JP2020155684A - Manufacturing method of solar cell string, solar cell module, and solar cell - Google Patents

Manufacturing method of solar cell string, solar cell module, and solar cell Download PDF

Info

Publication number
JP2020155684A
JP2020155684A JP2019054416A JP2019054416A JP2020155684A JP 2020155684 A JP2020155684 A JP 2020155684A JP 2019054416 A JP2019054416 A JP 2019054416A JP 2019054416 A JP2019054416 A JP 2019054416A JP 2020155684 A JP2020155684 A JP 2020155684A
Authority
JP
Japan
Prior art keywords
solar cell
light receiving
current collecting
side current
receiving surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019054416A
Other languages
Japanese (ja)
Inventor
将典 福田
Masanori Fukuda
将典 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2019054416A priority Critical patent/JP2020155684A/en
Publication of JP2020155684A publication Critical patent/JP2020155684A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

To suppress a connecting member from reaching the side surface of a solar cell even when the connecting member protrudes from between a light receiving surface side current collecting electrode and a back surface side current collecting electrode.SOLUTION: When viewed in a plan view with respect to a light receiving surface, a part of a light receiving surface side current collecting electrode 25a of one solar cell 2 from among a plurality of solar cells 2 and a part of a back side current collecting electrode of the other solar cell 2 adjacent to the one solar cell are connected via a connecting member 3 in a state of being overlapped with each other, and the connecting member 3 has fluidity when arranged between the light receiving surface side current collecting electrode 25a and the back side current collecting electrode, and a cushioning portion 4 having a lower wettability with respect to the connecting member 3 than the light receiving surface or the back surface is formed at least in the vicinity of the light receiving surface side current collecting electrode 25a on the light receiving surface, or in the vicinity of the back surface side current collecting electrode on the back surface.SELECTED DRAWING: Figure 4

Description

本発明は、太陽電池モジュールを形成するための太陽電池ストリング、及び、複数の太陽電池ストリングが集合した太陽電池モジュール、及び、太陽電池ストリングを構成する太陽電池セルの製造方法に関するものである。 The present invention relates to a solar cell string for forming a solar cell module, a solar cell module in which a plurality of solar cell strings are assembled, and a method for manufacturing a solar cell that constitutes the solar cell string.

従来、平面視で略長方形状である複数の太陽電池セルを、例えば屋根板を葺くようにして、各太陽電池セルにおける長辺が重なるように、短辺と略平行な方向に順次配置していくシングリング接続(shingling connection)によって形成された太陽電池ストリングがある。これは例えば、特許文献1に記載されている(図1、図2A等参照)。 Conventionally, a plurality of solar cells having a substantially rectangular shape in a plan view are sequentially arranged in a direction substantially parallel to the short side so that the long sides of each solar cell overlap, for example, by roofing a roof plate. There is a solar cell string formed by a shingling connection. This is described, for example, in Patent Document 1 (see FIGS. 1, 2A, etc.).

また、太陽電池セルは、受光面または裏面にテクスチャ構造による凹凸を有することも知られている(例えば特許文献2における図3参照)。 It is also known that the solar cell has irregularities on the light receiving surface or the back surface due to the texture structure (see, for example, FIG. 3 in Patent Document 2).

各太陽電池セルの受光面には受光面側集電電極が設けられ、裏面には裏面側集電電極が設けられている。シングリング接続により、複数の太陽電池セルのうち、一の太陽電池の受光面側集電電極の一部と、隣接する他の太陽電池セルの裏面側集電電極の一部とが重なるように接続部材を介して接続される。接続部材は導電性を有し、受光面側集電電極と裏面側集電電極との間に配置される時点で流動性を有するペースト状の部材である。 A light receiving surface side current collecting electrode is provided on the light receiving surface of each solar cell, and a back surface side current collecting electrode is provided on the back surface. By the single ring connection, a part of the light receiving surface side current collecting electrode of one solar cell and a part of the back surface side current collecting electrode of another adjacent solar cell are overlapped with each other among the plurality of solar cells. It is connected via a connecting member. The connecting member is a paste-like member having conductivity and having fluidity at the time of being arranged between the light receiving surface side current collecting electrode and the back surface side current collecting electrode.

特表2017−517145号公報Special Table 2017-517145 特開2016−187027号公報Japanese Unexamined Patent Publication No. 2016-187027

ここで接続部材は、通常では受光面側集電電極と裏面側集電電極との間に挟まれて位置する。しかし、接続部材が流動性を有することから、受光面側集電電極と裏面側集電電極との間からはみ出てしまうことがある。そうなった場合、はみ出た接続部材が受光面または裏面に流れ、接続部材に対して濡れ性の高い(言い換えると、濡れやすい、または、親液性である)、テクスチャ構造による凹凸を伝って、太陽電池セルの側面にまで達してしまう可能性がある。こうなると意図しない表裏の短絡が発生して太陽電池セル、及び、複数の太陽電池セルの集合体である太陽電池ストリングの出力低下を招くため不都合である。 Here, the connecting member is usually located sandwiched between the light receiving surface side current collecting electrode and the back surface side current collecting electrode. However, since the connecting member has fluidity, it may protrude from the light receiving surface side current collecting electrode and the back surface side current collecting electrode. In such a case, the protruding connecting member flows to the light receiving surface or the back surface, and is highly wettable to the connecting member (in other words, easily wet or liquid-friendly), and travels through unevenness due to the texture structure. It can reach the sides of the solar cell. This is inconvenient because an unintended short circuit between the front and back sides occurs, which causes a decrease in the output of the solar cell and the solar cell string which is an aggregate of a plurality of solar cells.

そこで本発明は、接続部材が受光面側集電電極と裏面側集電電極との間からはみ出たとしても、太陽電池セルの側面にまで達することを抑制できる太陽電池ストリング、太陽電池モジュール、太陽電池セルの製造方法を提供することを課題とする。 Therefore, according to the present invention, even if the connecting member protrudes between the light receiving surface side current collecting electrode and the back surface side current collecting electrode, it can be suppressed from reaching the side surface of the solar cell, the solar cell string, the solar cell module, and the sun. An object of the present invention is to provide a method for manufacturing a battery cell.

