JPH06140651A - Solar cell module - Google Patents

Solar cell module

Info

Publication number
JPH06140651A
JPH06140651A JP4289140A JP28914092A JPH06140651A JP H06140651 A JPH06140651 A JP H06140651A JP 4289140 A JP4289140 A JP 4289140A JP 28914092 A JP28914092 A JP 28914092A JP H06140651 A JPH06140651 A JP H06140651A
Authority
JP
Japan
Prior art keywords
layer
solar cell
cell module
conductive adhesive
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4289140A
Other languages
Japanese (ja)
Inventor
Soichiro Kawakami
総一郎 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP4289140A priority Critical patent/JPH06140651A/en
Publication of JPH06140651A publication Critical patent/JPH06140651A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To provide a solar cell module which is stable against an outdoor environment and a thermal stress given by a temperature cycle test, etc., has a bending strength and has a large power-generating region. CONSTITUTION:At least a semiconductor layer 101 which is a photoelectric conversion layer, a transparent conductive layer 101 and a collector electrode 101 are formed on a conductive substrate 100 to form a photosensor 106. A solar cell module is composed of a plurality of the photosensor 106 connected to each other. The photosensors 106 are connected to each other in series with conductive adhesive 103 whose glass transition temperature is not higher than -5 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、太陽電池モジュールに
係わり、より詳細には導電性基体上に形成した光起電力
素子を複数個直並列化した太陽電池モジュールに関し、
特に直列化した太陽電池モジュールに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solar cell module, and more particularly to a solar cell module in which a plurality of photovoltaic elements formed on a conductive substrate are arranged in series.
In particular, it relates to a serialized solar cell module.

【0002】[0002]

【従来の技術】最近、CO2の増加による温室効果で地
球の温暖化が生じることが予測され、クリーンなエネル
ギーの要求がますます高まっている。また、CO2を排
出しない原子力発電も、依然として放射性廃棄物処理の
問題が解決されておらず、より安全性の高いクリーンな
エネルギーが望まれている。
2. Description of the Related Art Recently, it is predicted that the greenhouse effect due to an increase in CO 2 will cause global warming, and the demand for clean energy is increasing more and more. Further, nuclear power generation that does not emit CO 2 has not solved the problem of radioactive waste treatment, and safer and cleaner energy is desired.

【0003】将来期待されているクリーンなエネルギー
の中でも、特に太陽電池はそのクリーンさと安全性と取
扱い易さから期待が大きい。各種太陽電池の中で、非晶
質シリコンや多結晶シリコン等のシリコン半導体及び銅
インジウムセレナイド等の化合物半導体は、薄膜で大面
積に製造でき、製造コストも安価になると予想され、熱
心に研究されている。
Among the clean energies expected in the future, solar cells are especially expected to be clean, safe and easy to handle. Among various solar cells, silicon semiconductors such as amorphous silicon and polycrystalline silicon and compound semiconductors such as copper indium selenide are expected to be able to be manufactured in a large area with a thin film, and the manufacturing cost is expected to be low. Has been done.

【0004】更に、薄膜太陽電池の中でも、耐候性、耐
衝撃性、可とう性に優れていることから、基体材にステ
ンレス等の導電性基体を用いる場合がある。導電性基体
上に形成した光起電力素子を直並列接続する場合は、従
来、図6に示すように良導体の配線材をスポット溶接や
ハンダで接続していたが、接続配線などの発電不能な領
域が増え、そのために太陽電池モジュールの単位面積当
たりの出力を低下する要因になっていた。図6(a)
は、複数の光起電力素子を良導体の配線材で直列接続し
たもので、表面被覆する前のものの平面図である。図6
(b)、(c)及び(d)は、それぞれ図6(a)のA
−A’、B−B’、C−C’で切断した場合の概略断面
図である。図6において、600は下部電極を兼用した
導電性基体であるステンレス基板、601は半導体層と
透明導電層、602は透明導電層をエッチング除去した
光起電力素子の周辺部、603は集電電極、604はバ
スバー、605は透明導電層とバスバーとの絶縁するた
めの絶縁材、606は良導体の配線材、607はハン
ダ、608は光起電力素子部、609はバスバーと導電
性基体との溶接部である。
Further, among the thin film solar cells, a conductive base material such as stainless steel may be used as the base material because it has excellent weather resistance, impact resistance and flexibility. When the photovoltaic elements formed on the conductive substrate are connected in series and parallel, conventionally, a good conductor wiring material was connected by spot welding or solder as shown in FIG. The area has increased, which has been a factor of reducing the output per unit area of the solar cell module. Figure 6 (a)
[FIG. 4] is a plan view of a plurality of photovoltaic elements connected in series with a wiring material having a good conductor and before surface coating. Figure 6
(B), (c) and (d) are A of FIG. 6 (a), respectively.
It is a schematic sectional drawing at the time of cutting in -A ', BB', and CC '. In FIG. 6, 600 is a stainless steel substrate which is a conductive substrate that also serves as a lower electrode, 601 is a semiconductor layer and a transparent conductive layer, 602 is a peripheral portion of a photovoltaic element in which the transparent conductive layer is removed by etching, and 603 is a collector electrode. , 604 is a bus bar, 605 is an insulating material for insulating the transparent conductive layer from the bus bar, 606 is a wiring material of a good conductor, 607 is solder, 608 is a photovoltaic element portion, 609 is a welding of the bus bar and the conductive substrate. It is a department.

【0005】図6の太陽電池モジュールは、例えば次の
ようにして作製される。まず導電性基体上600に光電
変換部材としての半導体層と透明導電層601を順次形
成した後、透明導電層を所望のパターンにエッチング除
去し複数個の発電領域に素子分離する。続いて、集電電
極603を形成して、透明導電層のエッチングされた箇
所602の一部を切断し、バスバーを引き出す箇所の素
子端部を絶縁材605で絶縁し、バスバー604を接続
して、光起電力素子を作製する。次に、複数個の光起電
力素子の非発電領域に良導体の配線材606を溶接など
の方法で接続した後、隣の光起電力素子のバスバーと良
導体の配線材をハンダ607などで接続して、直列化し
た太陽電池モジュールを作製する。
The solar cell module shown in FIG. 6 is manufactured, for example, as follows. First, a semiconductor layer as a photoelectric conversion member and a transparent conductive layer 601 are sequentially formed on a conductive substrate 600, and then the transparent conductive layer is removed by etching into a desired pattern to separate elements into a plurality of power generation regions. Subsequently, a collector electrode 603 is formed, a part of the etched portion 602 of the transparent conductive layer is cut, the element end portion of the portion where the bus bar is pulled out is insulated with an insulating material 605, and the bus bar 604 is connected. , Manufacture a photovoltaic element. Next, after connecting the wiring material 606 of a good conductor to the non-power generation region of the plurality of photovoltaic elements by a method such as welding, the bus bar of the adjacent photovoltaic element and the wiring material of a good conductor are connected by the solder 607 or the like. Then, a serialized solar cell module is manufactured.

