JP2003017719A - Photo-electric conversion device - Google Patents

Photo-electric conversion device

Info

Publication number
JP2003017719A
JP2003017719A JP2001195877A JP2001195877A JP2003017719A JP 2003017719 A JP2003017719 A JP 2003017719A JP 2001195877 A JP2001195877 A JP 2001195877A JP 2001195877 A JP2001195877 A JP 2001195877A JP 2003017719 A JP2003017719 A JP 2003017719A
Authority
JP
Japan
Prior art keywords
semiconductor particles
conversion device
crystalline semiconductor
spherical crystalline
photoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001195877A
Other languages
Japanese (ja)
Inventor
Makoto Sugawara
信 菅原
Nobuyuki Kitahara
暢之 北原
Hisao Arimune
久雄 有宗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001195877A priority Critical patent/JP2003017719A/en
Publication of JP2003017719A publication Critical patent/JP2003017719A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Abstract

PROBLEM TO BE SOLVED: To solve the problem about the fact that a photo-electric conversion device using conventional spherical crystalline semiconductor particles is low in conversion efficiency. SOLUTION: A large number of first conductivity spherical crystalline semiconductor particles 3 are arranged on a board 1 which is to serve as one of electrodes, an insulating material layer 2 is interposed between the spherical crystalline semiconductor particles 3, and a second conductivity semiconductor layer 4 and a protective film 5 are formed on the spherical crystalline semiconductor particles 3 for the formation of a photo-electric conversion device. An acute projection 6 is provided to each of the first conductivity spherical crystalline semiconductor particles 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は太陽光発電に使用さ
れる光電変換装置に関し、特に球状結晶質半導体粒子を
用いた光電変換装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photoelectric conversion device used for solar power generation, and more particularly to a photoelectric conversion device using spherical crystalline semiconductor particles.

【0002】[0002]

【従来の技術】省シリコン原料の低コストな次世代太陽
電池の出現が強く望まれている。省資源に有利な粒形も
しくは球形のシリコン結晶粒子を用いる従来の光電変換
装置を図2に示す(例えば特許第2641800号公報
参照)。この光電変換装置は、基板1上に低融点金属層
9を形成し、この低融点金属層9上に平均粒径20μm
以上50μm以下の第1導電形の球状結晶質半導体粒子
3を配設し、この球状結晶質半導体粒子3上に第2導電
形の非晶質半導体層8と透明導電層7を上記低融点金属
層9との間に絶縁層2を介して形成する光電変換装置が
開示されている。
2. Description of the Related Art The advent of low-cost next-generation solar cells using silicon-saving raw materials is strongly desired. FIG. 2 shows a conventional photoelectric conversion device using grain-shaped or spherical silicon crystal particles, which is advantageous in saving resources (see, for example, Japanese Patent No. 2641800). In this photoelectric conversion device, a low melting point metal layer 9 is formed on a substrate 1, and an average particle size of 20 μm is formed on the low melting point metal layer 9.
First-conductivity-type spherical crystalline semiconductor particles 3 having a size of 50 μm or more are provided, and second-conductivity-type amorphous semiconductor layer 8 and transparent conductive layer 7 are provided on the spherical-crystalline crystalline semiconductor particles 3 with the low melting point metal. A photoelectric conversion device formed between the layer 9 and the insulating layer 2 is disclosed.

【0003】また、図3に示すように、鋼基板11の周
囲にアルミニウム膜10を形成し、粒径300μm以上
1000μm以下の粉砕シリコン粒子12をアルミニウ
ム膜10に接合し、絶縁体13、n形シリコン部14、
透明導電層15を順次形成したものが開示されている
(例えば米国特許第4514580号公報参照)。
Further, as shown in FIG. 3, an aluminum film 10 is formed around a steel substrate 11, crushed silicon particles 12 having a particle size of 300 μm or more and 1000 μm or less are bonded to the aluminum film 10, and an insulator 13, an n-type is formed. Silicon part 14,
It is disclosed that the transparent conductive layer 15 is sequentially formed (see, for example, US Pat. No. 4,514,580).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、図2に
示す従来の光電変換装置では、平均粒径20μm以上5
0μm以下の半導体粒子を用いるとあるが、平均粒径が
小さすぎるために光を十分に吸収することができず、変
換効率が低くなるという問題点があった。また、好適な
半導体粒子の形状についても具体的記述はない。
However, in the conventional photoelectric conversion device shown in FIG. 2, the average particle size is 20 μm or more.
There is a problem in that semiconductor particles having a particle size of 0 μm or less are used, but since the average particle size is too small, light cannot be sufficiently absorbed and the conversion efficiency becomes low. In addition, there is no specific description about a suitable shape of semiconductor particles.

