JPS6317341B2 - - Google Patents

Info

Publication number
JPS6317341B2
JPS6317341B2 JP57039517A JP3951782A JPS6317341B2 JP S6317341 B2 JPS6317341 B2 JP S6317341B2 JP 57039517 A JP57039517 A JP 57039517A JP 3951782 A JP3951782 A JP 3951782A JP S6317341 B2 JPS6317341 B2 JP S6317341B2
Authority
JP
Japan
Prior art keywords
layer
solar cell
type layer
main surface
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57039517A
Other languages
Japanese (ja)
Other versions
JPS58157175A (en
Inventor
Kunihiro Matsukuma
Koichi Suda
Tadashi Sakagami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57039517A priority Critical patent/JPS58157175A/en
Publication of JPS58157175A publication Critical patent/JPS58157175A/en
Publication of JPS6317341B2 publication Critical patent/JPS6317341B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 本発明は太陽電池素子の背面電極構造に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a back electrode structure of a solar cell element.

太陽電池素子は、太陽エネルギーを直接電気エ
ネルギーに変換する素子で、その要部をなす基板
として単結晶シリコン、多結晶シリコン、−
族化合物、CaS化合物、アモルフアスシリコン、
有機材料等が使用されている。本発明が対象とし
ている太陽電池素子は、単結晶シリコンを用いた
いわゆるPm接合型である。
A solar cell element is an element that directly converts solar energy into electrical energy, and the main part of the solar cell element is a substrate made of single crystal silicon, polycrystalline silicon, -
group compounds, CaS compounds, amorphous silicon,
Organic materials are used. The solar cell element targeted by the present invention is a so-called Pm junction type solar cell element using single crystal silicon.

太陽電池素子の量産化が進むにつれ、シリコン
基板への集電用の電極をいかにして低コストでか
つ高信頼性を持たせて形成するかが重要課題の1
つとなつてきている。第1図はシリコン太陽電池
素子の代表的な構成例である。抵抗率0.5〜5
Ω・cm、厚さ0.3mmのP型シリコン基板1の一方
の主表面(受光面)11全面にシート抵抗値が約
50Ω/□、深さ0.3〜0.5μmのn+層が形成され、
このn+層に接して受光面側の電極2および反射
防止膜3が形成され、P型シリコン基板1の他方
の主表面(背面)12にシート抵抗値が数十Ω/
□、深さ1〜2μmのp+層が形成され、このp+
に接して全面に背面電極4が形成された構造とな
つている。
As mass production of solar cell elements progresses, one of the important issues is how to form current collection electrodes on silicon substrates at low cost and with high reliability.
It's becoming more and more. FIG. 1 shows a typical configuration example of a silicon solar cell element. Resistivity 0.5~5
A sheet resistance value of approximately
An n + layer of 50Ω/□ and a depth of 0.3 to 0.5 μm is formed.
An electrode 2 and an antireflection film 3 on the light-receiving surface side are formed in contact with this n + layer, and the sheet resistance value is several tens of Ω/
□, a p + layer with a depth of 1 to 2 μm is formed, and a back electrode 4 is formed on the entire surface in contact with this p + layer.