【0006】接続を溶接で行う方法は、溶接部を光起電
力素子の発電部と素子分離した非発電部の箇所にとる必
要がある。これに対して、接続配線領域などの発電不能
な領域を低減するために、導電性接着剤あるいはハンダ
を用いて直接接続する方法が提案されているが、温度サ
イクル試験のような熱ストレスには弱く、また曲げにも
弱いため、長期間屋外環境下で安定に太陽電池としての
性能を発揮することができないのが現状である。
[0006] In the method of connecting by welding, it is necessary to make a welded portion at a non-power generation portion where the power generation portion of the photovoltaic element is separated from the element. On the other hand, in order to reduce the non-power generation area such as the connection wiring area, a method of directly connecting with a conductive adhesive or solder has been proposed. Since it is weak and weak against bending, it is the current situation that it cannot stably exhibit the performance as a solar cell in an outdoor environment for a long time.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上述の従来
の欠点を解決し、温度サイクル試験などによる熱ストレ
スに安定で、しかも曲げに強い太陽電池モジュールを提
供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned conventional drawbacks and to provide a solar cell module which is stable against thermal stress due to a temperature cycle test and which is resistant to bending.

【0008】[0008]

【課題を解決するための手段】本発明の太陽電池モジュ
ールは、導電性基体上に少なくとも光電変換層としての
半導体層、透明導電層及び集電電極が形成された光起電
力素子を複数個接続して構成される太陽電池モジュール
であって、ガラス転移温度が−5℃以下の導電性接着剤
を用いて前記光起電力素子を直並列接統したことを特徴
とする。
In the solar cell module of the present invention, a plurality of photovoltaic elements in which at least a semiconductor layer as a photoelectric conversion layer, a transparent conductive layer and a collector electrode are formed on a conductive substrate are connected. In the solar cell module configured as described above, the photovoltaic elements are connected in series and in parallel using a conductive adhesive having a glass transition temperature of −5 ° C. or lower.

【0009】[0009]

【作用】本発明者は、導電性接着剤による接続方法を鋭
意検討した結果、温度サイクル等熱ストレスに伴う太陽
電池モジュールの性能低下は、導電性接着剤の接続部に
発生するクラックによる接触抵抗の急激な増加に起因す
ること、また曲げ試験等外力の作用に伴う太陽電池の出
力低下は導電性基体と導電性接着剤との剥離に起因する
ことを見いだした。本発明者はこれらの知見を基に更に
検討を進めることにより、ガラス転移温度が−5℃以下
の導電性接着剤を用いることにより、温度サイクルに対
してもクラックを発生せず、しかも曲げに対しても強く
剥離しない極めて付着力の高い接着が可能となることが
分かり、本発明の完成に至ったものである。
The present inventor has conducted extensive studies on the connection method using the conductive adhesive, and as a result, the deterioration of the performance of the solar cell module due to thermal stress such as temperature cycle is caused by the contact resistance due to cracks generated at the connection portion of the conductive adhesive. It was found that the decrease in the output of the solar cell due to the action of external force such as the bending test is caused by the peeling between the conductive substrate and the conductive adhesive. The present inventor has further studied based on these findings, and by using a conductive adhesive having a glass transition temperature of −5 ° C. or less, cracks do not occur even in a temperature cycle, and moreover, bending does not occur. It has been found that it becomes possible to perform adhesion with extremely high adhesiveness, which does not cause strong peeling even with respect to the present invention, thus completing the present invention.

【0010】即ち、本発明の太陽電池モジュールは、導
電性基体上に少なくとも光電変換層としての半導体層、
透明導電層及び集電電極が形成された光起電力素子を複
数個接続して構成される太陽電池モジュールであって、
ガラス転移温度が−5℃以下の導電性接着剤を用いて前
記光起電力素子を直並列接続したものである。ガラス転
移温度が−5℃以下の導電性接着剤を用いることによ
り、熱ストレスに強い太陽電池モジュールが作製可能と
なり、その結果、長期間過酷な環境条件でも安定な性能
を維持できる太陽電池モジュールを提供することが可能
となる。また、大きな曲げ強度を有する太陽電池が作製
できるため、種々の曲面を持つ場所にも設置が可能とな
る。
That is, the solar cell module of the present invention comprises a conductive substrate, at least a semiconductor layer as a photoelectric conversion layer,
A solar cell module configured by connecting a plurality of photovoltaic elements having a transparent conductive layer and a collecting electrode,
The photovoltaic elements are connected in series and parallel using a conductive adhesive having a glass transition temperature of -5 ° C or lower. By using a conductive adhesive having a glass transition temperature of −5 ° C. or less, a solar cell module that is resistant to heat stress can be manufactured, and as a result, a solar cell module that can maintain stable performance even under long-term harsh environmental conditions. It becomes possible to provide. Further, since a solar cell having a large bending strength can be manufactured, it can be installed in a place having various curved surfaces.

【0011】図1は、本発明の太陽電池モジュールの概
略断面図の一例である。図1において、100は導電性
基体、101は光電変換層としての半導体層、透明導電
層、及び集電電極からなる層、103はガラス転移温度
が−5℃以下の導電性接着剤、104は表面被覆層、1
05は補強材、106は光電変換素子である。導電性基
体100と半導体層の間に、下部電極、裏面反射層等か
らなる裏面電極層を設けてもよい。
FIG. 1 is an example of a schematic sectional view of a solar cell module of the present invention. In FIG. 1, 100 is a conductive substrate, 101 is a layer composed of a semiconductor layer as a photoelectric conversion layer, a transparent conductive layer, and a collector electrode, 103 is a conductive adhesive having a glass transition temperature of −5 ° C. or lower, and 104 is Surface coating layer, 1
Reference numeral 05 is a reinforcing material, and 106 is a photoelectric conversion element. A back electrode layer composed of a lower electrode, a back reflection layer, etc. may be provided between the conductive substrate 100 and the semiconductor layer.