【0005】また、図3に示す従来の光電変換装置で
は、粒径300μm以上1000μm以下の粉砕シリコ
ン粒子を用いるとあるが、粉砕シリコン粒子は形状が全
く制御できず、更に粉砕時にシリコン粒子表面にダメー
ジを与えるために欠陥の多い表面となり、その結果変換
効率が低くなるという問題点があった。
In the conventional photoelectric conversion device shown in FIG. 3, crushed silicon particles having a particle size of 300 μm or more and 1000 μm or less are used, but the shape of the crushed silicon particles cannot be controlled at all, and the surface of the silicon particles is further crushed. There is a problem in that the surface becomes defective due to damage, resulting in low conversion efficiency.

【0006】本発明は上記従来技術における問題点に鑑
みてなされたものであり、その目的は優れた特性の光電
変換装置を提供することにある。
The present invention has been made in view of the above problems in the prior art, and an object thereof is to provide a photoelectric conversion device having excellent characteristics.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明にかかる光電変換装置によれば、一方の電極
となる基板上に、第1導電形の球状結晶質半導体粒子を
多数配設し、この球状結晶質半導体粒子間に絶縁物質を
介在させ、この球状結晶質半導体粒子上に第2導電形の
半導体層を形成した光電変換装置において、前記第1導
電形の球状結晶質半導体粒子が凸状部を有することを特
徴とする。
In order to achieve the above object, according to the photoelectric conversion device of the present invention, a large number of spherical crystalline semiconductor particles of the first conductivity type are arranged on a substrate which is one of the electrodes. In the photoelectric conversion device, an insulating material is interposed between the spherical crystalline semiconductor particles, and a semiconductor layer of the second conductivity type is formed on the spherical crystalline semiconductor particles. The particles are characterized by having a convex portion.

【0008】上記光電変換装置は、前記球状結晶質半導
体粒子の凸状部が先鋭な形状であることが望ましい。
In the photoelectric conversion device described above, it is desirable that the convex portions of the spherical crystalline semiconductor particles have a sharp shape.

【0009】上記光電変換装置は、前記凸状部の長さが
前記球状結晶質半導体粒子の粒径の1/20以上且つ粒
径以下であることが望ましい。
In the photoelectric conversion device described above, the length of the convex portion is preferably 1/20 or more and not more than the particle diameter of the spherical crystalline semiconductor particles.

【0010】上記光電変換装置は、前記球状結晶質半導
体粒子の粒径が100μm以上400μm以下であるこ
とが望ましい。
In the above photoelectric conversion device, it is desirable that the spherical crystalline semiconductor particles have a particle size of 100 μm or more and 400 μm or less.

【0011】上記光電変換装置は、前記球状結晶質半導
体粒子がシリコンであることが望ましい。
In the photoelectric conversion device, it is desirable that the spherical crystalline semiconductor particles are silicon.

【0012】[0012]

【発明の実施の形態】以下、図面に基づいて本発明を詳
細に説明する。図1は本発明に係る光電変換装置の一実
施形態を示す断面図であり、1は基板、2は絶縁物質、
3は第1導電形の球状結晶質半導体粒子、4は第2導電
形の半導体層、5は保護膜、6は先鋭な凸状部である。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below with reference to the drawings. FIG. 1 is a sectional view showing an embodiment of a photoelectric conversion device according to the present invention, in which 1 is a substrate, 2 is an insulating material,
3 is a spherical crystalline semiconductor particle of the first conductivity type, 4 is a semiconductor layer of the second conductivity type, 5 is a protective film, and 6 is a sharp convex portion.