背面電極4は高価なAg等を含むCr・Ni・Ag
等の多層構造が採用され、その形成には工数の多
い真空蒸着法使用されている。これは、背面電極
4を量産性の高いめつき法が適用できかつ、材料
費の安価なCu,Ni,Cr等で形成することが困難
のためである。すなわち、これらの金属をp+
上にめつきした場合、めつきのみでは接着性が不
十分でめつき後に熱処理が不可欠であり、この熱
処理によつてこれらの金属がp+層へ拡散してn
型反転を引き起したりする不都合がある。さら
に、真空蒸着法、めつき法のいずれの場合におい
ても、背面電極4のp+層に対する密着強度をあ
るレベル以上に再現性良く保持していくために
は、p+層表面の清浄度をあるレベル以上に保つ
必要があり、製造作業場の環境をはじめ清浄度を
高めるための表面洗浄処理に工数が多くコスト高
となる欠点がある。
The back electrode 4 is made of Cr/Ni/Ag containing expensive Ag, etc.
A multilayer structure such as the above is adopted, and the vacuum evaporation method, which requires a large number of steps, is used for its formation. This is because it is difficult to form the back electrode 4 using Cu, Ni, Cr, etc., which can be applied with a plating method that is highly mass-producible and has low material cost. In other words, when these metals are plated on the p + layer, adhesion is insufficient with plating alone and heat treatment is essential after plating, and this heat treatment causes these metals to diffuse into the p + layer. Te n
This has the disadvantage of causing type reversal. Furthermore, in both the vacuum evaporation method and the plating method, in order to maintain the adhesion strength of the back electrode 4 to the p + layer at a certain level or higher with good reproducibility, the cleanliness of the p + layer surface must be maintained. It is necessary to maintain the level above a certain level, and there is a drawback that surface cleaning treatment to improve the cleanliness of the environment of the manufacturing workplace and other areas requires a large number of man-hours and costs are high.

本発明の目的は、前記した従来技術の不都合欠
点をなくし、量産性が高くかつ低コストで信頼性
の高い背面電極を有する太陽電池素子を提供する
にある。
An object of the present invention is to eliminate the disadvantages of the prior art described above, and to provide a solar cell element having a back electrode that is highly mass-producible, inexpensive, and highly reliable.

かかる目的を奏する本発明太陽電池素子の特徴
とするところは、シリコン基板の受光面とは反対
側に設ける背面電極をアルミニウム・シリコン共
晶層とし、その上にモリブデン及びタングステン
から選ばれた金属電極を接着した点にある。
The solar cell element of the present invention that achieves this purpose is characterized by an aluminum-silicon eutectic layer as the back electrode provided on the opposite side of the light-receiving surface of the silicon substrate, and a metal electrode selected from molybdenum and tungsten on the back electrode. It is at the point where the is glued.