【0012】複数個の光起電力素子106の直列接続す
る箇所の集電電極103上に、ガラス転移温度が−5℃
以下の導電性接着剤103を塗布した後、接続する相手
側の光起電力素子の導電性基体側を張り付け、導電性接
着剤を硬化させて直列接続を行う。(並列化は、良導体
を上記導電性接着剤で接着して並列化を行う。)本発明
のガラス転移温度が−5℃以下の導電性接着剤は、導電
体とバインダーとなる樹脂を含むものである。該導電体
としては、例えば銀、金、銅、ニッケル、炭素化合物等
の微粉末、各種金属をメッキした微粒子などの微粉末が
挙げられ、その形状は、0.1〜10ミクロンの径の球
状あるいはフレーク状あるいは球状とフレーク状の混合
体が好ましい。導電性接着剤に含まれるバインダーとし
ての樹脂は、例えば加熱硬化性樹脂、常温硬化性樹脂、
2液反応性樹脂、熱可塑性樹脂、ホットメルト樹脂など
が用いられ、より具体的にはエポキシ樹脂、ポリエステ
ル樹脂、ポリウレタン樹脂、アクリル樹脂、ポリアミド
樹脂、フェノール樹脂、シリコーン樹脂、各種ゴムなど
が挙げられる。そのほか、導電性接着剤には、分散剤、
滑剤、補強剤、溶剤などが適宜添加される。導電性接着
剤の体積抵抗は、10-4Ω・cm以下であることが好ま
しい。
A glass transition temperature of −5 ° C. is set on the collector electrode 103 at a location where a plurality of photovoltaic elements 106 are connected in series.
After applying the conductive adhesive 103 described below, the conductive base side of the photovoltaic element on the other side to be connected is attached, and the conductive adhesive is cured to perform series connection. (For parallelization, good conductors are adhered with the above conductive adhesive for parallelization.) The conductive adhesive having a glass transition temperature of -5 ° C or lower according to the present invention contains a conductor and a resin serving as a binder. . Examples of the conductor include fine powders of silver, gold, copper, nickel, carbon compounds and the like, fine powders of fine particles plated with various metals, and the shape thereof is spherical with a diameter of 0.1 to 10 microns. Alternatively, flakes or a mixture of spherical and flakes is preferable. The resin as a binder contained in the conductive adhesive is, for example, a thermosetting resin, a room temperature curable resin,
Two-component reactive resin, thermoplastic resin, hot melt resin, etc. are used, and more specifically, epoxy resin, polyester resin, polyurethane resin, acrylic resin, polyamide resin, phenol resin, silicone resin, various rubbers and the like can be mentioned. . In addition, the conductive adhesive includes a dispersant,
Lubricants, reinforcing agents, solvents and the like are added as appropriate. The volume resistance of the conductive adhesive is preferably 10 −4 Ω · cm or less.

【0013】本発明に用いる導電性基体100には、カ
ーボンファイバー、黒鉛シート、ステンレススチール,
アルミニウム,銅,チタン,鉄,亜鉛メッキ鋼板,等が
挙げられる。本発明の光起電力素子の裏面電極層として
は、金属層あるいは金属酸化物、あるいは金属層と金属
酸化物層の複合層が用いられる。金属層の材質として
は、Ti,Cr,Mo,W,Al,Ag,Niなどが用
いられ、金属酸化物層としてZnO,TiO2,SnO2
などが採用される。該金属層および金属酸化物層の形成
方法としては抵抗加熱蒸着,電子ビーム蒸着,スパッタ
リング法などが用いられる。
The conductive substrate 100 used in the present invention includes carbon fiber, graphite sheet, stainless steel,
Examples include aluminum, copper, titanium, iron, galvanized steel sheets, and the like. A metal layer, a metal oxide, or a composite layer of a metal layer and a metal oxide layer is used as the back electrode layer of the photovoltaic element of the present invention. As the material of the metal layer, Ti, Cr, Mo, W, Al, Ag, Ni or the like is used, and as the metal oxide layer, ZnO, TiO 2 , SnO 2 is used.
Are adopted. As a method for forming the metal layer and the metal oxide layer, resistance heating vapor deposition, electron beam vapor deposition, sputtering method and the like are used.

【0014】本発明の光起電力素子の半導体層101に
は、非晶質シリコン、結晶シリコン、銅インジウムセレ
ナイド(CuInSe2/CdS)などの化合物半導体
が適当である。非晶質シリコンの場合は、例えばシラン
ガスなどをプラズマCVD法により分解形成され、多結
晶シリコンの場合は、例えば溶融シリコンのシート化あ
るいは非晶質シリコンの熱処理により形成することがで
きる。また、CuInSe2/CdSの場合は、例えば
電子ビーム蒸着やスパッタリング,電析(電解液の電気
分解による析出)などの方法で形成することができる。
半導体層の構成としては、pin接合、pn接合、ショ
ットキー型接合等が用いられる。該半導体層は、少なく
とも導電性基体と透明導電層にサンドイッチされた構造
になっている。
Compound semiconductors such as amorphous silicon, crystalline silicon, and copper indium selenide (CuInSe 2 / CdS) are suitable for the semiconductor layer 101 of the photovoltaic element of the present invention. In the case of amorphous silicon, for example, silane gas or the like is decomposed and formed by a plasma CVD method, and in the case of polycrystalline silicon, for example, it can be formed by forming a sheet of molten silicon or by heat treatment of amorphous silicon. Further, in the case of CuInSe 2 / CdS, it can be formed by a method such as electron beam evaporation, sputtering, and electrodeposition (deposition by electrolytic decomposition of an electrolytic solution).
As the structure of the semiconductor layer, a pin junction, a pn junction, a Schottky type junction, or the like is used. The semiconductor layer has a structure sandwiched at least between a conductive substrate and a transparent conductive layer.

