JP2002222976A - Photoelectric converter - Google Patents

Photoelectric converter

Info

Publication number
JP2002222976A
JP2002222976A JP2001020624A JP2001020624A JP2002222976A JP 2002222976 A JP2002222976 A JP 2002222976A JP 2001020624 A JP2001020624 A JP 2001020624A JP 2001020624 A JP2001020624 A JP 2001020624A JP 2002222976 A JP2002222976 A JP 2002222976A
Authority
JP
Japan
Prior art keywords
lower electrode
photoelectric conversion
conversion device
insulator
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001020624A
Other languages
Japanese (ja)
Inventor
Makoto Sugawara
信 菅原
Takeshi Kyoda
豪 京田
Nobuyuki Kitahara
暢之 北原
Hisao Arimune
久雄 有宗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001020624A priority Critical patent/JP2002222976A/en
Priority to US09/996,537 priority patent/US6563041B2/en
Publication of JP2002222976A publication Critical patent/JP2002222976A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PROBLEM TO BE SOLVED: To solve a problem that a photoelectric converter which uses conventional crystalline semiconductor particles was low in conversion efficiency and productivity. SOLUTION: In a photoelectric converter, a plurality of granulated crystal semiconductors 2 are arranged on a lower electrode 1, and insulators 4 are filled between the granulated crystal semiconductors 2, and at least upper electrodes 5 are formed on the granulated crystal semiconductors 2. The insulator 4 and the upper electrode 5 are formed with translucent members, and a surface of the lower electrode 1 is made rough.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は光電変換装置に関
し、特に多数の半導体粒子を用いた光電変換装置に関す
る。
The present invention relates to a photoelectric conversion device, and more particularly to a photoelectric conversion device using a large number of semiconductor particles.

【0002】[0002]

【従来の技術】従来から提案されている結晶半導体粒子
を用いた光電変換素子を図4および図5に示す。
2. Description of the Related Art FIGS. 4 and 5 show photoelectric conversion elements using crystalline semiconductor particles that have been conventionally proposed.

【0003】図4に示すように、特開2000−221
84号公報によれば、球状または棒状の複数の半導体結
晶2を、周期的な凹凸構造を持つ第1の基板13上に配
置された構造を持たせ、この第1の基板13に構成され
た周期的な凹凸構造上に第1の導電層12を配置し、こ
の第1の導電層12に対し、上記球状または棒状の半導
体結晶2の一部を電気的に接触させ、この第1の導電層
12と接触した、球状又は棒状の半導体結晶2の一部と
は異なる部分の半導体結晶の一部に電気的に接触した第
2の導電層9を配置した太陽電池が開示されている。図
5において、8は高反射膜、10はスピンオンガラスS
OG1、11はスピンオンガラスSOG2を示す。
[0003] As shown in FIG.
According to Japanese Patent Publication No. 84, a plurality of spherical or rod-shaped semiconductor crystals 2 are provided with a structure arranged on a first substrate 13 having a periodic uneven structure. A first conductive layer 12 is disposed on the periodic uneven structure, and a part of the spherical or rod-shaped semiconductor crystal 2 is brought into electrical contact with the first conductive layer 12 to form the first conductive layer 12. A solar cell is disclosed in which a second conductive layer 9 that is in electrical contact with a part of the semiconductor crystal in a part different from the part of the spherical or rod-shaped semiconductor crystal 2 in contact with the layer 12 is disclosed. In FIG. 5, 8 is a high reflection film, and 10 is a spin-on glass S
OG1 and OG11 are spin-on glass SOG2.