本発明の太陽電池素子の特徴を具体的に言え
ば、P型シリコン基板の背面へAlを介してAlと
接着可能でかつシリコンと熱膨張係数のほぼ等し
いMo,Wから選ばれる少くとも1種の金属電極
を置いて加熱し、Alとシリコンとの合金反応を
行なわしめ、オーミツクコンタクトの為のp+
層と背面電極としてのAl−シリコン共晶層、更
に共晶層への金属電極の接着を同時に形成し得る
構成とした。すなわち、Alとシリコンの合金反
応では、反応後の冷却過程で、シリコン基板との
界面に、AlをP型不純物源として固溶したp+
のシリコン再成長層が形成され、この上にAl−
シリコン共晶層が形成される。このp+型シリコ
ン再生長層がp+層となり、Al−シリコン共晶層
が背面電極となる。Al−シリコン共晶層は、W,
Moを除く他の金属との接着に適さぬため、W,
Moから選ばられる少なくとも1種の金属を外部
回路接続用リードとの接着のためにAl−シリコ
ン共晶層からなる背面電極に接着しておくことが
必要である。Mo,Wは、高価な金属であるが、
前記した如く、外部回路接続用リードとの接着の
役目をするだけでよいので、換言すれば、背面電
極上全面に亘つて接着する必要がないので、材料
使用量を極めて少なくすることができ、価格上の
問題は生じない。またこのMo,Wの構造は網線
とすることにより、外部回路接続用リードとの接
着作業時に、位置合せ作業が不要となる効果を奏
する。また、予め、鉛系低温半田による接続が可
能なCu,Ni,Ag,Au,Fe,Snから選ばれる少
なくとも1種の外部回路接続用リードを当該
Mo,W金属または網線に溶接あるいは網線を構
成する素線の一部とすることにより、外部回路接
続時の当該背面電極との接着作業を不要とするこ
とができ、複数の太陽電池素子相互を直列、また
は並列接続して平面上に並べる作業時に問題とな
る素子の受光面電極および背面電極同時接続作業
の困難性をなくすことができる。
Specifically speaking, the solar cell element of the present invention has at least one type selected from Mo and W that can be bonded to the back surface of a P-type silicon substrate via Al and has a coefficient of thermal expansion almost equal to that of silicon. A metal electrode is placed and heated to cause an alloy reaction between Al and silicon, forming a p + type layer for ohmic contact, an Al-silicon eutectic layer as a back electrode, and a metal electrode to the eutectic layer. The structure allows for simultaneous formation of adhesion. In other words, in the alloy reaction of Al and silicon, a p + type silicon regrowth layer containing Al as a solid solution as a P type impurity source is formed at the interface with the silicon substrate during the cooling process after the reaction, and on this p + type silicon regrowth layer is formed. −
A silicon eutectic layer is formed. This p + type silicon regrowth layer becomes a p + layer, and the Al-silicon eutectic layer becomes a back electrode. The Al-silicon eutectic layer consists of W,
Since it is not suitable for adhesion with other metals except Mo, W,
It is necessary to adhere at least one metal selected from Mo to the back electrode made of the Al-silicon eutectic layer for adhesion to external circuit connection leads. Although Mo and W are expensive metals,
As mentioned above, it only needs to serve as an adhesive to the external circuit connection lead, in other words, there is no need to adhere it over the entire surface of the back electrode, so the amount of material used can be extremely reduced. There are no price issues. Moreover, by making the structure of Mo and W into a mesh wire, there is an effect that positioning work is not required when adhering to an external circuit connection lead. In addition, at least one external circuit connection lead selected from Cu, Ni, Ag, Au, Fe, and Sn, which can be connected using lead-based low-temperature solder, must be attached in advance to the relevant device.
By welding Mo, W metal or mesh wire or making it a part of the strands constituting the mesh wire, it is possible to eliminate the need for adhesion work with the back electrode when connecting an external circuit, and it is possible to connect multiple solar cell elements. It is possible to eliminate the difficulty of simultaneously connecting the light-receiving surface electrode and back electrode of elements, which is a problem when arranging them on a plane by connecting them in series or in parallel.

以下、本発明太陽電池素子を実施例として示し
た図面によりさらに詳しく説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The solar cell element of the present invention will be explained in more detail below with reference to drawings showing examples thereof.