【0015】光起電力素子の透明導電層としては、In
23,SnO2,In23−SnO2(ITO),Zn
O,TiO2,Cd2SnO4,高濃度不純物ドープした
結晶性半導体層などがあり、抵抗加熱蒸着,電子ビーム
蒸着,スパッタリング法,スプレー法,CVD法,不純
物拡散などを適宜用いて形成することができる。本発明
の光起電力素子の集電電極103を形成する材料として
は、Ti、Cr、Mo、W、Al、Ag、Ni、Cu、
Sn及び銀ペーストなどの導電性ペーストが用いられ
る。集電電極の形成方法には、マスクパターンを用いた
スパッタリング、抵抗加熱、CVDの蒸着方法、あるい
は全面に金属層を蒸着した後にエッチングしてパターニ
ングする方法、光CVDにより直接集電電極パターンを
形成する方法、グリッド電極バターンのネガパターンの
マスクを形成した後にメッキにより形成する方法、導電
性ペーストを印刷して形成する方法などがある。導電性
ペーストは、通常微粉末状の銀、金、銅、ニッケル、カ
ーボンなどをバインダーポリマーと分散させたものが使
用される。バインダーポリマーとしては、ポリエステ
ル、エポキシ、アクリル、アルキド、ポリビニルアセテ
ート、ゴム、ウレタン、フェノール等の樹脂が用いられ
るが、もちろん、集電電極をガラス転移温度が−5℃以
下の導電性接着剤104と同一の材料で形成してもよ
く、この場合には工程数が削減されるという利点もあ
る。
The transparent conductive layer of the photovoltaic element is In
2 O 3 , SnO 2 , In 2 O 3 —SnO 2 (ITO), Zn
O, TiO 2 , Cd 2 SnO 4 , high-concentration impurity-doped crystalline semiconductor layer, etc., and should be formed by using resistance heating vapor deposition, electron beam vapor deposition, sputtering method, spray method, CVD method, impurity diffusion, etc. You can Examples of the material forming the collector electrode 103 of the photovoltaic element of the present invention include Ti, Cr, Mo, W, Al, Ag, Ni, Cu,
A conductive paste such as Sn and silver paste is used. As a method of forming the collecting electrode, sputtering using a mask pattern, resistance heating, a vapor deposition method of CVD, a method of depositing a metal layer on the entire surface and then etching and patterning it, and a direct collecting electrode pattern is formed by photo-CVD. Method, a method of forming by plating after forming a negative pattern mask of the grid electrode pattern, a method of printing by forming a conductive paste, and the like. The conductive paste is usually a fine powder of silver, gold, copper, nickel, carbon, or the like dispersed in a binder polymer. As the binder polymer, resins such as polyester, epoxy, acrylic, alkyd, polyvinyl acetate, rubber, urethane, and phenol are used. Of course, the current collecting electrode is used as a conductive adhesive 104 having a glass transition temperature of −5 ° C. or lower. They may be formed of the same material, and in this case, there is an advantage that the number of steps is reduced.

【0016】本発明の光起電力素子の表面保護層104
は、フッ素樹脂フィルムを接着層を介してラミネートす
る方法、フッ素樹脂塗料、シリコン樹脂塗料及びアクリ
ルシリコン樹脂塗料などの塗料を塗布コーティングする
方法、透明な無機酸化物をコーティングする方法、ある
いは上記塗料と上記無機コーティングを併用する方法等
を用いて形成される。
The surface protective layer 104 of the photovoltaic element of the present invention
Is a method of laminating a fluororesin film via an adhesive layer, a method of applying a coating such as a fluororesin paint, a silicone resin paint and an acrylic silicone resin paint, a method of coating a transparent inorganic oxide, or the above-mentioned paint. It is formed using a method of using the above inorganic coating in combination.

【0017】フッ素樹脂フィルムとしては、例えばET
FE(四フッ化エチレン−エチレン共重合体),PCT
FE(三フッ化塩化エチレン樹脂),PFA(四フッ化
エチレン−パーフルオロアルキルビニルエーテル共重合
体),FEP(四フッ化エチレン−六フッ化プロピレン
共重合体),PVDF(フッ化ビリニデン樹脂),PV
F(フッ化ビニル樹脂)などを使用する。フッ素樹脂フ
ィルムの接着層としては、酢酸ビニル−エチレン共重合
体(EVA)、PVB(ポリビニルブチラール)、シリ
コン樹脂、エポキシ樹脂、フッ素化ポリイミド樹脂、ア
クリル樹脂などの透明な樹脂を主成分とする接着剤を使
用する。該接着剤には、架橋剤が含有され、接着剤の光
劣化を抑制するために、紫外線吸収剤が含有されている
ことが望ましい。さらに、太陽電池モジュールの光電変
換効率の低下を少なくするために、上記接着剤層の光透
過率は、400ナノメートル以上の波長領域で、80%
以上であることが好ましい。また、入射光の反射を少な
くするためには、接着剤層の屈折率が、1.4〜2.0
の範囲であることが好ましい。
As the fluororesin film, for example, ET
FE (tetrafluoroethylene-ethylene copolymer), PCT
FE (trifluorochloroethylene resin), PFA (tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer), FEP (tetrafluoroethylene-hexafluoropropylene copolymer), PVDF (vinylidene fluoride resin), PV
F (vinyl fluoride resin) or the like is used. As the adhesive layer of the fluororesin film, an adhesive containing a transparent resin such as vinyl acetate-ethylene copolymer (EVA), PVB (polyvinyl butyral), silicon resin, epoxy resin, fluorinated polyimide resin, acrylic resin as a main component. Use agents. It is desirable that the adhesive contains a crosslinking agent and an ultraviolet absorber in order to suppress photodegradation of the adhesive. Furthermore, in order to reduce the decrease in photoelectric conversion efficiency of the solar cell module, the light transmittance of the adhesive layer is 80% in the wavelength region of 400 nm or more.
The above is preferable. Further, in order to reduce reflection of incident light, the refractive index of the adhesive layer is 1.4 to 2.0.
It is preferably in the range of.

【0018】また、本発明の太陽電池モジュールの補強
材105として、裏面に、絶縁被覆した金属板、ガラス
やセラミック板、樹脂板などを接着剤などを介して設け
てもよい。さらに、裏面も前記表面被覆材で被覆しても
よい。
Further, as the reinforcing member 105 of the solar cell module of the present invention, a metal plate, a glass or ceramic plate, a resin plate, etc., which are insulation-coated, may be provided on the back surface via an adhesive or the like. Further, the back surface may be coated with the surface coating material.

【0019】[0019]

【実施例】以下、実施例を挙げて本発明を詳細に説明す
る。なお、本発明はこれらの実施例に限定されるもので
はない。 (実施例1)図3の構成の太陽電池モジュールを以下の
ようにして作製した。
EXAMPLES The present invention will be described in detail below with reference to examples. The present invention is not limited to these examples. (Example 1) A solar cell module having the structure shown in Fig. 3 was produced as follows.