【0004】図5に示すように、米国特許541978
2号公報によれば、第1のアルミニウム箔14に開口を
形成し、その開口にp形の上にn形表皮部16を持つp
形シリコン球15を結合し、球の裏側のn形表皮部16
を除去し、アルミニウム18上に酸化物コーティング1
7をし、球裏側の酸化物17を除去し、第2のアルミニ
ウム箔18と接合し、透明なコーティング19を表面に
設け、このコーティング19が最下点で急激に変化する
形状を有することによりp形シリコン球15の無い位置
に入射した光をp形シリコン球15へ導いて変換効率を
向上させた光電変換装置が開示されている。
[0004] As shown in FIG.
According to Japanese Patent Publication No. 2 (1993) -197, an opening is formed in the first aluminum foil 14, and the opening has an n-type skin portion 16 on a p-type in the opening.
The silicon ball 15 is joined to form an n-type skin 16 on the back side of the ball.
And oxide coating 1 on aluminum 18
7, the oxide 17 on the back side of the ball is removed, bonded to the second aluminum foil 18, and a transparent coating 19 is provided on the surface, and this coating 19 has a shape that changes rapidly at the lowest point. There is disclosed a photoelectric conversion device in which light incident on a position where no p-type silicon sphere 15 is provided is guided to the p-type silicon sphere 15 to improve conversion efficiency.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、図4に
示す特開2000−22184号公報の光電変換装置で
は、基板17の凹凸面に合わせて球状半導体結晶2を並
べるために、絶縁物11(例えばスピンオンガラスSO
G2)を基板13の凹凸面に沿って形成する必要があ
り、一般の印刷法では形成できないために生産性に欠け
るという問題があった。また、基板13の凹凸の一つ一
つに球状半導体結晶2を配置する構造であるため、球状
半導体結晶を小さくするとアッセンブルが困難になり、
球状半導体結晶2を小さくすることができなくなり、原
料となる半導体の使用量を少なくできず、低生産性・高
コストとなるという問題があった。
However, in the photoelectric conversion device disclosed in Japanese Patent Application Laid-Open No. 2000-22184 shown in FIG. 4, since the spherical semiconductor crystals 2 are arranged in accordance with the uneven surface of the substrate 17, the insulator 11 (for example, Spin-on glass SO
G2) needs to be formed along the uneven surface of the substrate 13 and cannot be formed by a general printing method. In addition, since the spherical semiconductor crystal 2 is arranged on each of the irregularities of the substrate 13, assembling becomes difficult when the spherical semiconductor crystal is reduced in size.
There is a problem that the spherical semiconductor crystal 2 cannot be reduced in size, the amount of semiconductor used as a raw material cannot be reduced, and low productivity and high cost occur.

【0006】また、図5に示す米国特許5419782
号公報の光電変換装置では、最下点でV字状に急激に変
化する形状を持つコーティング19によって変換効率を
向上させるとあるが、最下点でV字状に急激に変化する
形状を形成することは技術的に難しいために生産性が悪
く、また長期に渡って太陽光にさらされる場合はコーテ
ィング材料19に劣化が生じ、徐々に変換効率が低下す
るという問題があった。
Further, US Pat. No. 5,419,782 shown in FIG.
In the photoelectric conversion device disclosed in Japanese Patent Application Laid-Open Publication No. H11-157, the conversion efficiency is improved by a coating 19 having a shape that rapidly changes in a V-shape at the lowest point, but a shape that rapidly changes in a V-shape at the lowest point is formed. However, there is a problem in that the productivity is low because it is technically difficult, and when exposed to sunlight for a long period of time, the coating material 19 deteriorates and the conversion efficiency gradually decreases.

【0007】本発明はこのような従来技術の課題に鑑み
てなされたものであり、その目的は高効率且つ高生産性
の光電変換装置を提供することにある。
The present invention has been made in view of such problems of the prior art, and an object of the present invention is to provide a photoelectric conversion device with high efficiency and high productivity.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、請求項1に係る光電変換装置によれば、下部電極上
に多数の粒状結晶半導体を配設し、この粒状結晶半導体
間に絶縁体を充填して、この粒状結晶半導体の上部側に
上部電極を形成した光電変換装置において、前記絶縁体
と上部電極を透光性部材で形成するとともに、前記下部
電極表面を粗面にしたことを特徴とする。
According to a first aspect of the present invention, there is provided a photoelectric conversion device comprising: a plurality of granular crystal semiconductors disposed on a lower electrode; In a photoelectric conversion device in which a body is filled and an upper electrode is formed on an upper side of the granular crystal semiconductor, the insulator and the upper electrode are formed of a translucent member, and the surface of the lower electrode is roughened. It is characterized by.

【0009】上記光電変換装置では、前記下部電極表面
の算術平均粗さが0.01〜10であることが望まし
い。
In the above-mentioned photoelectric conversion device, it is preferable that the arithmetic average roughness of the surface of the lower electrode is 0.01 to 10.

【0010】また、上記光電変換装置によれば、前記下
部電極がアルミニウム又はアルミニウム合金であること
が望ましい。
In the above-mentioned photoelectric conversion device, it is preferable that the lower electrode is made of aluminum or an aluminum alloy.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施形態を図面に
基づいて詳細に説明する。図1は請求項1に係る光電変
換装置の一実施形態を示す図であり、1は下部電極、2
は第1導電形半導体粒子、3は粗面化した下部電極の表
面、4は透光性絶縁体層、5は第2導電形半導体部、6
は保護層である。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a view showing one embodiment of a photoelectric conversion device according to claim 1, wherein 1 is a lower electrode, 2
Is a first conductivity type semiconductor particle, 3 is a roughened surface of the lower electrode, 4 is a light-transmitting insulator layer, 5 is a second conductivity type semiconductor portion, 6
Is a protective layer.