本発明は、複数の太陽電池セルと導電性の接続部材とを備える太陽電池ストリングであって、前記複数の太陽電池セルの各々は、受光面に設けられた受光面側集電電極と、裏面に設けられた裏面側集電電極とを備え、前記受光面に対して平面視した場合において、前記複数の太陽電池セルのうち、一の太陽電池セルの前記受光面側集電電極の一部と、前記一の太陽電池セルと隣接する他の太陽電池セルの前記裏面側集電電極の一部とが重なった状態で前記接続部材を介して接続されており、前記接続部材は、前記受光面側集電電極と前記裏面側集電電極との間に配置される時点で流動性を有しており、少なくとも、前記受光面における前記受光面側集電電極の近傍、または、前記裏面における前記裏面側集電電極の近傍には、前記受光面または前記裏面よりも、前記接続部材に対して濡れ性の低い緩衝部が形成されている太陽電池ストリングである。 The present invention is a solar cell string including a plurality of solar cell cells and a conductive connecting member, and each of the plurality of solar cell cells has a light receiving surface side current collecting electrode provided on the light receiving surface and a back surface thereof. When viewed in plan with respect to the light receiving surface, a part of the light receiving surface side current collecting electrode of one of the plurality of solar cells is provided with the back surface side current collecting electrode. And a part of the back surface side current collecting electrode of the other solar cell adjacent to the one solar cell are connected via the connecting member in a state of being overlapped with each other, and the connecting member is connected to the light receiving light. It has fluidity when it is arranged between the front surface side current collecting electrode and the back surface side current collecting electrode, and is at least in the vicinity of the light receiving surface side current collecting electrode on the light receiving surface or on the back surface. A solar cell string in which a buffer portion having a lower wettability with respect to the connecting member than the light receiving surface or the back surface is formed in the vicinity of the back surface side current collecting electrode.

また本発明は、複数の太陽電池セルと導電性の接続部材とを備える太陽電池モジュールであって、前記複数の太陽電池セルの各々は、受光面に設けられた受光面側集電電極と、裏面に設けられた裏面側集電電極とを備え、前記受光面に対して平面視した場合において、前記複数の太陽電池セルのうち、一の太陽電池セルの前記受光面側集電電極の一部と、前記一の太陽電池セルと隣接する他の太陽電池セルの前記裏面側集電電極の一部とが重なった状態で前記接続部材を介して接続されており、前記接続部材は、前記受光面側集電電極と前記裏面側集電電極との間に配置される時点で流動性を有しており、少なくとも、前記受光面における前記受光面側集電電極の近傍、または、前記裏面における前記裏面側集電電極の近傍には、前記受光面または前記裏面よりも、前記接続部材に対して濡れ性の低い緩衝部が形成されている太陽電池モジュールである。 Further, the present invention is a solar cell module including a plurality of solar cell cells and a conductive connecting member, and each of the plurality of solar cell cells includes a light receiving surface side current collecting electrode provided on the light receiving surface. One of the light receiving surface side current collecting electrodes of one solar cell among the plurality of solar cells, which is provided with a back surface side current collecting electrode provided on the back surface and is viewed in a plan view with respect to the light receiving surface. The unit and a part of the back surface side current collecting electrode of the other solar cell adjacent to the one solar cell are connected via the connecting member in a state of being overlapped with each other, and the connecting member is connected to the connecting member. It has fluidity when it is arranged between the light receiving surface side current collecting electrode and the back surface side current collecting electrode, and is at least in the vicinity of the light receiving surface side current collecting electrode on the light receiving surface or the back surface. A solar cell module in which a buffer portion having a lower wettability with respect to the connecting member than the light receiving surface or the back surface is formed in the vicinity of the back surface side current collecting electrode.

これらの構成によれば、接続部材に対して濡れ性の低い緩衝部が形成されたことにより、受光面側集電電極と裏面側集電電極との間から接続部材がはみ出たとしても、接続部材が濡れ広がらず、緩衝部上にとどめることができる。 According to these configurations, since the buffer portion having low wettability is formed with respect to the connecting member, even if the connecting member protrudes from between the light receiving surface side current collecting electrode and the back surface side current collecting electrode, the connection member is connected. The member does not get wet and spreads, and can stay on the cushioning part.

また、前記複数の太陽電池セルの各々は、少なくとも前記受光面または前記裏面にテクスチャ構造による凹凸を有し、前記緩衝部は、前記テクスチャ構造による凹凸よりも小さな凹凸の領域を有するものとできる。 Further, each of the plurality of solar cell cells may have at least the unevenness due to the texture structure on the light receiving surface or the back surface, and the buffer portion may have an uneven region smaller than the unevenness due to the texture structure.

この構成によれば、緩衝部が、テクスチャ構造による凹凸よりも小さな凹凸の領域を有することにより、当該領域では凹凸が相対的に小さい分、接続部材に対する濡れ性を低くできる。 According to this configuration, since the cushioning portion has a region of unevenness smaller than the unevenness due to the texture structure, the wettability to the connecting member can be lowered because the unevenness is relatively small in the region.

また、前記緩衝部は、前記テクスチャ構造による凹凸を覆う被覆層を含むものとできる。 Further, the buffer portion may include a coating layer that covers the unevenness due to the texture structure.

この構成によれば、被覆層がテクスチャ構造による凹凸を覆うことから、テクスチャ構造自体には研磨等の加工を施す必要がないので、接続部材に対して濡れ性の低い緩衝部を容易に形成できる。 According to this configuration, since the coating layer covers the unevenness due to the texture structure, it is not necessary to perform processing such as polishing on the texture structure itself, so that a cushioning portion having low wettability can be easily formed on the connecting member. ..