【0013】基板1としては、金属、セラミック、樹脂
等が用いられる。基板1は下部電極を兼ねるために、特
性として導電性を持つものであればよく、材質が金属の
場合は基板1の構成は単層又は他の金属との複層があ
る。なお、基板1がセラミックや樹脂といった絶縁体の
場合には、その表面に導電層を形成する必要がある。
As the substrate 1, metal, ceramic, resin or the like is used. The substrate 1 also serves as a lower electrode as long as it has conductivity as a characteristic, and when the material is a metal, the substrate 1 has a single layer or a multi-layer with another metal. When the substrate 1 is an insulator such as ceramic or resin, it is necessary to form a conductive layer on the surface thereof.

【0014】絶縁物質2は、正極と負極の分離を行うた
めに半導体粒子3間に充填する。例えばSiO2、Al2
3、PbO、ZnO等を任意な成分とするガラススラ
リーを用いて形成する。スクリーン印刷法等で任意の厚
みに塗布して形成し、加熱焼成して形成する。また、絶
縁物質2としてエポキシ、ポリイミド等の樹脂材料を用
いてもよい。
The insulating material 2 is filled between the semiconductor particles 3 in order to separate the positive electrode and the negative electrode. For example, SiO 2 , Al 2
It is formed using a glass slurry containing O 3 , PbO, ZnO or the like as an arbitrary component. It is formed by applying it to an arbitrary thickness by a screen printing method or the like, and heating and baking. A resin material such as epoxy or polyimide may be used as the insulating material 2.

【0015】第1導電形の球状結晶質半導体粒子3は、
シリコン、ゲルマニウム等の半導体材料からなるが、シ
リコンであることが望ましい。半導体粒子3は凸状部6
を有する形状である。凸状部6を有する半導体粒子3を
用いることは変換効率を向上させる効果を有する。その
原因としては、凸状部6が半導体粒子3の間の隙間に入
って光をより多く吸収しやすくなる効果があるため、又
は半導体粒子3の頂上部に入射した光が凸状部6で散乱
して隣接した半導体粒子3へ導く効果があるため、半導
体粒子3の形成過程で応力が緩和されやすくなって欠陥
の少ない結晶が形成されるためと考えられる。更に、こ
の凸状部を利用した真空吸着や電磁力による配列方法に
よって粒の配列をより整えることが可能となる。
The spherical crystalline semiconductor particles 3 of the first conductivity type are
It is made of a semiconductor material such as silicon or germanium, and is preferably silicon. The semiconductor particles 3 have convex portions 6
It is a shape having. Using the semiconductor particles 3 having the convex portions 6 has an effect of improving conversion efficiency. The cause is that the convex portions 6 enter the gaps between the semiconductor particles 3 and easily absorb more light, or the light incident on the top of the semiconductor particles 3 is generated by the convex portions 6. It is considered that the stress is easily relaxed in the process of forming the semiconductor particles 3 due to the effect of scattering and leading to the adjacent semiconductor particles 3, and crystals with few defects are formed. Furthermore, it becomes possible to further arrange the arrangement of particles by a vacuum suction method using this convex portion or an arrangement method by electromagnetic force.

【0016】前記凸状部6の形状は先鋭な形状であるこ
とが好ましい。先鋭な形状とは、先が細い凸状部のこと
を示しており、凸状部6が鋭角である形状のみに限定す
るものではなく、粒の一部が粒径より小さい径を直径と
する曲面を有する形状も含む。先鋭な形状は粒の複数箇
所にあってもよい。凸状部6の長さは粒径の1/20以
上且つ粒径以下であることが好ましい。凸状部6の長さ
が粒径の1/20以下であるときは変換効率の向上効果
が小さくなるために好ましくなく、凸状部6の長さが粒
径以上であるときは凸状部6がハンドリング中に折れや
すくなるために好ましくない。
The shape of the convex portion 6 is preferably a sharp shape. The sharp shape refers to a convex portion having a narrow tip, and is not limited to the shape in which the convex portion 6 has an acute angle, and a diameter of a part of the particles is smaller than the particle diameter. Also includes a shape having a curved surface. The sharp shape may be present at multiple points of the grain. The length of the convex portion 6 is preferably not less than 1/20 of the particle diameter and not more than the particle diameter. When the length of the convex portion 6 is 1/20 or less of the particle diameter, the effect of improving the conversion efficiency becomes small, which is not preferable, and when the length of the convex portion 6 is equal to or larger than the particle diameter, the convex portion 6 6 is not preferable because it easily breaks during handling.

