質半導体粒子2が存在しないように、絶縁物質
層3上に形成する。このように、下方の10%以下の領
域のみに結晶質半導体粒子が存在するように、他方の電
極6を形成すると、変換効率の高い光電変換装置を提供
できる。すなわち、下方の10%以上の領域に結晶質半
導体粒子が存在すると、光電変換装置の変換効率が低下
する。この他方の電極6は、蒸着法、メッキ法、印刷法
等により形成される。印刷法を用いた場合、銀粉末とガ
ラス粉を有機物バインダと混合した銀ペーストを原料と
し、スクリーン印刷した後、熱処理して電極とする。更
に直列抵抗を下げるために、印刷焼成した電極上に銅や
錫等をメッキしてその上をはんだ被覆しても良い。ま
た、保護膜5を堆積した上に銀ペーストをスクリーン印
刷し、高温(例えば850℃)で熱処理して、保護膜5
を通して電極を形成しても良い。
By removing a part of the protective film 5, the second
The other electrode 6 is formed so as to be connected to the conductivity type region 4. The other electrode 6 is formed on the insulating material layer 3 so that the crystalline semiconductor particles 2 exist only in a region below 10% of the lower electrode 6. As described above, when the other electrode 6 is formed such that the crystalline semiconductor particles exist only in the lower region of 10% or less, a photoelectric conversion device with high conversion efficiency can be provided. That is, if the crystalline semiconductor particles exist in the lower region of 10% or more, the conversion efficiency of the photoelectric conversion device decreases. The other electrode 6 is formed by a vapor deposition method, a plating method, a printing method, or the like. When a printing method is used, a silver paste in which silver powder and glass powder are mixed with an organic binder is used as a raw material, screen-printed, and then heat-treated to form an electrode. In order to further reduce the series resistance, the printed and baked electrode may be plated with copper, tin, or the like, and may be coated with solder. A silver paste is screen-printed on the protective film 5 and heat-treated at a high temperature (for example, 850 ° C.).
Alternatively, the electrodes may be formed.

【0016】他方の電極6を結晶質半導体粒子2上に形
成した比較例を図2に示す。他方の電極6を結晶質半導
体粒子2上に形成する場合、第2導電形半導体層4に欠
陥部があるとその個所で第1導電形の結晶質半導体粒子
2と他方の電極6が直接つながり、ショートの原因とな
る等の不具合の原因となる。また、電極形成部の下部に
位置する結晶質半導体粒子2のみの発電特性が低下し、
全体の変換効率に悪影響を及ぼす。他方の電極6を絶縁
物質層3上に形成したときには、第2導電形半導体層4
に欠陥部があったとしても他方の電極6と絶縁物質層3
が直接つながるにとどまりショートには至らず、高い信
頼性を有し、全体の変換効率に悪影響を及ぼすこともな
い。
FIG. 2 shows a comparative example in which the other electrode 6 is formed on the crystalline semiconductor particles 2. When the other electrode 6 is formed on the crystalline semiconductor particles 2, if there is a defect in the second conductivity type semiconductor layer 4, the first conductivity type crystalline semiconductor particle 2 and the other electrode 6 are directly connected at that location. , Causing short-circuits and other problems. In addition, the power generation characteristics of only the crystalline semiconductor particles 2 located at the lower part of the electrode forming portion are reduced,
It adversely affects the overall conversion efficiency. When the other electrode 6 is formed on the insulating material layer 3, the second conductive type semiconductor layer 4
The other electrode 6 and the insulating material layer 3
Is directly connected, does not cause a short circuit, has high reliability, and does not adversely affect the overall conversion efficiency.

【0017】図3に本発明の平面図の一例を示す。他方
の電極6の形成パターンは、図示したパターンに限定さ
れるものではなく、フィンガー、バスバー、リボン電
極、スルーホール等を用いて、直列抵抗が低く、受光損
失を小さくする適切な設計パターンで形成される。
FIG. 3 shows an example of a plan view of the present invention. The formation pattern of the other electrode 6 is not limited to the illustrated pattern, and is formed by using a finger, a bus bar, a ribbon electrode, a through hole, or the like, and an appropriate design pattern that has a low series resistance and reduces light reception loss. Is done.