また本発明は、少なくとも受光面または裏面にテクスチャ構造による凹凸を有すると共に、前記受光面に設けられた受光面側集電電極と、前記裏面に設けられた裏面側集電電極とを備える太陽電池セルの製造方法であって、前記受光面側集電電極及び前記裏面側集電電極を形成する際、前記各電極の原料である導電性の電極原料ペーストを形成予定位置に塗布し、塗布の後、前記電極原料ペーストに含まれていた液状樹脂のうち少なくとも一部が、前記受光面及び前記裏面における前記電極原料ペーストの塗布位置の近傍に染み出て固まることにより、前記テクスチャ構造による凹凸よりも小さな凹凸の領域が形成される、太陽電池セルの製造方法である。 Further, the present invention is a solar cell having at least irregularities on the light receiving surface or the back surface due to a texture structure, and also having a light receiving surface side current collecting electrode provided on the light receiving surface and a back surface side current collecting electrode provided on the back surface. In the cell manufacturing method, when the light receiving surface side current collecting electrode and the back surface side current collecting electrode are formed, the conductive electrode raw material paste which is the raw material of each electrode is applied to the planned formation position, and the coating is applied. After that, at least a part of the liquid resin contained in the electrode raw material paste seeps out and hardens in the vicinity of the coating position of the electrode raw material paste on the light receiving surface and the back surface, so that the unevenness due to the texture structure is obtained. Is also a method for manufacturing a solar cell, in which a small uneven region is formed.

これによれば、受光面側集電電極及び裏面側集電電極を形成する際に用いる電極原料ペーストにより、各電極の形成と共に、テクスチャ構造による凹凸よりも小さな凹凸の領域を形成できる。 According to this, the electrode raw material paste used when forming the light receiving surface side current collecting electrode and the back surface side current collecting electrode can form each electrode and a region of unevenness smaller than the unevenness due to the texture structure.

また、前記電極原料ペーストが、導電性粒子と前記液状樹脂との混合物であるものとできる。 Further, the electrode raw material paste can be a mixture of the conductive particles and the liquid resin.

これによれば、導電性粒子と前記液状樹脂との混合物により、塗布に伴い液状樹脂が染み出る電極原料ペーストを得ることができる。 According to this, it is possible to obtain an electrode raw material paste in which the liquid resin exudes with coating by the mixture of the conductive particles and the liquid resin.

本発明により、受光面側集電電極と裏面側集電電極との間から接続部材がはみ出たとしても、接続部材が濡れ広がらず、緩衝部上にとどめることができる。よって、接続部材が太陽電池セルの側面にまで達することを抑制できる。 According to the present invention, even if the connecting member protrudes from between the light receiving surface side current collecting electrode and the back surface side current collecting electrode, the connecting member does not spread wet and can be kept on the buffer portion. Therefore, it is possible to prevent the connecting member from reaching the side surface of the solar cell.

本発明の一実施形態に係る太陽電池セルの層構造を模式的に示す断面図である。It is sectional drawing which shows typically the layer structure of the solar cell which concerns on one Embodiment of this invention. 本発明の一実施形態に係る太陽電池ストリングにおいて、隣接する太陽電池セル同士の接続部分を模式的に示す断面図である。It is sectional drawing which shows typically the connection part between adjacent solar cell cells in the solar cell string which concerns on one Embodiment of this invention. 前記実施形態に係る太陽電池セルにおける受光面側集電電極と緩衝部とを模式的に示す拡大断面図である。It is an enlarged sectional view schematically showing the light receiving surface side current collecting electrode and the buffer part in the solar cell which concerns on the said embodiment. 前記実施形態に係る太陽電池セルにおける受光面側集電電極と緩衝部とを示すと共に、接続部材がはみ出た状態を模式的に示す拡大断面図である。It is an enlarged cross-sectional view which shows the light receiving surface side current collecting electrode and the cushioning part in the solar cell which concerns on the said embodiment, and schematically shows the state which the connecting member protrudes.

本発明につき、一実施形態を取り上げて、図面とともに以下説明を行う。本実施形態の太陽電池ストリング1は、例えば図2に示すように、複数の太陽電池セル2…2が連ねられて形成されている。各太陽電池セル2は、平面視で略長方形状であり両面電極型である。複数の太陽電池セル2…2は、シングリング接続により、セル接続方向J(長方形状の短辺の延びる方向と略平行な方向)に沿って電気的に接続される。複数の太陽電池セル2…2は、図2に示すように連ねられる(図2には、太陽電池ストリング1において、セル接続方向Jに隣り合う2枚の太陽電池セル2,2のうち接続部分を抜き出して示している)。太陽電池ストリング1は、シングリング接続された複数の太陽電池セル2…2の集合の一単位である。また、図示していないが、複数(複数単位)の太陽電池ストリング1が電気的に直列接続された上で封止され、取り出し電気配線が接続されることにより太陽電池モジュールが構成される。 The present invention will be described below with reference to one embodiment. As shown in FIG. 2, for example, the solar cell string 1 of the present embodiment is formed by connecting a plurality of solar cell cells 2 ... 2. Each solar cell 2 has a substantially rectangular shape in a plan view and is a double-sided electrode type. The plurality of solar cell cells 2 ... 2 are electrically connected by a single ring connection along the cell connection direction J (direction substantially parallel to the extending direction of the short side of the rectangle). The plurality of solar cells 2 ... 2 are connected as shown in FIG. 2 (in FIG. 2, the connecting portion of the two solar cells 2 and 2 adjacent to each other in the cell connection direction J in the solar cell string 1). Is extracted and shown). The solar cell string 1 is a unit of a set of a plurality of solar cell cells 2 ... 2 connected by a sing ring. Further, although not shown, a plurality of (plural units) solar cell strings 1 are electrically connected in series and then sealed, and a take-out electric wiring is connected to form a solar cell module.

各太陽電池セル2の層構造を図1に模式的に示す。太陽電池セル2は、一導電型の単結晶シリコン基板である半導体基板21を含む。本実施形態の半導体基板21は、n型単結晶シリコン基板とされている。 The layer structure of each solar cell 2 is schematically shown in FIG. The solar cell 2 includes a semiconductor substrate 21 which is a monoconductive single crystal silicon substrate. The semiconductor substrate 21 of this embodiment is an n-type single crystal silicon substrate.