【0020】光起電力素子の作製 半導体層にアモルファスシリコン(a−Si)を採用し
た光起電力素子を作製した。以下、図2にて、作製手順
を追って説明する。洗浄した0.125mm厚のステン
レス基体200上に、スパッタ法によって導電体層の裏
面電極205として、Al膜厚5000A、ZnO膜厚
5000Aを順次形成した。ついで、プラズマCVD法
によりSiH4とPH3とH2からn型a−Si層を、S
iH4とH2からi型a−Si層を、SiH4とBF3とH
2からp型微結晶μc−Si層を形成し、n層膜厚15
0A/i層膜厚4000A/p層膜厚100A/n層膜
厚100A/i層膜厚800A/p層膜厚100Aの積
層構成の光電変換層201を形成した。次に、透明導電
層202として膜厚700AのIn23をO2雰囲気下
でInを抵抗加熱法で蒸着することによって形成した。
更に,In23のエッチング剤(FeCl3,HCl)
含有ペーストのスクリーン印刷によりIn23層の一部
を除去し、各光起電力素子に分離した。次に、Dupo
nt Inc.製銀ペースト#5007をスクリーン印
刷機で格子状に印刷した後、125℃で熱処理をして集
電電極203を形成し、ついで素子分離のために透明導
電層の除去部を切断して複数個のアモルファスシリコン
光起電力素子を作製した。
Preparation of Photovoltaic Element A photovoltaic element having amorphous silicon (a-Si) as a semiconductor layer was prepared. The manufacturing procedure will be described below with reference to FIG. On the cleaned stainless steel substrate 200 having a thickness of 0.125 mm, an Al film thickness of 5000 A and a ZnO film thickness of 5000 A were sequentially formed as a back surface electrode 205 of the conductor layer by a sputtering method. Then, an n-type a-Si layer is formed from SiH 4 , PH 3 and H 2 by a plasma CVD method, and S
i-type a-Si layer from iH 4 and H 2 , SiH 4 and BF 3 and H
2 to form a p-type microcrystalline μc-Si layer, and an n-layer film thickness of
A photoelectric conversion layer 201 having a laminated structure of 0 A / i layer thickness 4000 A / p layer thickness 100 A / n layer thickness 100 A / i layer thickness 800 A / p layer thickness 100 A was formed. Next, as the transparent conductive layer 202, In 2 O 3 having a film thickness of 700 A was formed by vapor-depositing In in an O 2 atmosphere by a resistance heating method.
Furthermore, In 2 O 3 etchant (FeCl 3 , HCl)
A part of the In 2 O 3 layer was removed by screen printing of the contained paste, and the photovoltaic element was separated. Next, Dupo
nt Inc. After printing the silver-making paste # 5007 in a grid pattern by a screen printing machine, heat treatment at 125 ° C. is performed to form the collector electrode 203, and then the removed portion of the transparent conductive layer is cut to separate the elements to separate elements. The amorphous silicon photovoltaic element of was produced.

【0021】直列化 上記方法で作製した光起電力素子を複数個使用して、所
望の起電圧になるように図3の構成で接続して、直列化
した。図3において、300はステンレス基板、301
はアモルファスシリコン半導体層、302はIn2
3層、303はDupont Inc.製銀ペースト#
5007で形成した集電電極、304はA.I.TEC
HNOLOGY.INCの異方導電接着剤#LZTP8
658(ガラス転移温度−55℃)、305はAl/Z
nOの裏面電極層、307は光起電力素子である。
Serialization A plurality of photovoltaic elements manufactured by the above method were used and connected in the configuration of FIG. 3 so as to obtain a desired electromotive voltage, and serialized. In FIG. 3, 300 is a stainless steel substrate, 301
Is an amorphous silicon semiconductor layer, 302 is In 2 O
3 layers, 303 is Dupont Inc. Silver paste #
The current collecting electrode formed of 5007, 304 is A. I. TEC
HNOLOGY. INC anisotropic conductive adhesive # LZTP8
658 (glass transition temperature -55 ° C), 305 is Al / Z
A back electrode layer 307 of nO is a photovoltaic element.

【0022】上記方法で作製した光起電力素子の光入射
側表面端部に、A.I.TECHNOLOGY.INC
の銀系異方導電接着剤#LZTP8658(ガラス転移
温度−55℃)をディスペンサーで塗布し、図3のよう
に隣合う13枚の光起電力素子307の端部を重ねた
後、5psiの圧力を印加したまま180℃10分間加
熱した後、冷却して直列接続した。
At the light incident side surface end of the photovoltaic element manufactured by the above method, A. I. TECHNOLOGY. INC
Silver anisotropic conductive adhesive # LZTP8658 (glass transition temperature −55 ° C.) is applied with a dispenser, and the end portions of 13 adjacent photovoltaic elements 307 are overlapped as shown in FIG. After heating at 180 ° C. for 10 minutes with the voltage applied, it was cooled and connected in series.

【0023】表面被覆 最後に、上記方法で直列接続した光起電力素子を、光入
射側からETFEフイルム/EVA/直列接続した光起
電力素子/EVA/絶縁処理した亜鉛鋼板の順に重ねた
後、真空ラミネーターに入れ1Torr程度に真空排気
し、大気圧で圧力をかけ、140℃、30min、加熱
して表面被覆を行い太陽電池モジュールを作製した。た
だし、太陽電池モジュールの出力端子は、あらかじめ背
面材の亜鉛鋼板に出力端子用の孔を開けておいて取り出
した。
Surface coating Finally, after stacking the photovoltaic elements connected in series by the above method in the order of ETFE film / EVA / photovoltaic elements connected in series / EVA / insulated zinc steel sheet from the light incident side, It was placed in a vacuum laminator, evacuated to about 1 Torr, and pressurized at atmospheric pressure, heated at 140 ° C. for 30 minutes to coat the surface, and a solar cell module was produced. However, the output terminal of the solar cell module was taken out by previously forming a hole for the output terminal in the zinc steel plate of the back material.

【0024】評価試験 −40℃〜+90℃の温度サイクル試験を50サイクル
行った後、直径30cmのシリンダーに巻き付ける曲げ
試験を行い、試験前後の太陽電池の出力特性を比較し
た。上記方法で作製した本実施例の太陽電池モジュール
の試験後の出力低下は2、3%以下でほとんど認められ
なかった。
Evaluation test After a temperature cycle test of −40 ° C. to + 90 ° C. was performed for 50 cycles, a bending test of winding around a cylinder having a diameter of 30 cm was performed to compare the output characteristics of the solar cells before and after the test. The decrease in output after the test of the solar cell module of the present example produced by the above method was hardly observed at a few% or less.

【0025】(実施例2)実施例1と同様の方法で図4
に示した直列化構造の太陽電池モジュールを作製した。
本実施例では、図4に示すように光起電力素子の直列接
続する箇所の端面を絶縁材406で被覆し絶縁処理し
て、導電性接着剤がはみ出して光起電力素子の上下の電
極が短絡して直列化時の起電圧の低下を防ぐようにし
た。
(Embodiment 2) In the same manner as in Embodiment 1, FIG.
The solar cell module having the serialized structure shown in was produced.
In this embodiment, as shown in FIG. 4, the end faces of the photovoltaic elements connected in series are covered with an insulating material 406 for insulation treatment, and the conductive adhesive is squeezed out so that the upper and lower electrodes of the photovoltaic element are exposed. A short circuit was made to prevent a decrease in electromotive voltage during serialization.

