JPH0465282B2 - - Google Patents

Info

Publication number
JPH0465282B2
JPH0465282B2 JP58239471A JP23947183A JPH0465282B2 JP H0465282 B2 JPH0465282 B2 JP H0465282B2 JP 58239471 A JP58239471 A JP 58239471A JP 23947183 A JP23947183 A JP 23947183A JP H0465282 B2 JPH0465282 B2 JP H0465282B2
Authority
JP
Japan
Prior art keywords
drain
water
water wall
recirculation
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58239471A
Other languages
Japanese (ja)
Other versions
JPS60133203A (en
Inventor
Yukio Myama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP23947183A priority Critical patent/JPS60133203A/en
Publication of JPS60133203A publication Critical patent/JPS60133203A/en
Publication of JPH0465282B2 publication Critical patent/JPH0465282B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Description

【発明の詳細な説明】 本発明は貫流ボイラ装置に係り、特に起動時や
負荷変化時において良好な負荷特性を実現するに
好適な貫流ボイラ装置の水壁系統に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a once-through boiler system, and more particularly to a water wall system of a once-through boiler system suitable for achieving good load characteristics at startup and during load changes.

従来のこの種の貫流ボイラ装置用水壁系統は、
一般に第1図に示すように、給水はボイラ給水ポ
ンプ1で昇圧されたのち順次、ボイラ給水流調弁
2、ボイラ(ドレン)再循環合流部3、節炭器
4、水壁5を経て加熱され、次いで気水分離器6
に送られて気水分離される。分離物の内、ドレン
はドレンタンク8に貯えられたのちドレン再循環
ポンプ9で昇圧され、次いでドレン再循環流調弁
10を通つて節炭器4の入口部に設けられたボイ
ラ再循環合流部3に戻される。
The conventional water wall system for this type of once-through boiler equipment is
Generally, as shown in Fig. 1, feed water is pressurized by a boiler feed water pump 1, and then sequentially passed through a boiler feed water flow control valve 2, a boiler (drain) recirculation confluence section 3, an energy saver 4, and a water wall 5, where it is heated. and then steam water separator 6
The water is separated from the water. Among the separated substances, drain is stored in a drain tank 8, then pressurized by a drain recirculation pump 9, and then passed through a drain recirculation flow control valve 10 to the boiler recirculation confluence provided at the inlet of the economizer 4. Returned to part 3.

また、第1図中の12と17はそれぞれドレン
タンクのレベル制御系とボイラ給水の制御系を示
すものであるが、それらの詳細は第2図および第
3図に示される。先ず、制御系12によるドレン
タンクレベルの制御は通常、検出器11により検
知されるドレンレベルに比例して関数要素21で
ドレン再循環流調弁10を操作することにより行
なわれる。関数要素21がドレン再循環流調弁1
0を全開させてもなおドレンタンクレベルが上昇
する場合には、関数要素22によりドレンタンク
ブロー流調弁13を操作してドレンをブローし、
もつてレベルを低下させる。
Further, numerals 12 and 17 in FIG. 1 indicate a drain tank level control system and a boiler feed water control system, respectively, the details of which are shown in FIGS. 2 and 3. First, control of the drain tank level by the control system 12 is normally performed by operating the drain recirculation flow control valve 10 with the function element 21 in proportion to the drain level detected by the detector 11. Function element 21 is drain recirculation flow control valve 1
If the drain tank level still rises even after fully opening 0, the drain tank blow flow control valve 13 is operated by the function element 22 to blow the drain,
It also lowers the level.

一方、制御系17による節炭器給水量の制御は
通常、水壁流量検出器15により検知される節炭
器給水量が給水指令18に一致するようにボイラ
給水流調弁2を操作することにより行われる。た
だし、水壁5には水壁管を保護するためにボイラ
全負荷時の3割程度の流量(水壁最低給水量)を
確保する必要があるとされているため、給水指令
18は最低値制限要素23を通すことにより水壁
流量目標値30とされている。また、節炭器4内
での蒸気発生(ウオータハンマ等の原因となる)
を防ぐため、水壁圧力検出器20により検知され
る水壁圧力を関数要素26に通して節炭器出口流
体温度制限値31を作り、これと検出器19で検
知される節炭器出口流体温度とを基に減算要素2
7および比例積分要素28を経てスチーミング防
止信号32を得る。この信号は、節炭器出口の流
体温度が制限値31を越えると信号高選択要素2
9で選択に賦され、これにより給水量を増加し、
もつて節炭器内流体の温度を低下させる機能を持
つ。
On the other hand, the control system 17 normally controls the amount of water supplied to the economizer by operating the boiler water flow control valve 2 so that the amount of water supplied to the economizer detected by the water wall flow rate detector 15 matches the water supply command 18. This is done by However, in order to protect the water wall pipes, water wall 5 must have a flow rate of approximately 30% of the boiler's full load (water wall minimum water supply amount), so water supply command 18 is set at the minimum value. By passing the restricting element 23, the water wall flow rate target value 30 is set. Also, steam generation inside the economizer 4 (causing water hammer, etc.)
In order to prevent this, the water wall pressure detected by the water wall pressure detector 20 is passed through the function element 26 to create the economizer outlet fluid temperature limit value 31, and this and the economizer outlet fluid temperature detected by the detector 19 are Subtraction element 2 based on temperature
7 and a proportional-integral element 28 to obtain an anti-steaming signal 32. This signal is activated by the signal high selection element 2 when the fluid temperature at the outlet of the economizer exceeds the limit value 31.
9 is assigned to selection, which increases the amount of water supply,
It also has the function of lowering the temperature of the fluid inside the economizer.