【0012】下部電極1は導電性をもつものであればよ
く、基板を兼ねてもよいが、基板を兼ねないときにセラ
ミックや樹脂等の絶縁物質を基板として用いる場合はそ
の表面に導電層として形成してもよい。
The lower electrode 1 only needs to have conductivity and may also serve as a substrate. When an insulating material such as ceramic or resin is used as a substrate when not serving as a substrate, the lower electrode 1 serves as a conductive layer on the surface. It may be formed.

【0013】下部電極1の表面は粗面とする。下部電極
1の表面を粗面化することで下部電極1の表面に照射さ
れた光が散乱して半導体粒子2へ導かれるために変換効
率が向上し、また上に形成する絶縁体4との密着性を向
上させる効果がある。下部電極1の表面を粗面化する方
法として、基板上にフィラーやガラスフリットを含んだ
アルミペーストを塗布・焼成し形成する方法、アルミナ
等の微粒子を加圧した気体にのせて下部電極1の表面に
吹き付けて物理的に削るサンドブラスト法、RIE法、
薬液によるエッチング等がある。
The surface of the lower electrode 1 is rough. By roughening the surface of the lower electrode 1, the light irradiated on the surface of the lower electrode 1 is scattered and guided to the semiconductor particles 2, so that the conversion efficiency is improved. This has the effect of improving the adhesion. As a method of roughening the surface of the lower electrode 1, a method of applying and firing an aluminum paste containing a filler or a glass frit on a substrate, or a method of forming fine particles of alumina or the like on a pressurized gas to form the lower electrode 1. Sand blast method, RIE method, which physically sprays on the surface
Etching with a chemical solution is available.

【0014】下部電極1の表面の算術平均粗さは0.0
1〜10が好適である。算術平均粗さが0.01以下の
ときは光の散乱が小さくて変換効率の向上効果が小さく
て密着性が悪いために好ましくない。算術平均粗さが1
0以上のとき、上部に形成する絶縁体層が形成しにくく
なって厚みが大きくばらつくことやショートの原因とな
ることがあるために好ましくない。
The arithmetic average roughness of the surface of the lower electrode 1 is 0.0
1 to 10 are preferred. When the arithmetic average roughness is 0.01 or less, the scattering of light is small, the effect of improving the conversion efficiency is small, and the adhesion is poor. Arithmetic average roughness is 1
When the value is 0 or more, it is not preferable because an insulator layer formed on the upper portion is difficult to form and the thickness may vary greatly or cause a short circuit.

【0015】また、下部電極1はアルミニウム又はアル
ミニウム合金が好適である。アルミニウム又はアルミニ
ウム合金を用いることで、高反射率、低抵抗、高信頼性
で安価な下部電極を実現できる。
The lower electrode 1 is preferably made of aluminum or an aluminum alloy. By using aluminum or an aluminum alloy, an inexpensive lower electrode with high reflectivity, low resistance, high reliability, and high reliability can be realized.

【0016】第1導電形半導体粒子2は、Si、Ge等
にp形を呈するB、Al、Ga等が微量元素含まれてい
るものである。半導体粒子2の形状としては多角形を持
つもの、曲面を持つものなどがある。粒径分布としては
均一、不均一を問わないが、均一の場合は粒径を揃える
ための工程が必要になるため、コスト的には不均一の場
合が有利である。更に凸曲面を持つことによって光の光
線角度の依存性も小さい。
The first conductive type semiconductor particles 2 contain p-type B, Al, Ga, or the like in Si, Ge, or the like, and contain trace elements. Examples of the shape of the semiconductor particles 2 include those having a polygonal shape and those having a curved surface. The particle size distribution may be uniform or non-uniform, but if uniform, a process for adjusting the particle size is required, so that non-uniformity is advantageous in terms of cost. Further, by having a convex curved surface, the dependence on the light ray angle of light is small.