【0026】図4において、400はステンレス基板、
401はアモルファスシリコン半導体層、402はIn
23層、403はDupont.Inc製銀ペースト#
5007で形成した集電電極、404はA.I.TEC
HNOLOGY,INCの銀系導電接着剤#LTP86
50(ガラス転移温度−55℃)、405はAl/Zn
Oの裏面電極層、406は絶縁層(ポリイミド樹脂)、
407は光起電力素子である。
In FIG. 4, 400 is a stainless steel substrate,
401 is an amorphous silicon semiconductor layer, 402 is In
2 O 3 layer, 403 is Dupont. Inc silver paste #
The current collecting electrode formed of 5007, 404 is A. I. TEC
HNOLOGY, INC silver-based conductive adhesive # LTP86
50 (glass transition temperature −55 ° C.), 405 is Al / Zn
O back electrode layer, 406 is an insulating layer (polyimide resin),
Reference numeral 407 is a photovoltaic element.

【0027】実施例1と同様にして作製した光起電力素
子407の直列化で重ね合わせる箇所の少なくとも一方
をポリイミド樹脂406で絶縁した後、光起電力素子の
重ね合わせる部分に、ディスペンサーでA.I.TEC
HNOLOGY.INCの導電接着剤#LTP8650
(404)を塗布し、5psiの圧力で圧着し昇温して
200℃で10分間熱処理し、冷却し直列化した。
After the photovoltaic element 407 manufactured in the same manner as in Example 1 is insulated with the polyimide resin 406 at least one of the overlapping points by serialization, the A.P. I. TEC
HNOLOGY. INC conductive adhesive # LTP8650
(404) was applied, pressure-bonded at a pressure of 5 psi, heated to heat at 200 ° C. for 10 minutes, cooled, and serialized.

【0028】表面被覆は実施例1と同様にして、太陽電
池モジュールを作製した。実施例1と同様の評価試験を
行った結果、本実施例で作製した太陽電池モジュールの
試験後の出力低下は4%以下であり、ほとんど劣化は認
められなかった。 (実施例3)図5に示した直列化構造の太陽電モジュー
ルを作製した。本実施例では、集電電極の材料に直列接
続の導電性接着剤の材料と同一の材料を用いた。
The surface coating was carried out in the same manner as in Example 1 to prepare a solar cell module. As a result of performing the same evaluation test as in Example 1, the output decrease after the test of the solar cell module manufactured in this example was 4% or less, and almost no deterioration was observed. (Example 3) A solar power module having a serial structure shown in FIG. 5 was produced. In this example, the same material as the material of the conductive adhesive for serial connection was used for the material of the current collecting electrode.

【0029】図5において、500はステンレス基板、
501はアモルファスシリコン半導体層、502はIn
23層、504はA.I.TECHNOLOGY.IN
Cの銀系導電接着剤#ME8452−A(ガラス転移温
度−25℃)形成した集電電極、505はAl/ZnO
の裏面電極層、506は絶縁層(ポリイミド樹脂)、5
07は光起電力素子である。
In FIG. 5, 500 is a stainless steel substrate,
501 is an amorphous silicon semiconductor layer, 502 is In
2 O 3 layer, 504 is A. I. TECHNOLOGY. IN
Current collecting electrode formed with silver-based conductive adhesive # ME8452-A (glass transition temperature -25 ° C) of C, 505 is Al / ZnO
Back electrode layer, 506 is an insulating layer (polyimide resin), 5
Reference numeral 07 is a photovoltaic element.

【0030】光起電力素子の作製は、以下の通りに行っ
た。In23を形成し、In23のエッチング剤含有ペ
ーストのスクリーン印刷によりIn23層の一部を除去
するまでは実施例1と同様の方法で行い、ついで各光起
電力素子に分離した後、切断して複数個の光起電力素子
を得た。次に、光起電力素子507の切断部端面をポリ
イミド樹脂506で絶縁化した後、A.I.TECHN
OLOGY,INCの導電接着剤#ME8452−A
(ガラス転移温度−25℃)504をスクリーン印刷で
集電電極パターンに印刷し、集電電極パターンの導電性
接着剤を硬化させる前に、図5のように隣合う光起電力
素子の端部を重ねて位置がズレが起きないように端部同
士が密着するように保持し、150℃で20分間硬化さ
せて、直列化した。
The photovoltaic element was manufactured as follows. In 2 O 3 is formed, performed in the same manner as in Example 1 until removing a portion of In 2 O 3 layer by screen printing etching paste containing the In 2 O 3, and then the photovoltaic elements After separating into pieces, the pieces were cut to obtain a plurality of photovoltaic elements. Next, after insulating the end surface of the cut portion of the photovoltaic element 507 with the polyimide resin 506, A. I. TECHN
OLOGY, INC conductive adhesive # ME8452-A
(Glass transition temperature −25 ° C.) 504 is printed on the current collecting electrode pattern by screen printing, and before the conductive adhesive of the current collecting electrode pattern is cured, as shown in FIG. Were overlapped with each other, and the ends were held so as to be in close contact with each other so as not to be displaced, and cured at 150 ° C. for 20 minutes to serialize.

【0031】表面被覆は実施例1と同様にして、太陽電
池モジュールを作製した。実施例1と同様の評価試験を
行った結果、上記方法で作製した太陽電池モジュールの
試験後の出力低下は5%以下であり、ほとんど劣化は認
められなかった。 (実施例4)導電性接着剤に日立化成製銀系導電性接着
剤EN−4065(ガラス転移温度−5℃)を用い、1
80℃60分間の条件で硬化させ、直列化した以外は、
実施例2と同一の方法で太陽電池モジュールを作製し
た。
The surface coating was carried out in the same manner as in Example 1 to prepare a solar cell module. As a result of performing the same evaluation test as in Example 1, the output decrease of the solar cell module manufactured by the above method after the test was 5% or less, and almost no deterioration was observed. Example 4 A silver-based conductive adhesive EN-4065 (glass transition temperature −5 ° C.) manufactured by Hitachi Chemical was used as a conductive adhesive, and 1
Other than curing at 80 ° C. for 60 minutes and serializing,
A solar cell module was manufactured by the same method as in Example 2.

【0032】実施例1と同様の評価試験を行った結果、
上記方法で作製した太陽電池モジュールの試験後の出力
低下は8%以下であり、ほとんど劣化認められなかっ
た。 (比較例1)導電性接着剤に、エイブルスティック社製
銀系導電性接着剤959−1(ガラス転移温度+69
℃)を用い、150℃40分間の条件で硬化させ、直列
化した以外は、実施例2と同一の方法で太陽電池モジュ
ールを作製した。
As a result of performing the same evaluation test as in Example 1,
The output decrease after the test of the solar cell module manufactured by the above method was 8% or less, and almost no deterioration was recognized. (Comparative Example 1) As a conductive adhesive, a silver-based conductive adhesive 959-1 (glass transition temperature +69) manufactured by Able Stick Co., Ltd.
(° C.), a solar cell module was produced by the same method as in Example 2 except that curing was performed under the conditions of 150 ° C. for 40 minutes and serialization was performed.