第2図は本発明による太陽電池素子の一例を斜
断面で表わした概略図である。厚さ約0.3mmのP
型シリコン基板1の一方の主表面(受光面)11
に深さ約0.3μmのn+層が形成され、このn+層に接
して反射防止膜3および受光面電極2が形成さ
れ、さらに、シリコン基板1の他方の主表面(背
面)12に深さ数μm、シート抵抗値が数十Ω/
□のp+層および、厚さが数十μmのAl−シリコ
ン合金層よりなる背面電極5、背面電極5に接着
したMo,Wから選ばれる少なくとも1種の金属
電極6が形成されている。このp+層、背面電極
5および背面電極5と接着した金属電極6は公知
の技術、すなわち、Alの真空蒸着法または、Al
金属粉末金属とガラス質粉末と有機結着と溶剤と
から成る印刷インキを印刷法等によりシリコン基
板1の背面12に形成し、その上に、金属電極6
を置き、焼成することによりAl−シリコンの合
金反応を起すことによつて形成されている。この
Mo,Wから選ばれる少なくとも1種の金属から
なる金属電極の他の具体例としては、例えば第3
図に示す如く、金属電極を網線構造としたり(a)、
金属電極を板状とし、それにCu,Ni,Ag,Au,
Fe,Snから選ばれる少なくとも1種の金属線7
を溶接したり(b)、または、金属電極を網線構造と
し、その素線の一部としてCu,Ni,Ag,Au,
Fe,Snから選ばれた金属線62を使用したもの
(c)などがある。61はW,Moから選ばれた金属
の素線である。以上述べた本発明の構造の太陽電
池素子を作り、特性評価を行つた結果、従来例の
太陽電池素子に比べて背面電極の接着信頼性が著
るしく高なり、光エネルギー変換効率は同等以上
であつた。
FIG. 2 is a schematic diagram showing an example of a solar cell element according to the present invention in a diagonal cross section. P with a thickness of about 0.3mm
One main surface (light-receiving surface) 11 of the mold silicon substrate 1
An n + layer with a depth of approximately 0.3 μm is formed on the n + layer, an antireflection film 3 and a light-receiving surface electrode 2 are formed in contact with this n + layer, and a deep layer is formed on the other main surface (back surface) 12 of the silicon substrate 1 . The sheet resistance is several tens of Ω/
A p + layer of □, a back electrode 5 made of an Al-silicon alloy layer with a thickness of several tens of micrometers, and at least one metal electrode 6 selected from Mo and W bonded to the back electrode 5 are formed. This p + layer, the back electrode 5, and the metal electrode 6 bonded to the back electrode 5 are formed using a known technique, that is, a vacuum evaporation method of Al or an Al
A printing ink consisting of a metal powder, a glassy powder, an organic binder, and a solvent is formed on the back surface 12 of the silicon substrate 1 by a printing method, and a metal electrode 6 is formed on the back surface 12 of the silicon substrate 1.
It is formed by depositing and firing to cause an Al-silicon alloy reaction. this
Other specific examples of metal electrodes made of at least one metal selected from Mo and W include, for example,
As shown in the figure, the metal electrode has a mesh wire structure (a),
The metal electrode is plate-shaped, and Cu, Ni, Ag, Au,
At least one metal wire 7 selected from Fe and Sn
(b), or by making the metal electrode into a mesh wire structure and using Cu, Ni, Ag, Au, etc. as part of the wire.
Using metal wire 62 selected from Fe and Sn
(c) etc. 61 is a metal wire selected from W and Mo. As a result of fabricating a solar cell element with the structure of the present invention described above and evaluating its characteristics, it was found that the adhesion reliability of the back electrode was significantly higher than that of the conventional solar cell element, and the light energy conversion efficiency was equal to or higher than that of the conventional solar cell element. It was hot.

また背面電極及びp+層形成、並びに、太陽電
池素子どうしの直列または並列接続作業に要する
製造原価の大幅な低減が可能となつた。これらの
ことから本発明は低価格、高信頼性の太陽電池素
子の大量生産に大きく寄与するものである。
In addition, it has become possible to significantly reduce the manufacturing costs required for forming the back electrode and p + layer, as well as for connecting solar cell elements in series or in parallel. For these reasons, the present invention greatly contributes to the mass production of low-cost, highly reliable solar cell elements.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の太陽電池素子を示す斜視断面
図、第2図は本発明の太陽電池素子の一実施例を
示す斜視図、第3図は本発明の太陽電池素子の背
面電極部の他の実施例を示す斜視断面図である。 1……シリコン基板、2……電極、3……反射
防止膜、4,5……背面電極、6……金属電極。
FIG. 1 is a perspective sectional view showing a conventional solar cell element, FIG. 2 is a perspective view showing an embodiment of the solar cell element of the present invention, and FIG. It is a perspective sectional view showing an example of this. DESCRIPTION OF SYMBOLS 1... Silicon substrate, 2... Electrode, 3... Antireflection film, 4, 5... Back electrode, 6... Metal electrode.

Claims (1)