半導体基板21から受光面2a側(図示上側)に、真性シリコン層22a(具体的にはi型シリコン層)、一導電型シリコン層23a(例えばn型シリコン層)、受光面側透明導電層24a(TCO層)、受光面側集電電極25aがこの順に積層されている。一方、半導体基板21から受光面2a側とは逆である裏面2b側(図示下側)に、真性シリコン層22b(具体的にはi型シリコン層)、逆導電型シリコン層23b(例えばp型シリコン層)、裏面側透明導電層24b(TCO層)、裏面側集電電極25bがこの順に積層されている。各太陽電池セルは、受光面2a及び裏面2bにテクスチャ構造による凹凸を有している。この凹凸は、略四角錐形状の凹凸である(図1に断面形状を略示)。 From the semiconductor substrate 21 to the light receiving surface 2a side (upper side in the drawing), an intrinsic silicon layer 22a (specifically, an i-type silicon layer), a monoconductive silicon layer 23a (for example, an n-type silicon layer), and a transparent conductive layer 24a on the light receiving surface side. (TCO layer) and the light receiving surface side current collecting electrode 25a are laminated in this order. On the other hand, from the semiconductor substrate 21, on the back surface 2b side (lower side in the drawing) opposite to the light receiving surface 2a side, the intrinsic silicon layer 22b (specifically, the i-type silicon layer) and the reverse conductive type silicon layer 23b (for example, p-type). (Silicon layer), the back surface side transparent conductive layer 24b (TCO layer), and the back surface side current collecting electrode 25b are laminated in this order. Each solar cell has irregularities on the light receiving surface 2a and the back surface 2b due to the texture structure. This unevenness is a substantially quadrangular pyramid-shaped unevenness (the cross-sectional shape is shown in FIG. 1).

各集電電極25a,25bとしては、平面視及び底面視で略長方形状の長辺に沿うバスバー電極25a1,25b1と、バスバー電極25a1,25b1に直交する多数のフィンガー電極(図示しない)から構成されている。 The current collecting electrodes 25a and 25b are composed of bus bar electrodes 25a1,25b1 along long sides that are substantially rectangular in plan view and bottom view, and a large number of finger electrodes (not shown) orthogonal to the bus bar electrodes 25a1,25b1. ing.

図2に示すように、太陽電池ストリング1にてセル接続方向Jで隣り合う一方の太陽電池セル2における受光面側集電電極25aと、他方の太陽電池セル2における裏面側集電電極25bとが、接続部材3を介在させて電気的に接続されている。接続部材3は、受光面側集電電極25aと裏面側集電電極25bとの間に配置される時点で流動性を有している。なおその後、太陽電池ストリング1が加熱されることにより、接続部材3が焼き固められて、流動性がなくなる。接続部材3は、隣り合う太陽電池セル2,2の集電電極25a,25bに共に接するように設けられる。接続部材3は、隣り合う太陽電池セル2,2を接着して、一つの太陽電池ストリング1を形成する機能も有している。 As shown in FIG. 2, the light receiving surface side current collecting electrode 25a in one solar cell 2 adjacent to each other in the cell connection direction J in the solar cell string 1 and the back surface side current collecting electrode 25b in the other solar cell 2. However, they are electrically connected with the connecting member 3 interposed therebetween. The connecting member 3 has fluidity at the time when it is arranged between the light receiving surface side current collecting electrode 25a and the back surface side current collecting electrode 25b. After that, when the solar cell string 1 is heated, the connecting member 3 is hardened and loses its fluidity. The connecting member 3 is provided so as to be in contact with the current collecting electrodes 25a and 25b of the adjacent solar cells 2 and 2. The connecting member 3 also has a function of adhering adjacent solar cell cells 2 and 2 to form one solar cell string 1.

接続部材3は、導電性粒子を含むことで導電性を有するとともに、ペースト状であって流動性を有している。導電性粒子としては、例えば銀、銅、アルミニウム、ニッケル、錫、ビスマス、亜鉛、ガリウム、カーボン及びこれらの混合物等を用いることができ、とりわけ、導電性の観点から銀が好適に用いられる。また、樹脂としてはエポキシ系樹脂、フェノール系樹脂、アクリル系樹脂が好適に用いられる。導電性粒子の含有率は、導電性を向上させる観点から70wt%以上、とりわけ80wt%以上が好ましい。一方で、接続部材3の流動性を担保する観点から、99wt%以下、とりわけ90wt%以下が好ましい。 The connecting member 3 has conductivity by containing conductive particles, and is in the form of a paste and has fluidity. As the conductive particles, for example, silver, copper, aluminum, nickel, tin, bismuth, zinc, gallium, carbon and a mixture thereof can be used, and silver is particularly preferably used from the viewpoint of conductivity. Further, as the resin, an epoxy resin, a phenol resin, and an acrylic resin are preferably used. The content of the conductive particles is preferably 70 wt% or more, particularly preferably 80 wt% or more from the viewpoint of improving the conductivity. On the other hand, from the viewpoint of ensuring the fluidity of the connecting member 3, 99 wt% or less, particularly 90 wt% or less is preferable.

前述のように、本実施形態の太陽電池ストリング1は、複数の太陽電池セル2…2と導電性の接続部材3とを備える。各太陽電池セル2は、受光面2aに設けられた受光面側集電電極25aと、裏面2bに設けられた裏面側集電電極25bとを備える。そして、受光面2aに対して平面視した場合において、複数の太陽電池セル2…2のうち、一の太陽電池セル2の受光面側集電電極25aの一部(具体的には、図2に示す左側の太陽電池セル2における受光面2a側のバスバー電極25a1)と、一の太陽電池セル2と隣接する他の太陽電池セル2の前記裏面側集電電極25bの一部(具体的には、図2に示す右側の太陽電池セル2における裏面2b側のバスバー電極25b1)とが上下に重なった状態で接続部材3を介して接続されている。 As described above, the solar cell string 1 of the present embodiment includes a plurality of solar cell cells 2 ... 2 and a conductive connecting member 3. Each solar cell 2 includes a light receiving surface side current collecting electrode 25a provided on the light receiving surface 2a and a back surface side current collecting electrode 25b provided on the back surface 2b. Then, when viewed in a plan view with respect to the light receiving surface 2a, a part of the light receiving surface side current collecting electrode 25a of one solar cell 2 among the plurality of solar cells 2 ... 2 (specifically, FIG. 2). The bus bar electrode 25a1) on the light receiving surface 2a side of the left solar cell 2 shown in the above, and a part of the back surface side current collecting electrode 25b of another solar cell 2 adjacent to one solar cell 2 (specifically). Is connected via a connecting member 3 in a state in which the bus bar electrode 25b1) on the back surface 2b side of the right solar cell 2 shown in FIG. 2 is vertically overlapped.