【0033】実施例1と同様の評価試験を行つた結果、
上記方法で作製した太陽電池モジユールの試験後は65
%以下と大幅に出力低下した。以上、実施例1〜4及び
比較例1から明らかなように、本発明のガラス転移温度
が−5℃以下の導電性接着剤で複数個の光起電力素子を
直並列接続した太陽電池モジュールは、光起電力素子の
接続のために必要な非発電領域を小さくできる上に、製
造工程を簡略でき、しかも温度サイクル試験と曲げ試験
後でも安定に出力することがわかった。
As a result of carrying out the same evaluation test as in Example 1,
After the test of the solar cell module produced by the above method, 65
% Or less, the output decreased significantly. As described above, as is clear from Examples 1 to 4 and Comparative Example 1, the solar cell module in which a plurality of photovoltaic elements are connected in series and parallel with the conductive adhesive having a glass transition temperature of −5 ° C. or less according to the present invention is used. It was found that the non-power generation area required for connecting the photovoltaic elements can be reduced, the manufacturing process can be simplified, and the output is stable even after the temperature cycle test and the bending test.

【0034】以上の実施例では、光起電力素子光電変換
層の半導体層にアモルファスシリコン半導体層を用い、
直列化した例を示したが、本発明がこれに限定されない
ことは言うまでもない。
In the above embodiments, an amorphous silicon semiconductor layer is used as the semiconductor layer of the photovoltaic conversion layer.
Although the serialized example is shown, it goes without saying that the present invention is not limited to this.

【0035】[0035]

【発明の効果】本発明によれば、屋外の気温の変化にも
安定な、非発電領域の少ない直列化構造の太陽電池を得
ることが可能となる。また、本発明の太陽電池モジュー
ルは、曲げ強度も大きいため、曲面にも設置することが
可能であり、取扱いにも容易となる。さらに、本発明の
太陽電池モジュールの構成を採用することで、製造工程
および配線材料を削減でき、安価に生産することが可能
となる。
According to the present invention, it is possible to obtain a series-structured solar cell which is stable against changes in the outdoor temperature and has a small non-power generation region. Moreover, since the solar cell module of the present invention has a large bending strength, it can be installed on a curved surface and is easy to handle. Furthermore, by adopting the configuration of the solar cell module of the present invention, it is possible to reduce the manufacturing process and the wiring material, and it is possible to manufacture at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の複数個の光起電力素子を直列接続して
形成した太陽電池モジュールを示す概略断面構成図であ
る。
FIG. 1 is a schematic cross-sectional configuration diagram showing a solar cell module formed by connecting a plurality of photovoltaic elements of the present invention in series.

【図2】図1の太陽電池モジュールを構成する光起電力
素子の一部を示す斜視図である。
FIG. 2 is a perspective view showing a part of a photovoltaic element that constitutes the solar cell module of FIG.

【図3】実施例1で複数個の光起電力素子を直列接続し
た太陽電池を示す概略断面図である。
FIG. 3 is a schematic cross-sectional view showing a solar cell in which a plurality of photovoltaic elements are connected in series in Example 1.

【図4】実施例2で複数個の光起電力素子を直列接続し
た太陽電池を示す概略断面図である。
FIG. 4 is a schematic cross-sectional view showing a solar cell in which a plurality of photovoltaic elements are connected in series in Example 2.

【図5】実施例3で複数個の光起電力素子を直列接続し
た太陽電池を示す概略断面図である。
5 is a schematic cross-sectional view showing a solar cell in which a plurality of photovoltaic elements are connected in series in Example 3. FIG.

【図6】従来の導電性基体上に形成した光起電力素子を
直列接続して形成した太陽電池を示す概略断面図であ
る。
FIG. 6 is a schematic cross-sectional view showing a solar cell formed by serially connecting photovoltaic elements formed on a conventional conductive substrate.

【符号の説明】[Explanation of symbols]

100,200,300,400,500,600 導
電性基体, 101 半導体層、透明導電層及び集電電極, 103,304,404,504 ガラス転移温度が−
5℃以下の導電性接着剤, 104 表面被覆層, 105 補強材, 106,307,407,507,608 光起電力素
子, 201,301,401,501 半導体層, 202,302,402,502 透明導電層, 203,303,403,504,603 集電電極, 205,305,405,505 裏面電極層, 406,506 光起電力素子の端面の絶縁被覆層, 601 半導体層と透明導電層, 602 透明導電層除去部 603 集電電極, 604 バスバー, 605 絶縁材, 606 良導体の配線材, 607 ハンダ, 609 溶接部。
100, 200, 300, 400, 500, 600 conductive substrate, 101 semiconductor layer, transparent conductive layer and collector electrode, 103, 304, 404, 504 glass transition temperature-
5 ° C or less conductive adhesive, 104 surface coating layer, 105 reinforcing material, 106, 307, 407, 507, 608 photovoltaic element, 201, 301, 401, 501 semiconductor layer, 202, 302, 402, 502 transparent Conductive layer, 203, 303, 403, 504, 603 Current collecting electrode, 205, 305, 405, 505 Back electrode layer, 406, 506 Insulation coating layer on end face of photovoltaic element, 601 Semiconductor layer and transparent conductive layer, 602 Transparent conductive layer removal part 603 Current collecting electrode, 604 Bus bar, 605 Insulating material, 606 Good conductor wiring material, 607 Solder, 609 Weld part.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 導電性基体上に少なくとも光電変換層と
しての半導体層、透明導電層及び集電電極が形成された
光起電力素子を複数個接続して構成される太陽電池モジ
ュールであって、ガラス転移温度が−5℃以下の導電性
接着剤を用いて前記光起電力素子を直並列接続したこと
を特徴とする太陽電池モジュール。
1. A solar cell module comprising a plurality of photovoltaic elements, each of which has at least a semiconductor layer as a photoelectric conversion layer, a transparent conductive layer, and a collector electrode formed on a conductive substrate. A solar cell module, wherein the photovoltaic elements are connected in series and parallel using a conductive adhesive having a glass transition temperature of -5 ° C or lower.
JP4289140A 1992-10-27 1992-10-27 Solar cell module Pending JPH06140651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4289140A JPH06140651A (en) 1992-10-27 1992-10-27 Solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4289140A JPH06140651A (en) 1992-10-27 1992-10-27 Solar cell module

Publications (1)

Publication Number Publication Date
JPH06140651A true JPH06140651A (en) 1994-05-20

Family

ID=17739274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4289140A Pending JPH06140651A (en) 1992-10-27 1992-10-27 Solar cell module

Country Status (1)