【0017】半導体粒子3の粒径は100μm以上且つ
400μm以下が好ましい。100μm以下では光を十
分に吸収できず変換効率が低下するために好ましくな
く、400μm以上では半導体粒子3の中心部で発生し
たキャリアが接合部まで移動する際に再結合しやすくな
って変換効率が低下し、また半導体原料の使用量が増え
て高コストとなるために好ましくない。また、凸状部6
を有する半導体粒子3と凸状部がない半導体粒子3とを
混合した光電変換装置の場合であっても、凸状部6を有
する半導体粒子の割合が5%以上であれば変換効率の向
上効果が確認できた。但し、凸状部6を有する半導体粒
子の割合が小さくなると変換効率の向上効果も小さくな
るため、凸状部6を有する半導体粒子の割合は30%以
上がより好ましい。
The particle size of the semiconductor particles 3 is preferably 100 μm or more and 400 μm or less. If it is 100 μm or less, it is not preferable because it cannot absorb light sufficiently and the conversion efficiency is lowered. It is not preferable because the amount of the semiconductor raw material is decreased and the amount of the semiconductor raw material used is increased to increase the cost. In addition, the convex portion 6
Even in the case of the photoelectric conversion device in which the semiconductor particles 3 having the convex portions and the semiconductor particles 3 having no convex portion are mixed, if the ratio of the semiconductor particles having the convex portions 6 is 5% or more, the effect of improving the conversion efficiency is obtained. Was confirmed. However, the smaller the proportion of the semiconductor particles having the convex portions 6 is, the smaller the effect of improving the conversion efficiency is. Therefore, the proportion of the semiconductor particles having the convex portions 6 is more preferably 30% or more.

【0018】前記半導体粒子3は、気相成長法、アトマ
イズ法、直流プラズマ法等で形成可能であるが、非接触
環境下に融液を落下させる融液落下法が好ましい。凸状
部6の形状や大きさは落下中の温度制御を行うことで変
化させることができる。
The semiconductor particles 3 can be formed by a vapor phase growth method, an atomizing method, a direct current plasma method or the like, but a melt dropping method of dropping the melt in a non-contact environment is preferable. The shape and size of the convex portion 6 can be changed by controlling the temperature during dropping.

【0019】第2導電形の半導体層4は、VHF−CV
D法、プラズマCVD法、触媒CVD法等で例えばシラ
ン化合物の気相にn形を呈するリン系化合物の気相、又
はp形を呈するホウ素系化合物の気相を微量導入して半
導体層として形成する。また、n形を呈するリン系化合
物の気相、又はp形を呈するホウ素系化合物の気相中で
半導体粒子内へ拡散して形成してもよい。第2導電形の
半導体層4の微量元素濃度は、例えば1×1014〜10
22atm/cm3程度である。
The semiconductor layer 4 of the second conductivity type is VHF-CV.
For example, by D method, plasma CVD method, catalytic CVD method or the like, a minute amount of a vapor phase of a phosphorus-based compound exhibiting an n-type or a vapor phase of a boron-based compound exhibiting a p-type is introduced into a vapor phase of a silane compound to form a semiconductor layer. To do. Further, it may be formed by diffusing into the semiconductor particles in the vapor phase of the phosphorus compound exhibiting the n-type or in the vapor phase of the boron compound exhibiting the p-type. The trace element concentration of the second conductivity type semiconductor layer 4 is, for example, 1 × 10 14 to 10 14
It is about 22 atm / cm 3 .