【0018】[0018]

【実施例】次に、本発明の光電変換装置の実施例を説明
する。まず、基板1上に絶縁物質層3を形成する。基板
1はアルミニウムを用いた。絶縁物質層3はガラスペー
ストを用いてこの基板上に50μmの厚みに形成した。
ガラスペーストに用いたガラスは軟化温度480℃のも
のを使用した。次に、その上に平均直径800μmのp
形シリコン粒子2を密に配置した。次に、前記シリコン
粒子2と前記絶縁物質層3の上にn形シリコン層4を2
00nm形成し、更に保護膜5として窒化珪素を500
nm形成した。次に、銀ペーストをスクリーン印刷し、
焼成することにより他方の電極6を形成した。他方の電
極6を絶縁物質層3上に形成した面積とシリコン粒子上
に形成した面積を変化させてショートと変換効率を評価
した結果を表1に示す。ショートの評価はサンプルを1
00サンプル作製し、20%以上ショートが発生したも
のを×、20%未満5%以上ショートが発生したものを
△、5%未満1%以上ショートが発生したものを○、シ
ョートの発生が1%未満のものを◎とした。
Next, an embodiment of the photoelectric conversion device of the present invention will be described. First, an insulating material layer 3 is formed on a substrate 1. The substrate 1 was made of aluminum. The insulating material layer 3 was formed with a thickness of 50 μm on this substrate using a glass paste.
The glass used for the glass paste had a softening temperature of 480 ° C. Next, a p having an average diameter of 800 μm
The shaped silicon particles 2 were densely arranged. Next, an n-type silicon layer 4 is formed on the silicon particles 2 and the insulating material layer 3.
And a protective film 5 of silicon nitride of 500 nm.
nm. Next, screen-print the silver paste,
The other electrode 6 was formed by firing. Table 1 shows the results of evaluating the short circuit and the conversion efficiency by changing the area of the other electrode 6 formed on the insulating material layer 3 and the area formed on the silicon particles. Evaluation of short is 1 sample
00 samples were prepared, and X: those with 20% or more short-circuit occurred, X: less than 20%, 5% or more short-circuit, Δ: Less than 5%, 1% or more short-circuit, 1%: Less than と し た.

【0019】[0019]

【表1】 [Table 1]

【0020】上記結果から、シリコン粒子上に形成した
電極部の面積が小さいほど良好な結果を示す。但し、1
0%以下であればシリコン粒子上に電極部を形成しても
影響は小さい。
From the above results, the smaller the area of the electrode portion formed on the silicon particles, the better the results. However, 1
If it is 0% or less, the influence is small even if the electrode portion is formed on the silicon particles.

【0021】[0021]

【発明の効果】以上のように、請求項1に係る光電変換
装置によれば、一方の電極となる基板上に、第1導電形
の結晶質半導体粒子を多数配設し、この結晶質半導体粒
子間に絶縁物質を介在させ、この結晶質半導体粒子の上
部に第2導電形領域を形成し、この第2導電形領域に他
方の電極を接続して設けた光電変換装置において、前記
他方の電極下部の10%以下の領域においてのみ前記結
晶質半導体粒子が存在するように前記他方の電極を形成
することから、高い信頼性と高い特性を有する光電変換
装置を提供できる。
As described above, according to the photoelectric conversion device of the first aspect, a large number of first-conductivity-type crystalline semiconductor particles are provided on a substrate to be one of the electrodes. An insulating material is interposed between the particles, a second conductivity type region is formed above the crystalline semiconductor particles, and the other electrode is connected to the second conductivity type region. Since the other electrode is formed such that the crystalline semiconductor particles are present only in a region of 10% or less below the electrode, a photoelectric conversion device having high reliability and high characteristics can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の光電変換装置の実施の形態の一例を示
す断面図である。
FIG. 1 is a cross-sectional view illustrating an example of an embodiment of a photoelectric conversion device of the present invention.

【図2】比較例の光電変換装置を示す断面図である。FIG. 2 is a cross-sectional view illustrating a photoelectric conversion device of a comparative example.

【図3】本発明の光電変換装置の実施の形態の一例を示
す平面図である。
FIG. 3 is a plan view illustrating an example of an embodiment of a photoelectric conversion device according to the present invention.

【図4】従来例1の光電変換装置の例を示す断面図であ
る。
FIG. 4 is a cross-sectional view illustrating an example of a photoelectric conversion device of Conventional Example 1.

【図5】従来例2の光電変換装置の例を示す断面図であ
る。
FIG. 5 is a cross-sectional view illustrating an example of a photoelectric conversion device of Conventional Example 2.