Country Link
JP (1) JPH06140651A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004200512A (en) * 2002-12-19 2004-07-15 Kyocera Corp Photoelectric converter
WO2008098279A1 (en) * 2007-02-15 2008-08-21 The Australian National University A substrate assembly, an assembly process, and an assembly apparatus
EP2002472A2 (en) * 2006-03-28 2008-12-17 SoloPower, Inc. Technique for manufacturing photovoltaic modules
WO2011103332A2 (en) * 2010-02-17 2011-08-25 Preco, Inc. Methods of forming photovoltaic modules
JP2011176148A (en) * 2010-02-24 2011-09-08 Nitto Denko Corp Method of manufacturing solar cell module, and solar cell module obtained by using the same method
JP2012501086A (en) * 2008-08-29 2012-01-12 オーダーサン アクチエンゲゼルシャフト Thin film solar cell and photovoltaic continuous assembly
WO2012086286A1 (en) * 2010-12-22 2012-06-28 東レエンジニアリング株式会社 Solar module and method of manufacturing same
JP2015534288A (en) * 2012-11-08 2015-11-26 コジェンラ ソーラー インコーポレイテッド High efficiency configuration for solar array
CN110459625A (en) * 2019-08-26 2019-11-15 绵阳金能移动能源有限公司 Novel flexible solar cell module and preparation method thereof
US10593820B2 (en) 2014-03-31 2020-03-17 Kaneka Corporation Solar cell module and method for manufacturing same
JP2020155684A (en) * 2019-03-22 2020-09-24 株式会社カネカ Manufacturing method of solar cell string, solar cell module, and solar cell
CN112951945A (en) * 2019-12-09 2021-06-11 中国科学院大连化学物理研究所 Preparation method of large-area perovskite solar cell module
WO2023054651A1 (en) * 2021-09-30 2023-04-06 出光興産株式会社 Photoelectric conversion module, paddle, and method for manufacturing photoelectric conversion module
WO2023054652A1 (en) * 2021-09-30 2023-04-06 出光興産株式会社 Photoelectric conversion module, paddle, and method for manufacturing photoelectric conversion module
WO2024080261A1 (en) * 2022-10-11 2024-04-18 出光興産株式会社 Photoelectric conversion module and manufacturing method for photoelectric conversion module

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004200512A (en) * 2002-12-19 2004-07-15 Kyocera Corp Photoelectric converter
EP2002472A2 (en) * 2006-03-28 2008-12-17 SoloPower, Inc. Technique for manufacturing photovoltaic modules
EP2002472A4 (en) * 2006-03-28 2010-06-09 Solopower Inc Technique for manufacturing photovoltaic modules
WO2008098279A1 (en) * 2007-02-15 2008-08-21 The Australian National University A substrate assembly, an assembly process, and an assembly apparatus
JP2012501086A (en) * 2008-08-29 2012-01-12 オーダーサン アクチエンゲゼルシャフト Thin film solar cell and photovoltaic continuous assembly
WO2011103332A2 (en) * 2010-02-17 2011-08-25 Preco, Inc. Methods of forming photovoltaic modules
WO2011103332A3 (en) * 2010-02-17 2012-01-05 Preco, Inc. Methods of forming photovoltaic modules
JP2011176148A (en) * 2010-02-24 2011-09-08 Nitto Denko Corp Method of manufacturing solar cell module, and solar cell module obtained by using the same method
US9048359B2 (en) 2010-12-22 2015-06-02 Toray Engineering Co., Ltd. Solar cell module and manufacturing method thereof
JP2012134342A (en) * 2010-12-22 2012-07-12 Toray Eng Co Ltd Solar cell module and method of manufacturing the same
WO2012086286A1 (en) * 2010-12-22 2012-06-28 東レエンジニアリング株式会社 Solar module and method of manufacturing same
JP2015534288A (en) * 2012-11-08 2015-11-26 コジェンラ ソーラー インコーポレイテッド High efficiency configuration for solar array
JP2019004155A (en) * 2012-11-08 2019-01-10 サンパワー コーポレイション High efficiency configuration for solar cell string
US11595000B2 (en) 2012-11-08 2023-02-28 Maxeon Solar Pte. Ltd. High efficiency configuration for solar cell string
US10593820B2 (en) 2014-03-31 2020-03-17 Kaneka Corporation Solar cell module and method for manufacturing same
JP2020155684A (en) * 2019-03-22 2020-09-24 株式会社カネカ Manufacturing method of solar cell string, solar cell module, and solar cell
CN110459625A (en) * 2019-08-26 2019-11-15 绵阳金能移动能源有限公司 Novel flexible solar cell module and preparation method thereof
CN112951945A (en) * 2019-12-09 2021-06-11 中国科学院大连化学物理研究所 Preparation method of large-area perovskite solar cell module
WO2023054651A1 (en) * 2021-09-30 2023-04-06 出光興産株式会社 Photoelectric conversion module, paddle, and method for manufacturing photoelectric conversion module
WO2023054652A1 (en) * 2021-09-30 2023-04-06 出光興産株式会社 Photoelectric conversion module, paddle, and method for manufacturing photoelectric conversion module
WO2024080261A1 (en) * 2022-10-11 2024-04-18 出光興産株式会社 Photoelectric conversion module and manufacturing method for photoelectric conversion module

Similar Documents

Publication Publication Date Title
JP2992638B2 (en) Electrode structure and manufacturing method of photovoltaic element and solar cell
JP2613719B2 (en) Method of manufacturing solar cell module
US7303788B2 (en) Method for manufacturing solar cell module having a sealing resin layer formed on a metal oxide layer
EP0684652B1 (en) Photovoltaic element, electrode structure thereof, and process for producing the same
US6034323A (en) Solar cell module
EP0631328B1 (en) Solar cell module having heat-fused portion to improve moisture resistance
AU763083B2 (en) Photovoltaic device module
JP3222361B2 (en) Method of manufacturing solar cell module and solar cell module
JP3618802B2 (en) Solar cell module
JP3352252B2 (en) Solar cell element group, solar cell module and method of manufacturing the same
US6051778A (en) Electrode structure, process production thereof and photo-electricity generating device including the electrode
JP2939075B2 (en) Solar cell module
EP0903790A2 (en) Solar cell module and reinforcing member for solar cell module
US20100319751A1 (en) Series interconnected thin-film photovoltaic module and method for preparation thereof
JP2008135654A (en) Solar battery module
JPH0621493A (en) Solar cell and manufacture thereof
JPH06140651A (en) Solar cell module
JPH0621501A (en) Solar cell module and manufacture thereof
JPH0563218A (en) Solar battery and manufacture thereof
JPH07302923A (en) Photovoltaic device
JP3244243B2 (en) Solar cell module
JP2002252362A (en) Solar battery module
JPH06132552A (en) Photovoltaic element and manufacture thereof
JP4585652B2 (en) Photovoltaic element and method for producing photovoltaic element
JP3112339B2 (en) Solar cell module