【0020】また、第2導電形の半導体層4の上に保護
膜5を設けてもよい。保護膜5として、窒化珪素、酸化
チタン、酸化錫、酸化インジウム等をスパッタリング法
やプラズマCVD法等で形成する。多重反射効果、反射
防止効果、耐候性改善、低抵抗化などの役割を持たせる
ことも可能である。
A protective film 5 may be provided on the semiconductor layer 4 of the second conductivity type. As the protective film 5, silicon nitride, titanium oxide, tin oxide, indium oxide, or the like is formed by a sputtering method, a plasma CVD method, or the like. It is also possible to have a role such as multiple reflection effect, antireflection effect, weather resistance improvement, and low resistance.

【0021】さらに、その上に銀又は銅ペーストを適切
なパターンで補助電極として形成してもよい。
Further, a silver or copper paste may be formed thereon as an auxiliary electrode in an appropriate pattern.

【0022】[0022]

【実施例】次に、本発明の光電変換装置について具体例
を説明する。まず、基板1上に絶縁物質2を形成する。
基板1にはアルミニウムを用いた。絶縁物質2はガラス
ペーストを用いて60μm形成した。次に、その上に平
均粒径160μmの結晶質p形シリコン粒子3を密に1
層配置した。このp形シリコン粒子の形状を変化させ変
換効率を評価した結果を表1にまとめる。
EXAMPLES Next, specific examples of the photoelectric conversion device of the present invention will be described. First, the insulating material 2 is formed on the substrate 1.
Aluminum was used for the substrate 1. The insulating material 2 was formed to a thickness of 60 μm using a glass paste. Next, a crystalline p-type silicon particle 3 having an average particle size of 160 μm is densely placed on the surface of the layer.
Layered. Table 1 shows the results of evaluation of the conversion efficiency by changing the shape of the p-type silicon particles.

【0023】次に、基板1、絶縁物質2及び結晶質p形
シリコン粒子3を600度に加熱し、前記シリコン粒子
3を絶縁物質2に沈み込ませ、基板1と接触させた。次
に、シリコン粒子3と絶縁物質2の上にシラン、水素と
ホスフィンを用いてn形結晶質シリコン層4をプラズマ
CVD法により形成した。成膜時の基板温度は300
℃、圧力は1Paとした。ホスフィンの流量を調節し、
n形結晶質シリコン層4中へのリン添加濃度は1×10
19atm/cm3とし、膜厚は100nmとした。その
上に酸化錫からなる保護膜5を100nm形成した。
Next, the substrate 1, the insulating material 2 and the crystalline p-type silicon particles 3 were heated to 600 ° C., the silicon particles 3 were submerged in the insulating material 2 and brought into contact with the substrate 1. Next, an n-type crystalline silicon layer 4 was formed on the silicon particles 3 and the insulating material 2 using silane, hydrogen and phosphine by a plasma CVD method. The substrate temperature during film formation is 300
C. and pressure were 1 Pa. Adjust the flow rate of phosphine,
The concentration of phosphorus added to the n-type crystalline silicon layer 4 is 1 × 10
The film thickness was set to 19 atm / cm 3 and the film thickness was set to 100 nm. A protective film 5 made of tin oxide was formed thereon to a thickness of 100 nm.

【0024】[0024]

【表1】 [Table 1]

【0025】上記結果から分かるように、先鋭な凸形状
を有する半導体粒子を用いたときは変換効率が向上する
ために好適である。更に、凸形状の長さが8μm以上
(粒径の1/20)且つ160μm以下(粒径)のと
き、より好適である。
As can be seen from the above results, the use of semiconductor particles having a sharp convex shape is suitable because the conversion efficiency is improved. Further, it is more preferable that the length of the convex shape is 8 μm or more (1/20 of the particle size) and 160 μm or less (particle size).

【0026】次に、平均粒径360μmの結晶質p形シ
リコン粒子の形状を変化させ変換効率を評価した結果を
表2にまとめる。
Next, the results of evaluation of conversion efficiency by changing the shape of crystalline p-type silicon particles having an average particle diameter of 360 μm are summarized in Table 2.

【0027】[0027]

【表2】 [Table 2]

【0028】上記結果から分かるように、先鋭な凸形状
を有する半導体粒子を用いたときに変換効率が向上する
ために好適である。更に、凸形状の長さが18μm以上
(粒径の1/20)且つ360μm以下(粒径)のと
き、より好適である。
As can be seen from the above results, conversion efficiency is improved when semiconductor particles having a sharp convex shape are used. Further, it is more preferable that the length of the convex shape is 18 μm or more (1/20 of the particle size) and 360 μm or less (particle size).