【0017】半導体粒子2の配列方法の一例を次に示
す。箱型の治具に半導体粒子2の粒径より小さな穴を配
列して形成し、箱形の治具内部をポンプにより減圧し、
粒径より小さな穴に半導体粒子2を吸着させる。基板1
上へ治具を搬送した後、治具内部の圧力を上げて半導体
粒子2を基板1上に並べる。この配列方法によると、箱
型治具に形成した穴の配列を設計することで容易に半導
体粒子2を適当な配列に並べることができる。その他、
超音波等の振動を与えて半導体粒子2を配列する方法も
ある。
An example of a method for arranging the semiconductor particles 2 will be described below. Holes smaller than the diameter of the semiconductor particles 2 are arranged and formed in a box-shaped jig, and the inside of the box-shaped jig is depressurized by a pump.
The semiconductor particles 2 are adsorbed in holes smaller than the particle diameter. Substrate 1
After the jig is transported upward, the pressure inside the jig is increased, and the semiconductor particles 2 are arranged on the substrate 1. According to this arrangement method, the semiconductor particles 2 can be easily arranged in an appropriate arrangement by designing the arrangement of the holes formed in the box-shaped jig. Others
There is also a method of arranging the semiconductor particles 2 by applying vibration such as ultrasonic waves.

【0018】絶縁体4は、正極と負極の分離を行うため
の絶縁材料からなり、透光性を有する。特に発電に寄与
する波長400〜1200nmの光の透過率が50%以
上である材料が好ましい。例えばSiO2、Al23
PbO、B23、ZnO等を任意な成分とするガラスス
ラリーを用いた絶縁物質、ポリカーボネート等の樹脂絶
縁物質等がある。
The insulator 4 is made of an insulating material for separating the positive electrode and the negative electrode, and has a light transmitting property. In particular, a material that has a transmittance of 50% or more of light having a wavelength of 400 to 1200 nm that contributes to power generation is preferable. For example, SiO 2 , Al 2 O 3 ,
There are an insulating material using a glass slurry containing PbO, B 2 O 3 , ZnO or the like as an optional component, and a resin insulating material such as polycarbonate.

【0019】第2導電形半導体部5は、気相成長法、熱
拡散法等により形成され、例えばシラン化合物の気相に
n形を呈するリン系化合物の気相を微量導入して形成す
る。なお、第2導電形半導体部5は、単結晶質、多結晶
質、微結晶質、非晶質のいずれでもよい。第2導電形半
導体部5中の微量元素の濃度は、例えば1×1016〜1
22atm/cm3程度であればよい。第2導電形半導
体部5は上部電極を兼ねてもよい。また、第2導電形半
導体部5と保護膜6の間に酸化錫、酸化亜鉛等の上部電
極を形成してもよい。
The second conductivity type semiconductor portion 5 is formed by a vapor phase growth method, a thermal diffusion method, or the like. For example, the second conductivity type semiconductor portion 5 is formed by introducing a small amount of a n-type phosphorus-based compound gas phase into a silane compound gas phase. The second conductivity type semiconductor portion 5 may be any of single crystalline, polycrystalline, microcrystalline, and amorphous. The concentration of the trace element in the second conductivity type semiconductor portion 5 is, for example, 1 × 10 16 to 1
What is necessary is just about 22 atm / cm 3 . The second conductivity type semiconductor section 5 may also serve as the upper electrode. Further, an upper electrode such as tin oxide or zinc oxide may be formed between the second conductivity type semiconductor portion 5 and the protective film 6.

【0020】保護膜6は透明誘電体の特性を持つものが
よく、CVD法やPVD法等によって例えば酸化珪素、
酸化セシウム、酸化アルミニウム、窒化珪素、酸化チタ
ン、SiO2−TiO2、酸化タンタル、酸化イットリウ
ム等を単一組成又は複数組成で単層又は組み合わせて第
2導電形半導体層5上に形成する。この保護層6を適当
な膜厚に合わせることにより反射防止効果を持たせると
更に好適である。
The protective film 6 preferably has the property of a transparent dielectric, and is made of, for example, silicon oxide, CVD or PVD.
Cesium oxide, aluminum oxide, silicon nitride, titanium oxide, SiO 2 —TiO 2 , tantalum oxide, yttrium oxide, or the like is formed on the second conductivity type semiconductor layer 5 in a single layer or in a single layer or in combination. It is more preferable that the protective layer 6 has an antireflection effect by adjusting the thickness to an appropriate thickness.

【0021】また、抵抗を下げるために適宜フィンガ
ー、バスバー等の補助電極をスクリーン印刷法や蒸着法
により任意のパターンで形成してもよい。
In order to reduce the resistance, auxiliary electrodes such as fingers and bus bars may be formed in an arbitrary pattern by a screen printing method or a vapor deposition method.