受光面2aにおける受光面側集電電極25aの近傍、及び、裏面2bにおける裏面側集電電極25bの近傍には、受光面2aまたは裏面2bよりも、接続部材3に対して濡れ性の低い(言い換えると、濡れにくい、または、疎液性である)緩衝部4が形成されている。なお、濡れ性は接触角等により評価される。緩衝部4は、図3に示すように、テクスチャ構造による凹凸を覆う被覆層41を含む。この被覆層41により、テクスチャ構造による凹凸(高さ数μmの凹凸)が一部埋められて高低差が小さくなっている。このように緩衝部4は、テクスチャ構造による凹凸よりも小さな凹凸の領域を有する。 In the vicinity of the light receiving surface side current collecting electrode 25a on the light receiving surface 2a and in the vicinity of the back surface side current collecting electrode 25b on the back surface 2b, the wettability with respect to the connecting member 3 is lower than that of the light receiving surface 2a or the back surface 2b ( In other words, the buffer portion 4 (which is difficult to get wet or is sparse) is formed. The wettability is evaluated by the contact angle and the like. As shown in FIG. 3, the buffer portion 4 includes a coating layer 41 that covers the unevenness due to the texture structure. The coating layer 41 partially fills the unevenness (unevenness with a height of several μm) due to the texture structure, and the height difference is reduced. As described above, the buffer portion 4 has a region of unevenness smaller than the unevenness due to the texture structure.

本実施形態では、緩衝部4の被覆層41がテクスチャ構造による凹凸を覆うことから、テクスチャ構造自体には、凹凸を小さくするために研磨等の加工を施す必要がないので、接続部材3に対して濡れ性の低い緩衝部4を容易に形成できる。そして、接続部材3に対して濡れ性の低い緩衝部4が形成されたことにより、受光面側集電電極25aと裏面側集電電極25bとの間から接続部材3がはみ出たとしても、接続部材3が濡れ広がらず、緩衝部4上にとどめることができる。よって、接続部材3が太陽電池セル2の側面26にまで達することを抑制できる。 In the present embodiment, since the coating layer 41 of the cushioning portion 4 covers the unevenness due to the texture structure, the texture structure itself does not need to be subjected to processing such as polishing in order to reduce the unevenness. The cushioning portion 4 having low wettability can be easily formed. Then, even if the connecting member 3 protrudes from between the light receiving surface side current collecting electrode 25a and the back surface side current collecting electrode 25b due to the formation of the buffer portion 4 having low wettability with respect to the connecting member 3, the connection member 3 is connected. The member 3 does not get wet and spreads, and can be kept on the buffer portion 4. Therefore, it is possible to prevent the connecting member 3 from reaching the side surface 26 of the solar cell 2.

なお本実施形態において、前記「近傍」とは、各バスバー電極25a1,25b1の幅方向両側のことを指す。しかし、意図しない表裏の短絡を防止する目的のためには、少なくとも、太陽電池セル2の側面26(各バスバー電極25a1,25b1に近い側の側面26)の側に緩衝部4が形成されていればよい。 In the present embodiment, the "neighborhood" refers to both sides of each bus bar electrode 25a1,25b1 in the width direction. However, for the purpose of preventing an unintended short circuit between the front and back surfaces, at least the cushioning portion 4 should be formed on the side surface 26 of the solar cell 2 (the side surface 26 on the side closer to each bus bar electrode 25a1, 25b1). Just do it.

次に、本実施形態における太陽電池セル2の製造方法を説明する。受光面側集電電極25a及び裏面側集電電極25bを形成する際、各電極の原料である導電性の電極原料ペーストを形成予定位置に塗布する。塗布は、スクリーン印刷等の印刷手法により行うことができる。この際、電極未施工の太陽電池セル仕掛品の上面に対して電極原料ペーストを上方から塗布する。塗布の後、電極原料ペーストに含まれていた液状樹脂のうち少なくとも一部が、受光面2a及び裏面2bにおける電極原料ペーストの塗布位置の近傍に染み出て固まる。これにより、前記テクスチャ構造による凹凸よりも小さな凹凸の領域が形成される。このように形成された領域がすなわち、緩衝部4における被覆層41に対応する。この、テクスチャ構造による凹凸よりも小さな凹凸の領域により、当該領域では凹凸が相対的に小さい分、接続部材3に対する濡れ性を低くできる。なお、受光面側集電電極25a、裏面側集電電極25b、そして、染み出た液状樹脂は、塗布後に太陽電池セル仕掛品が加熱されることにより溶剤が揮発することで固化する。 Next, a method of manufacturing the solar cell 2 in the present embodiment will be described. When forming the light receiving surface side current collecting electrode 25a and the back surface side current collecting electrode 25b, the conductive electrode raw material paste which is the raw material of each electrode is applied to the planned formation position. The coating can be performed by a printing method such as screen printing. At this time, the electrode raw material paste is applied from above to the upper surface of the solar cell work-in-process in which the electrodes have not been applied. After coating, at least a part of the liquid resin contained in the electrode raw material paste seeps out and hardens in the vicinity of the coating position of the electrode raw material paste on the light receiving surface 2a and the back surface 2b. As a result, a region of unevenness smaller than the unevenness due to the texture structure is formed. The region thus formed corresponds to the coating layer 41 in the buffer 4. Due to the unevenness region smaller than the unevenness due to the texture structure, the wettability to the connecting member 3 can be lowered because the unevenness is relatively small in the region. The light receiving surface side current collecting electrode 25a, the back surface side current collecting electrode 25b, and the exuded liquid resin are solidified by volatilizing the solvent by heating the work-in-process of the solar cell after application.