【符号の説明】[Explanation of symbols]

1:基板 2:第1導電形の結晶質半導体粒子 3:絶縁物質層 4:第2導電形半導体層 5:保護層 6:電極部 1: substrate 2: crystalline semiconductor particles of the first conductivity type 3: insulating material layer 4: semiconductor layer of the second conductivity type 5: protective layer 6: electrode part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 有宗 久雄 滋賀県八日市市蛇溝町長谷野1166番地の6 京セラ株式会社滋賀工場八日市ブロック 内 Fターム(参考) 5F049 MA02 MB02 NA01 NA08 NA20 QA01 QA11 QA20 5F051 AA01 BA11 BA17 DA03 DA20 EA01 FA13 FA16 FA17 FA30 GA02  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hisao Arimune 6F, 1166, Haseno, Jabizo-cho, Yokaichi City, Shiga Prefecture F term in the Yokaichi block of the Shiga Plant of Kyocera Corporation 5F049 MA02 MB02 NA01 NA08 NA20 NA20 QA01 QA11 QA20 5F051 AA01 BA11 BA17 DA03 DA20 EA01 FA13 FA16 FA17 FA30 GA02

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 一方の電極となる基板上に、第1導電形
の結晶質半導体粒子を多数配設し、この結晶質半導体粒
子間に絶縁物質を介在させ、この結晶質半導体粒子の上
部に第2導電形領域を形成し、この第2導電形領域に他
方の電極を接続して設けた光電変換装置において、前記
他方の電極をその下部の10%以下の領域においてのみ
前記結晶質半導体粒子が存在するように形成したことを
特徴とする光電変換装置。
A first conductive type crystalline semiconductor particle disposed on a substrate serving as one electrode; an insulating material interposed between the crystalline semiconductor particles; In a photoelectric conversion device in which a second conductivity type region is formed and the other electrode is connected to the second conductivity type region, the crystalline semiconductor particles may be provided only in a region of 10% or less below the other electrode. A photoelectric conversion device, wherein the photoelectric conversion device is formed so as to exist.
JP2000227640A 2000-05-29 2000-07-27 Photoelectric converter Withdrawn JP2002043604A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000227640A JP2002043604A (en) 2000-07-27 2000-07-27 Photoelectric converter
US09/866,069 US6620996B2 (en) 2000-05-29 2001-05-25 Photoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000227640A JP2002043604A (en) 2000-07-27 2000-07-27 Photoelectric converter

Publications (1)

Publication Number Publication Date
JP2002043604A true JP2002043604A (en) 2002-02-08

Family

ID=18721056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000227640A Withdrawn JP2002043604A (en) 2000-05-29 2000-07-27 Photoelectric converter

Country Status (1)

Country Link
JP (1) JP2002043604A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004200512A (en) * 2002-12-19 2004-07-15 Kyocera Corp Photoelectric converter
WO2006080805A1 (en) * 2005-01-27 2006-08-03 Ls Cable Ltd. Surface-mounting type thermistor having multi layers and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004200512A (en) * 2002-12-19 2004-07-15 Kyocera Corp Photoelectric converter
WO2006080805A1 (en) * 2005-01-27 2006-08-03 Ls Cable Ltd. Surface-mounting type thermistor having multi layers and method for manufacturing the same

Similar Documents

Publication Publication Date Title
AU647286B2 (en) Improved solar cell and method of making same
EP2903034B1 (en) Conductive paste and solar cell
US8481419B2 (en) Method for producing a metal contact on a coated semiconductor substrate
US6620996B2 (en) Photoelectric conversion device
US6664567B2 (en) Photoelectric conversion device, glass composition for coating silicon, and insulating coating in contact with silicon
CN101978508A (en) Solar cell and method for manufacturing the same
JP2002043604A (en) Photoelectric converter
JP4693492B2 (en) Photoelectric conversion device and photovoltaic device using the same
JP4570255B2 (en) Photoelectric conversion device
JP2001313401A (en) Photoelectric conversion device
JP4693505B2 (en) Photoelectric conversion device and photovoltaic device using the same
JP2000353817A (en) Integrated photoelectric conversion device and its manufacture
JPS59167057A (en) Silicon semiconductor electrode
JP4540177B2 (en) Method for manufacturing photoelectric conversion device
JP2002076387A (en) Photoelectric conversion device
JP2002222976A (en) Photoelectric converter
JP2002261301A (en) Photoelectric converter
JP4132019B2 (en) Method for manufacturing photoelectric conversion device
JP2002222967A (en) Photoelectric converter
JP2003017719A (en) Photo-electric conversion device
JP2002043602A (en) Photoelectric converter and its manufacturing method
JP2002329876A (en) Method for manufacturing photoelectric conversion apparatus
JP2003133566A (en) Photoelectric converter
JP2002076395A (en) Photoelectric conversion device
JP2002261304A (en) Method for manufacturing photoelectric converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070618

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090909