【0022】[0022]

【実施例1】次に、本発明の光電変換装置の実施例を説
明する。まず、下部電極1上に絶縁体層4を形成する。
下部電極1はアルミニウムを用い、サンドブラスト法に
より表面を粗面化させて算術平均粗さを変化させて密着
性と変換効率を評価した結果を表1に示す。図3に示す
粗面化処理を行わなかった算術平均粗さ0.002の比
較例も同時に評価した。算術平均粗さの評価はJISに
準じて行い、密着性の評価は85℃95%RH環境で5
00時間後に下部電極1と絶縁体層4との間の剥離の有
無で評価した。剥離が全く見られなかったものを○、ご
く一部で見られたものを△、大きく剥離が起こっていた
ものを×とした。絶縁体層4はガラスペーストを用いて
この基板上に400μmの厚みに形成した。ガラスペー
ストに用いたガラスは酸化亜鉛系の軟化温度550℃で
波長400〜1200nmの平均透過率94%のものを
使用した。次に、その上に平均直径900μmのp形シ
リコン粒子2を配置した。このときp形シリコン粒子2
の上から加圧し、粗面化した表面凹凸を変形させ下部電
極1に接触させた。次に、加熱しガラスペーストを焼成
した。次に、前記シリコン粒子2と前記絶縁物質層4の
上にn形シリコン層5を上部電極層も兼ねて200nm
形成した。この上部電極層を兼ねたn形シリコン層5の
波長400〜1200nmの平均透過率は85%のもの
を形成した。更に、保護膜6として窒化珪素を100n
m形成した。
Embodiment 1 Next, an embodiment of the photoelectric conversion device of the present invention will be described. First, the insulator layer 4 is formed on the lower electrode 1.
The lower electrode 1 was made of aluminum, and the surface was roughened by sandblasting to change the arithmetic average roughness, and the adhesion and conversion efficiency were evaluated. The results are shown in Table 1. A comparative example having an arithmetic mean roughness of 0.002 without performing the surface roughening treatment shown in FIG. 3 was also evaluated at the same time. The arithmetic average roughness was evaluated according to JIS, and the adhesion was evaluated at 85 ° C and 95% RH in an environment of 5%.
After 00 hours, evaluation was made based on the presence or absence of peeling between the lower electrode 1 and the insulator layer 4.も の indicates that no peeling was observed, Δ indicates a very small part, and X indicates that significant peeling occurred. The insulator layer 4 was formed to a thickness of 400 μm on this substrate using a glass paste. The glass used for the glass paste was a zinc oxide-based glass having a softening temperature of 550 ° C. and an average transmittance of 94% at a wavelength of 400 to 1200 nm. Next, p-type silicon particles 2 having an average diameter of 900 μm were arranged thereon. At this time, the p-type silicon particles 2
Was pressed from above, and the roughened surface irregularities were deformed and brought into contact with the lower electrode 1. Next, the glass paste was heated and fired. Next, an n-type silicon layer 5 having a thickness of 200 nm is formed on the silicon particles 2 and the insulating material layer 4 as an upper electrode layer.
Formed. The n-type silicon layer 5 also serving as the upper electrode layer had an average transmittance of 85% at a wavelength of 400 to 1200 nm. Further, 100 n of silicon nitride is used as the protective film 6.
m was formed.

【0023】[0023]

【表1】 [Table 1]

【0024】上記結果から、粗面化した表面の方が高い
特性を示す。また、算術平均粗さが0.01〜10のと
きが好ましい。算術平均粗さが0.01未満のときは変
換効率の向上効果が小さく、密着性が悪いために好まし
くない。算術平均粗さが10より大きいときは、下部電
極表面上の絶縁体が一部薄くなり電圧がかかるとショー
トするために好ましくない。更に好適には算術平均粗さ
が0.1〜10である。
From the above results, the roughened surface shows higher characteristics. The arithmetic average roughness is preferably from 0.01 to 10. When the arithmetic average roughness is less than 0.01, the effect of improving the conversion efficiency is small and the adhesion is poor, which is not preferable. If the arithmetic average roughness is larger than 10, the insulator on the lower electrode surface is partially thinned and short-circuiting occurs when a voltage is applied, which is not preferable. More preferably, the arithmetic average roughness is from 0.1 to 10.

【0025】次に、絶縁体層の透過率を変化させて変換
効率を評価した結果を表2に示す。表2に示した透過率
は波長400〜1200nmの平均で示した。下部電極
表面の算術平均粗さを1とした。
Next, the results of evaluating the conversion efficiency by changing the transmittance of the insulator layer are shown in Table 2. The transmittance shown in Table 2 was shown as an average at a wavelength of 400 to 1200 nm. The arithmetic average roughness of the lower electrode surface was set to 1.