電極原料ペーストとして、導電性粒子と液状樹脂との混合物が用いられる。電極原料ペーストに占める割合は、相対的に、導電性粒子が多く液状樹脂が少ない。導電性粒子は、例えば銀微粒子が用いられる(ただしこれに限定されず、銅、アルミニウム、ニッケル、錫、ビスマス、亜鉛、ガリウム、カーボン及びこれらの混合物等を用いることも可能である)。また、液状樹脂は、例えばエポキシ樹脂等のポリマーが用いられる(ただしこれに限定されず、フェノール系樹脂、アクリル系樹脂等を用いることも可能である)。本実施形態の電極原料ペーストは、「銀ペースト」と呼ばれて一般に流通しているものを使用している。このように構成された電極原料ペーストを各電極の形成予定位置に塗布すると、電極原料ペースト中の液状樹脂はその形成予定位置から染み出る一方で、導電性粒子は形成予定位置から大きくはみ出すことなく、その位置で凝集して固定される。染み出た液状樹脂は、図3に示すように、テクスチャ構造による凹凸を覆うように、集電電極25a,25bの近傍に広がる。この広がった樹脂が固まることで、固化した樹脂層である被覆層41が形成される。 As the electrode raw material paste, a mixture of conductive particles and a liquid resin is used. The proportion of the electrode raw material paste is relatively large in conductive particles and small in liquid resin. As the conductive particles, for example, silver fine particles are used (but not limited to this, copper, aluminum, nickel, tin, bismuth, zinc, gallium, carbon and mixtures thereof can also be used). Further, as the liquid resin, for example, a polymer such as an epoxy resin is used (however, the present invention is not limited to this, and a phenolic resin, an acrylic resin, or the like can also be used). The electrode raw material paste of this embodiment is called "silver paste" and is generally distributed. When the electrode raw material paste configured in this way is applied to the planned formation position of each electrode, the liquid resin in the electrode raw material paste seeps out from the planned formation position, while the conductive particles do not greatly protrude from the planned formation position. , Aggregates and fixes at that position. As shown in FIG. 3, the exuded liquid resin spreads in the vicinity of the current collecting electrodes 25a and 25b so as to cover the unevenness due to the texture structure. By solidifying the spread resin, a coating layer 41, which is a solidified resin layer, is formed.

電極原料ペーストに占める液状樹脂の割合は、重量比で、30%以下、特に20%以下が好ましい。また、1%以上、とくに、3%以上が好ましい。このような重量比とすることにより、電極原料ペーストを形成予定位置に塗布した際に、液状樹脂はその位置から所望の範囲に染み出させることができる。 The ratio of the liquid resin to the electrode raw material paste is preferably 30% or less, particularly preferably 20% or less in terms of weight ratio. Further, 1% or more, particularly 3% or more is preferable. With such a weight ratio, when the electrode raw material paste is applied to the planned formation position, the liquid resin can be exuded from that position in a desired range.

このように、本実施形態の方法では、受光面側集電電極25a及び裏面側集電電極25bを形成する際に用いる電極原料ペーストにより、各電極の形成と共に、テクスチャ構造による凹凸よりも小さな凹凸の領域を形成できることから、別々の工程を必要としないため合理的である。 As described above, in the method of the present embodiment, the electrode raw material paste used when forming the light receiving surface side current collecting electrode 25a and the back surface side current collecting electrode 25b is used to form each electrode and the unevenness smaller than the unevenness due to the texture structure. It is rational because it does not require a separate process because it can form a region of.

以上、本発明につき一実施形態を取り上げて説明してきたが、本発明は、前記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変更が可能である。 Although the present invention has been described by taking up one embodiment, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present invention.

例えば太陽電池セル2は、少なくとも受光面2aまたは裏面2bにテクスチャ構造による凹凸を有していればよい。また緩衝部4は、少なくとも、受光面2aにおける受光面側集電電極25aの近傍、または、裏面2bにおける裏面側集電電極25bの近傍に設けられていればよい。 For example, the solar cell 2 may have at least irregularities on the light receiving surface 2a or the back surface 2b due to the texture structure. Further, the buffer portion 4 may be provided at least in the vicinity of the light receiving surface side current collecting electrode 25a on the light receiving surface 2a or in the vicinity of the back surface side current collecting electrode 25b on the back surface 2b.

また、緩衝部4は前記実施形態と異なる方法で形成することもできる。例えば、太陽電池セル2の受光面2aまたは裏面2bに対する研磨、レーザー加工、フィルム貼付、微粒子の蒸着、また、電極原料ペーストに由来しない樹脂を別個に塗布する方法で緩衝部4を形成してもよい。 Further, the buffer portion 4 can be formed by a method different from that of the above embodiment. For example, even if the buffer portion 4 is formed by polishing the light receiving surface 2a or the back surface 2b of the solar cell 2, laser processing, attaching a film, depositing fine particles, or separately applying a resin not derived from the electrode raw material paste. Good.