【特許請求の範囲】 1 互いに反対側に位置する一対の主表面間に、
一方の主表面に隣接し一方の主表面に沿つて広が
つているn型層と、n型層に隣接してn型層との
間にpn接合を形成するn型層より低不純物濃度
を有する第1のp型層と、第1のp型層及び他方
の主表面に隣接し第1のp型層より高不純物濃度
を有しかつアルミニウムが不純物として存在して
いる第2のp型層とを有し、一方の主表面を受光
面とするシリコン基板、 シリコン基板の一方の主表面に選択的に形成さ
れた第1の電極、 シリコン基板の他方の主表面にアルミニウム・
シリコン共晶層を介して接着され、モリブデン及
びタングステンから選ばれた金属から成る網線状
の第2の電極、 を具備することを特徴とする太陽電池素子。 2 特許請求の範囲第1項において、網線を構成
する素線の一部にCu,Ni,Ag,Au,Fe,Snか
ら選ばれた1種の金属線を含むことを特徴とする
太陽電池素子。
[Claims] 1. Between a pair of main surfaces located on opposite sides,
The n-type layer adjacent to one main surface and extending along the other main surface has a lower impurity concentration than the n-type layer forming a p-n junction between the n-type layer and the n-type layer. a second p-type layer adjacent to the first p-type layer and the other main surface and having a higher impurity concentration than the first p-type layer and in which aluminum is present as an impurity; a silicon substrate having one main surface as a light-receiving surface; a first electrode selectively formed on one main surface of the silicon substrate; and an aluminum layer on the other main surface of the silicon substrate.
A solar cell element comprising: a second electrode in the form of a reticulated wire, which is bonded via a silicon eutectic layer and made of a metal selected from molybdenum and tungsten. 2. A solar cell according to claim 1, characterized in that some of the wires constituting the mesh wire include one type of metal wire selected from Cu, Ni, Ag, Au, Fe, and Sn. element.
JP57039517A 1982-03-15 1982-03-15 Solar battery element Granted JPS58157175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57039517A JPS58157175A (en) 1982-03-15 1982-03-15 Solar battery element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57039517A JPS58157175A (en) 1982-03-15 1982-03-15 Solar battery element

Publications (2)

Publication Number Publication Date
JPS58157175A JPS58157175A (en) 1983-09-19
JPS6317341B2 true JPS6317341B2 (en) 1988-04-13

Family

ID=12555228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57039517A Granted JPS58157175A (en) 1982-03-15 1982-03-15 Solar battery element

Country Status (1)

Country Link
JP (1) JPS58157175A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4703553A (en) * 1986-06-16 1987-11-03 Spectrolab, Inc. Drive through doping process for manufacturing low back surface recombination solar cells
CN105023972A (en) * 2015-07-18 2015-11-04 广东爱康太阳能科技有限公司 Manufacturing method of crystalline silicon solar cell

Also Published As

Publication number Publication date
JPS58157175A (en) 1983-09-19

Similar Documents

Publication Publication Date Title
US4542258A (en) Bus bar interconnect for a solar cell
JP5159725B2 (en) Solar cell string and solar cell module using the same
JP3548246B2 (en) Photovoltaic element and method for manufacturing the same
JP5375450B2 (en) Solar cell and solar cell module
US8940998B2 (en) Free-standing metallic article for semiconductors
JP3751539B2 (en) Thin film solar cell and manufacturing method thereof
JP5726303B2 (en) Solar cell and method for manufacturing the same
EP1079445A2 (en) Thermoelectric conversion device and method of manufacturing the same
US8569096B1 (en) Free-standing metallic article for semiconductors
JP2004247402A (en) Solar cell module and its manufacturing method
TW200828609A (en) Semiconductor structure and process for forming ohmic connections to a semiconductor structure
WO2017177726A1 (en) Solar cell module and method for manufacturing same, assembly, and system
JPH09116175A (en) Electrode structure of photovoltaic device
JP3992126B2 (en) Manufacturing method of solar cell
JPH08330615A (en) Series solar cell and manufacture thereof
JP2641800B2 (en) Solar cell and method of manufacturing the same
JP4780953B2 (en) Solar cell element and solar cell module using the same
GB2107928A (en) Solar cell assembly
JP2794141B2 (en) Method for manufacturing photoelectric conversion device
JP2000340812A (en) Solar battery
JPS6317341B2 (en)
JP4206264B2 (en) Method for manufacturing photoelectric conversion device
JPH0543489Y2 (en)
JP4219238B2 (en) Photovoltaic device and manufacturing method thereof
JPH09213975A (en) Forming method of collecting electrode