【0026】[0026]

【表2】 [Table 2]

【0027】上記結果から、絶縁体層の平均透過率が5
0%以上のときに好適である。平均透過率が50%以下
のときは変換効率が低下するために好ましくない。
From the above results, the average transmittance of the insulator layer is 5
It is suitable when it is 0% or more. When the average transmittance is 50% or less, the conversion efficiency decreases, which is not preferable.

【0028】次に、下部電極の材料を変化させて変換効
率を評価した結果を表3に示す。下部電極表面の算術平
均粗さを1とし、絶縁体層の平均透過率を95%とし
た。
Next, the results of evaluating the conversion efficiency by changing the material of the lower electrode are shown in Table 3. The arithmetic average roughness of the lower electrode surface was set to 1, and the average transmittance of the insulator layer was set to 95%.

【0029】[0029]

【表3】 [Table 3]

【0030】上記結果から、下部電極材料はアルミニウ
ム又はアルミニウム合金が好適である。アルミニウム又
はアルミニウム合金以外では変換効率が低いために好ま
しくない。
From the above results, the lower electrode material is preferably aluminum or an aluminum alloy. Aluminum or aluminum alloys are not preferred because of low conversion efficiency.

【0031】[0031]

【実施例2】下部電極1をアルミニウム・マンガン合金
とし、薬液によるエッチングにて表面を粗面化し、算術
平均粗さを変化させて変換効率を評価した結果を表4に
示す。下部電極1上に絶縁体層4を形成した。この絶縁
体層4はガラスペーストを用いて下部電極1上に150
μmの厚みに形成した。ガラスペーストに用いたガラス
は酸化ホウ素系の軟化温度500℃で波長400〜12
00nmの平均透過率94%のものを使用した。次に、
その上に平均直径400μmのp形シリコン結晶粒子2
を配置した。次に、加熱してガラスペーストを焼成し
た。次に、p形シリコン結晶粒子2と絶縁体層4の上に
n形シリコン層5を50nm形成し、更に酸化錫の上部
電極7を200nm形成した。このとき上部電極7の波
長400〜1200nmの平均透過率を76%のものを
形成した。次に、保護膜6として窒化珪素を100nm
形成した。
Example 2 The lower electrode 1 was made of an aluminum-manganese alloy, the surface was roughened by etching with a chemical solution, and the conversion efficiency was evaluated by changing the arithmetic average roughness. Table 4 shows the results. An insulator layer 4 was formed on the lower electrode 1. This insulator layer 4 is formed on the lower electrode 1 by using a glass paste.
It was formed to a thickness of μm. The glass used for the glass paste is a boron oxide-based softening temperature of 500 ° C. and a wavelength of 400-12.
One having an average transmittance of 94% of 00 nm was used. next,
On top of this, p-type silicon crystal particles 2 having an average diameter of 400 μm 2
Was placed. Next, the glass paste was baked by heating. Next, an n-type silicon layer 5 was formed on the p-type silicon crystal grains 2 and the insulator layer 4 to a thickness of 50 nm, and a tin oxide upper electrode 7 was formed to a thickness of 200 nm. At this time, an upper electrode 7 having an average transmittance of 76% at a wavelength of 400 to 1200 nm was formed. Next, 100 nm of silicon nitride is used as the protection film 6.
Formed.

【0032】[0032]

【表4】 [Table 4]

【0033】上記結果から、粗面化した表面の方が高い
特性を示す。また、算術平均粗さが0.01〜10のと
きが好ましい。算術平均粗さが0.01未満のときは変
換効率の向上効果が小さく、密着性が悪いために好まし
くない。算術平均粗さが10より大きいときは、下部電
極表面上の絶縁体が一部薄くなり電圧がかかるとショー
トするために好ましくない。更に好適には算術平均粗さ
が0.1〜10である。
From the above results, the roughened surface shows higher characteristics. The arithmetic average roughness is preferably from 0.01 to 10. When the arithmetic average roughness is less than 0.01, the effect of improving the conversion efficiency is small and the adhesion is poor, which is not preferable. If the arithmetic average roughness is larger than 10, the insulator on the lower electrode surface is partially thinned and short-circuiting occurs when a voltage is applied, which is not preferable. More preferably, the arithmetic average roughness is from 0.1 to 10.

【0034】次に、上部電極の透過率を変化させて変換
効率を評価した結果を表5に示す。表5に示した透過率
は波長400〜1200nmの平均で示した。下部電極
表面の算術平均粗さを0.5とした。
Next, the results of evaluating the conversion efficiency by changing the transmittance of the upper electrode are shown in Table 5. The transmittance shown in Table 5 was shown as an average at a wavelength of 400 to 1200 nm. The arithmetic average roughness of the lower electrode surface was set to 0.5.