1 太陽電池ストリング
2 太陽電池セル
2a 受光面
2b 裏面
21 半導体基板
22a 真性シリコン層(受光面側)
22b 真性シリコン層(裏面側)
23a 一導電型シリコン層
23b 逆導電型シリコン層
24a 受光面側透明導電層
24b 裏面側透明導電層
25a 受光面側集電電極
25a1 受光面側のバスバー電極
25b 裏面側集電電極
25b1 裏面側のバスバー電極
26 側面
3 接続部材
4 緩衝部
41 被覆層
J セル接続方向
1 Solar cell string 2 Solar cell 2a Light receiving surface 2b Back surface 21 Semiconductor substrate 22a Intrinsic silicon layer (light receiving surface side)
22b Intrinsic silicon layer (back side)
23a Single conductive type silicon layer 23b Reverse conductive type silicon layer 24a Light receiving surface side transparent conductive layer 24b Back side transparent conductive layer 25a Light receiving surface side current collecting electrode 25a1 Light receiving surface side bus bar electrode 25b Back side current collecting electrode 25b1 Back side bus bar Electrode 26 Side surface 3 Connecting member 4 Buffer 41 Coating layer J cell connection direction

Claims (6)

複数の太陽電池セルと導電性の接続部材とを備える太陽電池ストリングであって、
前記複数の太陽電池セルの各々は、受光面に設けられた受光面側集電電極と、裏面に設けられた裏面側集電電極とを備え、
前記受光面に対して平面視した場合において、前記複数の太陽電池セルのうち、一の太陽電池セルの前記受光面側集電電極の一部と、前記一の太陽電池セルと隣接する他の太陽電池セルの前記裏面側集電電極の一部とが重なった状態で前記接続部材を介して接続されており、
前記接続部材は、前記受光面側集電電極と前記裏面側集電電極との間に配置される時点で流動性を有しており、
少なくとも、前記受光面における前記受光面側集電電極の近傍、または、前記裏面における前記裏面側集電電極の近傍には、前記受光面または前記裏面よりも、前記接続部材に対して濡れ性の低い緩衝部が形成されている太陽電池ストリング。
A solar cell string comprising a plurality of solar cells and a conductive connecting member.
Each of the plurality of solar cell cells includes a light receiving surface side current collecting electrode provided on the light receiving surface and a back surface side current collecting electrode provided on the back surface.
When viewed in a plan view with respect to the light receiving surface, a part of the light receiving surface side current collecting electrode of one solar cell and another solar cell adjacent to the one solar cell among the plurality of solar cells. A part of the back side current collecting electrode of the solar cell is overlapped and connected via the connecting member.
The connecting member has fluidity at the time when it is arranged between the light receiving surface side current collecting electrode and the back surface side current collecting electrode.
At least in the vicinity of the light receiving surface side current collecting electrode on the light receiving surface or in the vicinity of the back surface side current collecting electrode on the back surface, the light receiving surface or the back surface is more wettable with respect to the connection member. A solar cell string with a low buffer formed.
前記複数の太陽電池セルの各々は、少なくとも前記受光面または前記裏面にテクスチャ構造による凹凸を有し、
前記緩衝部は、前記テクスチャ構造による凹凸よりも小さな凹凸の領域を有する、請求項1に記載の太陽電池ストリング。
Each of the plurality of solar cells has irregularities due to a texture structure at least on the light receiving surface or the back surface.
The solar cell string according to claim 1, wherein the cushioning portion has a region of unevenness smaller than the unevenness due to the texture structure.
前記緩衝部は、前記テクスチャ構造による凹凸を覆う被覆層を含む、請求項2に記載の太陽電池ストリング。 The solar cell string according to claim 2, wherein the buffer portion includes a coating layer that covers unevenness due to the texture structure. 複数の太陽電池セルと導電性の接続部材とを備える太陽電池モジュールであって、
前記複数の太陽電池セルの各々は、受光面に設けられた受光面側集電電極と、裏面に設けられた裏面側集電電極とを備え、
前記受光面に対して平面視した場合において、前記複数の太陽電池セルのうち、一の太陽電池セルの前記受光面側集電電極の一部と、前記一の太陽電池セルと隣接する他の太陽電池セルの前記裏面側集電電極の一部とが重なった状態で前記接続部材を介して接続されており、
前記接続部材は、前記受光面側集電電極と前記裏面側集電電極との間に配置される時点で流動性を有しており、
少なくとも、前記受光面における前記受光面側集電電極の近傍、または、前記裏面における前記裏面側集電電極の近傍には、前記受光面または前記裏面よりも、前記接続部材に対して濡れ性の低い緩衝部が形成されている太陽電池モジュール。
A solar cell module including a plurality of solar cell cells and a conductive connecting member.
Each of the plurality of solar cell cells includes a light receiving surface side current collecting electrode provided on the light receiving surface and a back surface side current collecting electrode provided on the back surface.
When viewed in a plan view with respect to the light receiving surface, a part of the light receiving surface side current collecting electrode of one solar cell and another solar cell adjacent to the one solar cell among the plurality of solar cells. A part of the back side current collecting electrode of the solar cell is overlapped and connected via the connecting member.
The connecting member has fluidity at the time when it is arranged between the light receiving surface side current collecting electrode and the back surface side current collecting electrode.
At least in the vicinity of the light receiving surface side current collecting electrode on the light receiving surface or in the vicinity of the back surface side current collecting electrode on the back surface, the light receiving surface or the back surface is more wettable with respect to the connection member. A solar cell module in which a low shock absorber is formed.
少なくとも受光面または裏面にテクスチャ構造による凹凸を有すると共に、前記受光面に設けられた受光面側集電電極と、前記裏面に設けられた裏面側集電電極とを備える太陽電池セルの製造方法であって、
前記受光面側集電電極及び前記裏面側集電電極を形成する際、前記各電極の原料である導電性の電極原料ペーストを形成予定位置に塗布し、
塗布の後、前記電極原料ペーストに含まれていた液状樹脂のうち少なくとも一部が、前記受光面及び前記裏面における前記電極原料ペーストの塗布位置の近傍に染み出て固まることにより、前記テクスチャ構造による凹凸よりも小さな凹凸の領域が形成される、太陽電池セルの製造方法。
A method for manufacturing a solar cell in which at least the light receiving surface or the back surface has irregularities due to a texture structure, and the light receiving surface side current collecting electrode provided on the light receiving surface and the back surface side current collecting electrode provided on the back surface are provided. There,
When forming the light receiving surface side current collecting electrode and the back surface side current collecting electrode, a conductive electrode raw material paste which is a raw material of each of the electrodes is applied to a planned formation position.
After coating, at least a part of the liquid resin contained in the electrode raw material paste exudes and hardens in the vicinity of the coating position of the electrode raw material paste on the light receiving surface and the back surface, thereby resulting in the texture structure. A method for manufacturing a solar cell in which an uneven region smaller than an uneven region is formed.
前記電極原料ペーストが、導電性粒子と前記液状樹脂との混合物である、請求項5に記載の太陽電池セルの製造方法。 The method for producing a solar cell according to claim 5, wherein the electrode raw material paste is a mixture of conductive particles and the liquid resin.
JP2019054416A 2019-03-22 2019-03-22 Manufacturing method of solar cell string, solar cell module, and solar cell Pending JP2020155684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019054416A JP2020155684A (en) 2019-03-22 2019-03-22 Manufacturing method of solar cell string, solar cell module, and solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019054416A JP2020155684A (en) 2019-03-22 2019-03-22 Manufacturing method of solar cell string, solar cell module, and solar cell