【0029】表1及び表2の結果より、凸形状の長さは
粒径の1/20以上で粒径以下のとき、より好適であ
る。
From the results shown in Tables 1 and 2, it is more preferable that the length of the convex shape is 1/20 or more of the particle diameter and less than or equal to the particle diameter.

【0030】次に、結晶質p形シリコン粒子の粒径を変
化させ変換効率を評価した結果を表3にまとめる。この
シリコン粒子は粒径の1/4の長さの先鋭な凸状部を有
するものを用いた。
Next, Table 3 shows the results of evaluating the conversion efficiency by changing the particle size of the crystalline p-type silicon particles. The silicon particles used had a sharp convex portion having a length of 1/4 of the particle diameter.

【0031】[0031]

【表3】 [Table 3]

【0032】上記結果から分かるように、シリコン粒子
の粒径は100μm以上400μm以下のとき、より好
適である。
As can be seen from the above results, it is more preferable that the particle size of the silicon particles is 100 μm or more and 400 μm or less.

【0033】[0033]

【発明の効果】以上のように、本発明の光電変換装置に
よれば、一方の電極となる基板上に、第1導電形の球状
結晶質半導体粒子を多数配設し、この球状結晶質半導体
粒子間に絶縁物質を介在させ、この球状結晶質半導体粒
子上に第2導電形の半導体層を形成した光電変換装置に
おいて、前記第1導電形の球状結晶質半導体粒子が先鋭
な凸状部を有することにより、高い変換効率が実現でき
る。
As described above, according to the photoelectric conversion device of the present invention, a large number of first-conductivity-type spherical crystalline semiconductor particles are provided on the substrate which is one of the electrodes, and the spherical crystalline semiconductor In a photoelectric conversion device in which an insulating material is interposed between particles and a semiconductor layer of the second conductivity type is formed on the spherical crystalline semiconductor particles, the spherical crystalline semiconductor particles of the first conductivity type have sharp convex portions. With this, high conversion efficiency can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光電変換装置を示す断面図である。FIG. 1 is a cross-sectional view showing a photoelectric conversion device of the present invention.

【図2】従来の光電変換装置を示す断面図である。FIG. 2 is a cross-sectional view showing a conventional photoelectric conversion device.

【図3】従来の他の光電変換装置を示す断面図である。FIG. 3 is a cross-sectional view showing another conventional photoelectric conversion device.

【符号の説明】[Explanation of symbols]

1・・・・基板 2・・・・絶縁物質 3・・・・第1導電形の球状結晶質半導体粒子 4・・・・第2導電形の半導体層 5・・・・保護膜 6・・・・凸状部 7・・・・透明導電層 8・・・・非晶質半導体層 9・・・・低融点金属層 10・・・アルミニウム膜 11・・・鋼基板 12・・・粉砕シリコン粒子 13・・・絶縁体 14・・・n形シリコン部 15・・・透明導電層 1 ... substrate 2 ... Insulating material 3 ... Spherical crystalline semiconductor particles of the first conductivity type 4 ... Second conductivity type semiconductor layer 5 ... Protective film 6 ... Convex part 7 ... Transparent conductive layer 8 ... Amorphous semiconductor layer 9 ... Low melting point metal layer 10 ... Aluminum film 11 ... Steel substrate 12 ... Crushed silicon particles 13 ... Insulator 14 ... n type silicon part 15 ... Transparent conductive layer

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5F051 AA02 AA16 CB02 CB12 DA03 GA02    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 5F051 AA02 AA16 CB02 CB12 DA03                       GA02