【0035】[0035]

【表5】 [Table 5]

【0036】上記結果から、上部電極の平均透過率は5
0%以上のときが好適である。上部電極の透過率が50
%以下であるとき変換効率が大きく低下し好ましくな
い。
From the above results, the average transmittance of the upper electrode is 5
A time of 0% or more is preferable. Top electrode transmittance is 50
% Is not preferable because the conversion efficiency is greatly reduced.

【0037】[0037]

【発明の効果】以上のように、本発明に係る光電変換装
置によれば、下部電極上に多数の粒状結晶半導体を配設
し、この粒状結晶半導体間に絶縁体を充填して、この粒
状結晶半導体に少なくとも上部電極を形成した光電変換
装置において、上記絶縁体と上部電極を透光性部材で形
成するとともに、上記下部電極表面を粗面にしたことに
より、下部電極表面に入射した光が散乱されて粒状結晶
半導体へ導かれることによって変換効率が向上するとと
もに、下部電極上に形成する絶縁体との密着性を向上さ
せる効果を有する。
As described above, according to the photoelectric conversion device of the present invention, a number of granular crystal semiconductors are provided on the lower electrode, and an insulator is filled between the granular crystal semiconductors. In a photoelectric conversion device in which at least an upper electrode is formed on a crystalline semiconductor, the insulator and the upper electrode are formed of a light-transmitting member, and light incident on the lower electrode surface is formed by roughening the lower electrode surface. The conversion efficiency is improved by being scattered and guided to the granular crystal semiconductor, and also has the effect of improving the adhesion to the insulator formed on the lower electrode.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態を示す断面図である。FIG. 1 is a sectional view showing an embodiment of the present invention.

【図2】本発明の他の実施形態を示す断面図である。FIG. 2 is a cross-sectional view showing another embodiment of the present invention.

【図3】本発明の比較例を示す断面図である。FIG. 3 is a sectional view showing a comparative example of the present invention.

【図4】従来例1の光電変換素子の例を示す断面図であ
る。
FIG. 4 is a cross-sectional view illustrating an example of a photoelectric conversion element of Conventional Example 1.

【図5】従来例2の光電変換素子の例を示す断面図であ
る。
FIG. 5 is a cross-sectional view illustrating an example of a photoelectric conversion element of Conventional Example 2.

【符号の説明】[Explanation of symbols]

1・・・・下部電極 2・・・・第1導電形半導体粒子 3・・・・下部電極の粗面化した表面 4・・・・透光性絶縁体層 5・・・・第2導電形半導体部 6・・・・保護層 7・・・・透明導電層 8・・・・高反射膜 9・・・・p電極 10・・スピンオンガラスSOG1 11・・スピンオンガラスSOG2 12・・透明電極 13・・第1の基板(透明ガラス) 14・・第1アルミニウム箔 15・・p形シリコン球 16・・n形表皮部 17・・酸化物コーティング 18・・第2アルミニウム箔 19・・透明コーティング DESCRIPTION OF SYMBOLS 1 ... Lower electrode 2 ... 1st conductivity type semiconductor particle 3 ... Roughened surface of lower electrode 4 ... Translucent insulator layer 5 ... 2nd conductivity Semiconductor part 6 ... Protective layer 7 ... Transparent conductive layer 8 ... High reflection film 9 ... P electrode 10 ... Spin on glass SOG1 11 ... Spin on glass SOG2 12 ... Transparent electrode 13. First substrate (transparent glass) 14. First aluminum foil 15. p-type silicon sphere 16. n-type skin 17 oxide coating 18. second aluminum foil 19 transparent coating