Publications (1)

Publication Number Publication Date
JP2020155684A true JP2020155684A (en) 2020-09-24

Family

ID=72559779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019054416A Pending JP2020155684A (en) 2019-03-22 2019-03-22 Manufacturing method of solar cell string, solar cell module, and solar cell

Country Status (1)

Country Link
JP (1) JP2020155684A (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06140651A (en) * 1992-10-27 1994-05-20 Canon Inc Solar cell module
JP2001326370A (en) * 2000-05-12 2001-11-22 Mitsubishi Electric Corp Solar battery and method of manufacturing the same
JP2010263012A (en) * 2009-04-30 2010-11-18 Mitsubishi Electric Corp Method of manufacturing solar cell
JP2011086671A (en) * 2009-10-13 2011-04-28 Mitsubishi Chemicals Corp Solar cell, and method for manufacturing the same
JP2011151290A (en) * 2010-01-25 2011-08-04 Panasonic Corp Semiconductor device, and method of manufacturing the same
JP2011249599A (en) * 2010-05-27 2011-12-08 Panasonic Corp Semiconductor packaging substrate and package structure using the same
WO2012105068A1 (en) * 2011-02-04 2012-08-09 三菱電機株式会社 Pattern-forming method and solar cell manufacturing method
JP2013098241A (en) * 2011-10-28 2013-05-20 Kaneka Corp Crystalline silicon solar cell and method for manufacturing the same
WO2014132282A1 (en) * 2013-02-26 2014-09-04 三洋電機株式会社 Solar cell module
WO2014185537A1 (en) * 2013-05-17 2014-11-20 株式会社カネカ Solar cell, production method therefor, and solar cell module
WO2015152020A1 (en) * 2014-03-31 2015-10-08 株式会社カネカ Solar cell module and method for manufacturing same
US20170256661A1 (en) * 2016-03-02 2017-09-07 Solarcity Corporation Method of manufacturing photovoltaic panels with various geometrical shapes

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06140651A (en) * 1992-10-27 1994-05-20 Canon Inc Solar cell module
JP2001326370A (en) * 2000-05-12 2001-11-22 Mitsubishi Electric Corp Solar battery and method of manufacturing the same
JP2010263012A (en) * 2009-04-30 2010-11-18 Mitsubishi Electric Corp Method of manufacturing solar cell
JP2011086671A (en) * 2009-10-13 2011-04-28 Mitsubishi Chemicals Corp Solar cell, and method for manufacturing the same
JP2011151290A (en) * 2010-01-25 2011-08-04 Panasonic Corp Semiconductor device, and method of manufacturing the same
JP2011249599A (en) * 2010-05-27 2011-12-08 Panasonic Corp Semiconductor packaging substrate and package structure using the same
WO2012105068A1 (en) * 2011-02-04 2012-08-09 三菱電機株式会社 Pattern-forming method and solar cell manufacturing method
JP2013098241A (en) * 2011-10-28 2013-05-20 Kaneka Corp Crystalline silicon solar cell and method for manufacturing the same
WO2014132282A1 (en) * 2013-02-26 2014-09-04 三洋電機株式会社 Solar cell module
WO2014185537A1 (en) * 2013-05-17 2014-11-20 株式会社カネカ Solar cell, production method therefor, and solar cell module
WO2015152020A1 (en) * 2014-03-31 2015-10-08 株式会社カネカ Solar cell module and method for manufacturing same
US20170256661A1 (en) * 2016-03-02 2017-09-07 Solarcity Corporation Method of manufacturing photovoltaic panels with various geometrical shapes

Similar Documents

Publication Publication Date Title
CN105874609B (en) The modular manufacture of solar energy battery core with low resistance electrode
JP4294048B2 (en) Solar cell module
US8969708B2 (en) Solar cell module
JP6052742B2 (en) Solar cell module and method for manufacturing solar cell module
US10249770B2 (en) Solar cell module
US20160181454A1 (en) Solar cell module and method for manufacturing the same
JP5879514B2 (en) Solar cell module
US9691913B2 (en) Solar cell module and method for manufacturing same
JP2011187567A (en) Solar cell module
JP2020155684A (en) Manufacturing method of solar cell string, solar cell module, and solar cell
WO2011152372A1 (en) Solar cell module and method for manufacturing same
US20150083187A1 (en) Solar cell module and solar cell module manufacturing method
JP7442377B2 (en) Solar cell string and method for manufacturing solar cell string
JP2020057694A (en) Solar cell
US20170092789A1 (en) Solar cell module
KR102084854B1 (en) solar cell string and manufacturing method thereof
JP6325925B2 (en) Solar cell module and method for manufacturing solar cell module
JP2013065690A (en) Semiconductor module, semiconductor cell with wiring sheet, wiring sheet, semiconductor module manufacturing method, and manufacturing method of semiconductor cell with wiring sheet
TWI653644B (en) Conductive tape, solar cell string and solar cell module
JP6412427B2 (en) Solar cell module, wiring sheet for solar cell module, and method for manufacturing the same
CN219979576U (en) Solar thin film battery
JP6083685B2 (en) Solar cell module and method for manufacturing solar cell module
TW201633553A (en) Solar cell, solar cell module and manufacturing method thereof
KR101283237B1 (en) Solar apparatus
KR101382995B1 (en) Solar cell and method of fabricating the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230414