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 一方の電極となる基板上に、第1導電形
の球状結晶質半導体粒子を多数配設し、この球状結晶質
半導体粒子間に絶縁物質を介在させ、この球状結晶質半
導体粒子上に第2導電形の半導体層を形成した光電変換
装置において、前記第1導電形の球状結晶質半導体粒子
が凸状部を有することを特徴とする光電変換装置。
1. A large number of spherical crystalline semiconductor particles of the first conductivity type are provided on a substrate to be one of the electrodes, and an insulating substance is interposed between the spherical crystalline semiconductor particles, and the spherical crystalline semiconductor particles are formed. A photoelectric conversion device having a second-conductivity-type semiconductor layer formed thereon, wherein the first-conductivity-type spherical crystalline semiconductor particles have a convex portion.
【請求項2】 前記球状結晶質半導体粒子の凸状部が先
鋭な形状であることを特徴とする請求項1に記載の光電
変換装置。
2. The photoelectric conversion device according to claim 1, wherein the convex portion of the spherical crystalline semiconductor particle has a sharp shape.
【請求項3】 前記凸状部の長さが前記球状結晶質半導
体粒子の粒径の1/20以上且つ粒径以下であることを
特徴とする請求項1乃至2に記載の光電変換装置。
3. The photoelectric conversion device according to claim 1, wherein the length of the convex portion is 1/20 or more and not more than the particle diameter of the spherical crystalline semiconductor particles.
【請求項4】 前記球状結晶質半導体粒子の粒径が10
0μm以上400μm以下であることを特徴とする請求
項1乃至2に記載の光電変換装置。
4. The particle size of the spherical crystalline semiconductor particles is 10.
3. The photoelectric conversion device according to claim 1, wherein the photoelectric conversion device has a thickness of 0 μm or more and 400 μm or less.
【請求項5】 前記球状結晶質半導体粒子がシリコンで
あることを特徴とする請求項1乃至2に記載の光電変換
装置。
5. The photoelectric conversion device according to claim 1, wherein the spherical crystalline semiconductor particles are silicon.
JP2001195877A 2001-06-28 2001-06-28 Photo-electric conversion device Withdrawn JP2003017719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001195877A JP2003017719A (en) 2001-06-28 2001-06-28 Photo-electric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001195877A JP2003017719A (en) 2001-06-28 2001-06-28 Photo-electric conversion device

Publications (1)

Publication Number Publication Date
JP2003017719A true JP2003017719A (en) 2003-01-17

Family

ID=19033783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001195877A Withdrawn JP2003017719A (en) 2001-06-28 2001-06-28 Photo-electric conversion device

Country Status (1)

Country Link
JP (1) JP2003017719A (en)

Similar Documents

Publication Publication Date Title
US6563041B2 (en) Photoelectric conversion device
JP4693492B2 (en) Photoelectric conversion device and photovoltaic device using the same
JP2003017719A (en) Photo-electric conversion device
JP6151566B2 (en) SOLAR CELL, MANUFACTURING METHOD THEREOF, AND SOLAR CELL MODULE
JP2001313401A (en) Photoelectric conversion device
JP4570255B2 (en) Photoelectric conversion device
JP4869196B2 (en) Rotating diffusion device and method for manufacturing photoelectric conversion device
JP4666734B2 (en) Photoelectric conversion device
JP4693505B2 (en) Photoelectric conversion device and photovoltaic device using the same
JP2007208049A (en) Photoelectric converter, manufacturing method thereof, and optical generator
JP2006156584A (en) Method of spreading impurity in crystal silicon particle, photoelectric converter and photovoltaic generator
JP2002016272A (en) Photoelectric conversion device
JP4540177B2 (en) Method for manufacturing photoelectric conversion device
JP2002329876A (en) Method for manufacturing photoelectric conversion apparatus
JP4570235B2 (en) Photoelectric conversion device
JP4243495B2 (en) Method for manufacturing photoelectric conversion device
JP2003158278A (en) Photoelectric convertor and its manufacturing method
JP2002261304A (en) Method for manufacturing photoelectric converter
JP2002261301A (en) Photoelectric converter
JP2003218369A (en) Photoelectric conversion device
JP4869194B2 (en) Crystalline silicon particle manufacturing method and photoelectric conversion device manufacturing method
JP2001339085A (en) Photoelectric conversion device
JP2002043604A (en) Photoelectric converter
JP2001345462A (en) Photoelectric converter
JP2004200513A (en) Photoelectric converter and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080118

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090909