───────────────────────────────────────────────────── フロントページの続き (72)発明者 有宗 久雄 滋賀県八日市市蛇溝町長谷野1166番地の6 京セラ株式会社滋賀八日市工場内 Fターム(参考) 5F051 AA02 AA03 AA20 FA06 FA15 FA19  ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Hisao Arimune 1166, Haseno, Snake-cho, Yokaichi City, Shiga Prefecture F term in the Kyocera Corporation Shiga Yokaichi Plant F-term (reference)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 下部電極上に多数の粒状結晶半導体を配
設し、この粒状結晶半導体間に絶縁体を充填して、この
粒状結晶半導体の上部側に上部電極を形成した光電変換
装置において、前記絶縁体と上部電極を透光性部材で形
成するとともに、前記下部電極表面を粗面にしたことを
特徴とする光電変換装置。
1. A photoelectric conversion device comprising: a plurality of granular crystal semiconductors disposed on a lower electrode; an insulator filled between the granular crystal semiconductors; and an upper electrode formed on an upper side of the granular crystal semiconductor. A photoelectric conversion device, wherein the insulator and the upper electrode are formed of a translucent member, and the surface of the lower electrode is roughened.
【請求項2】 前記下部電極表面の算術平均粗さが0.
01〜10であることを特徴とする請求項1に記載の光
電変換装置。
2. The arithmetic mean roughness of the lower electrode surface is equal to 0.
The photoelectric conversion device according to claim 1, wherein the number is from 01 to 10.
【請求項3】 前記下部電極がアルミニウム又はアルミ
ニウム合金であることを特徴とする請求項1に記載の光
電変換装置。
3. The photoelectric conversion device according to claim 1, wherein the lower electrode is made of aluminum or an aluminum alloy.
JP2001020624A 2000-11-29 2001-01-29 Photoelectric converter Pending JP2002222976A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001020624A JP2002222976A (en) 2001-01-29 2001-01-29 Photoelectric converter
US09/996,537 US6563041B2 (en) 2000-11-29 2001-11-27 Photoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001020624A JP2002222976A (en) 2001-01-29 2001-01-29 Photoelectric converter

Publications (1)

Publication Number Publication Date
JP2002222976A true JP2002222976A (en) 2002-08-09

Family

ID=18886306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001020624A Pending JP2002222976A (en) 2000-11-29 2001-01-29 Photoelectric converter

Country Status (1)

Country Link
JP (1) JP2002222976A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250850A (en) * 2006-03-16 2007-09-27 Kyocera Corp Photoelectric conversion device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56134781A (en) * 1980-03-25 1981-10-21 Mitsubishi Electric Corp Photoelectric converter
JPH06163953A (en) * 1992-11-27 1994-06-10 Sanyo Electric Co Ltd Photovoltaic element and its manufacture
JPH07209439A (en) * 1994-01-18 1995-08-11 Citizen Watch Co Ltd Face of clock, and its manufacture
JPH11317538A (en) * 1998-02-17 1999-11-16 Canon Inc Photoconductive thin film and photovoltaic device
JP2000091625A (en) * 1998-09-08 2000-03-31 Digital Wave:Kk Substrate for manufacturing semiconductor device and its manufacture, and photoelectric transducer and its manufacture

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56134781A (en) * 1980-03-25 1981-10-21 Mitsubishi Electric Corp Photoelectric converter
JPH06163953A (en) * 1992-11-27 1994-06-10 Sanyo Electric Co Ltd Photovoltaic element and its manufacture
JPH07209439A (en) * 1994-01-18 1995-08-11 Citizen Watch Co Ltd Face of clock, and its manufacture
JPH11317538A (en) * 1998-02-17 1999-11-16 Canon Inc Photoconductive thin film and photovoltaic device
JP2000091625A (en) * 1998-09-08 2000-03-31 Digital Wave:Kk Substrate for manufacturing semiconductor device and its manufacture, and photoelectric transducer and its manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250850A (en) * 2006-03-16 2007-09-27 Kyocera Corp Photoelectric conversion device

Similar Documents

Publication Publication Date Title
JP5121203B2 (en) Solar cell module
US4623751A (en) Photovoltaic device and its manufacturing method
WO2006137322A1 (en) Solar cell element and solar cell element manufacturing method
US20020117667A1 (en) Photoelectric conversion device
JPH11330526A (en) Solar battery cell and its manufacture
JP2002222976A (en) Photoelectric converter
JP4570255B2 (en) Photoelectric conversion device
JP2002261301A (en) Photoelectric converter
JP2004235272A (en) Solar cell element and its fabricating process
JP2001313401A (en) Photoelectric conversion device
JP4570235B2 (en) Photoelectric conversion device
JPS58196060A (en) Thin film semiconductor device
JP2002299656A (en) Photoelectric transducing apparatus
JP2002016272A (en) Photoelectric conversion device
JPH08288529A (en) Photoelectric conversion device and manufacture thereof
JP4780951B2 (en) Photoelectric conversion device
JP4129355B2 (en) Photoelectric conversion device
JP2002043604A (en) Photoelectric converter
JP2002329876A (en) Method for manufacturing photoelectric conversion apparatus
JP4540177B2 (en) Method for manufacturing photoelectric conversion device
JP2002261304A (en) Method for manufacturing photoelectric converter
JP4127362B2 (en) Method for manufacturing photoelectric conversion device
JP2002076395A (en) Photoelectric conversion device
JP2003017719A (en) Photo-electric conversion device
JP2002141519A (en) Photoelectric conversion device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100416

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100713