このような構成の貫流ボイラは、水壁最低給水
量以下の蒸気を発生させる場合には再循環ライン
を用いた運転(再循環運転)となり、一方、水壁
最低給水量を越える蒸気を発生させる場合には再
循環ラインを用いない運転(貫流運転)となる。
そして、それらの中間にはベンソンポイントと呼
ばれる移行点が存在する。
A once-through boiler with such a configuration operates using a recirculation line (recirculation operation) when generating steam below the water wall minimum water supply amount, and on the other hand, when generating steam exceeding the water wall minimum water supply amount. In some cases, operation is performed without using a recirculation line (once-through operation).
There is a transition point called the Benson Point between them.

しかるに、このような構成の従来貫流ボイラに
は次の欠点がある。
However, the conventional once-through boiler with such a configuration has the following drawbacks.

(1) 起動時にドレンタンク8からのブロー量が多
くなるため熱損失が大きくなり、従つて起動時
間が長い。
(1) At startup, the amount of blow from the drain tank 8 increases, resulting in large heat loss and therefore a long startup time.

(2) 再循環運転中の蒸気圧力制御応答が遅い。(2) Steam pressure control response is slow during recirculation operation.

(3) ベンソンポイント付近で蒸気圧力制御上逆応
答が生ずる。
(3) Reverse response occurs in steam pressure control near Benson Point.

上記(1)の欠点は次の理由による。すなわち、ボ
イラ点火後は気水分離器6から出るドレンのエン
タルピが遂次上昇し、蒸気が発生する時点では飽
和水となる。しかるに、この飽和ドレンを節炭器
4へ再循環する場合には、節炭器4内での蒸気発
生を防ぐために節炭器4入口での給水エンタルピ
を飽和水のそれよりもかなり低く保つ必要があ
る。そのため、例えば気水分離器6から水壁最低
給水量に近い飽和水が流出している場合でも、こ
れを節炭器4入口に全量再循環することはでき
ず、ボイラ給水流調弁2から相当量の冷給水を流
入させる必要がある。しかし、このような状態下
ではドレンタンク11のレベルが上昇するので、
熱損失を伴うもののドレンタンクブロー流調弁1
3から連続的に飽和水をブローしてバランスを保
たねばならない。このような状態は、蒸発量が増
加し、ドレンタンク8内のドレン量が相当減少す
るまで続く。ちなみに、実プラントは、点火後ボ
イラ全負荷時の20%程度の蒸発量が発生する時点
まで継続する例が知られている。通常、ボイラ起
動時には燃焼ガス温度制限等により燃料投入量が
制限されるので、上記の熱損失はそのまま起動時
間の延長要因となる。
The drawback of (1) above is due to the following reasons. That is, after the boiler is ignited, the enthalpy of the drain discharged from the steam-water separator 6 gradually increases, and by the time steam is generated, it becomes saturated water. However, when this saturated drain is recirculated to the economizer 4, it is necessary to keep the enthalpy of the feed water at the inlet of the economizer 4 considerably lower than that of saturated water in order to prevent steam generation within the economizer 4. There is. Therefore, for example, even if saturated water close to the water wall minimum water supply flow is flowing out from the steam water separator 6, it is not possible to recirculate the entire amount to the inlet of the economizer 4, and the water flows out from the boiler water flow control valve 2. A considerable amount of cold water needs to flow in. However, under such conditions, the level of the drain tank 11 increases, so
Drain tank blow flow control valve 1 that involves heat loss
The balance must be maintained by continuously blowing saturated water from step 3 onwards. This state continues until the amount of evaporation increases and the amount of drain in the drain tank 8 decreases considerably. Incidentally, it is known that in actual plants, after ignition, the evaporation continues until about 20% of the amount of evaporation occurs when the boiler is at full load. Normally, when a boiler is started, the amount of fuel input is limited due to combustion gas temperature restrictions, etc., so the above heat loss directly becomes a factor in prolonging the start-up time.

次に、上記(2)の欠点は次の理由による。すなわ
ち、蒸気圧力は基本的には蒸発量に依存するが、
再循環運転中は水壁流量が最低給水量下で一定に
保たれるため、蒸気圧力制御は燃料量で行うこと
になる。しかし、燃料量を変化させても、蒸発量
に寄与する水壁吸熱量は水壁メタルの熱容量等に
基因して遅れを生じ、緩慢な変化に止まるためで
ある。
Next, the drawback of (2) above is due to the following reason. In other words, vapor pressure basically depends on the amount of evaporation, but
During recirculation operation, the water wall flow rate is kept constant under the minimum water supply amount, so steam pressure control is performed using the fuel amount. However, even if the amount of fuel is changed, the amount of heat absorbed by the water wall that contributes to the amount of evaporation is delayed due to the heat capacity of the water wall metal, etc., and the change remains slow.

また、上記(3)の欠点は次の理由による。すなわ
ち、貫流運転時には通常、気水分離器6入口の流
体は十分乾いた蒸気になつているため、蒸気圧力
制御は給水量により行うことができる。これは、
蒸気圧力が低下した場合、給水量を増加すれば気
水分離器6入口の流体が乾いている限りそのまま
蒸発量が増加するからである。ところが、給水量
増加は気水分離器6入口の流体エンタルピを低下
させるため、ベンソンポイント近傍のように気水
分離器6入口の流体が十分な乾き蒸気になつてい
ない状態の下では、蒸気圧力の低下に対応して給
水量を増加すると気水分離器入口流体が気水混合
状態となつてむしろ蒸発量の発生が低下し、所謂
蒸気圧力制御の逆応答と呼ばれる現象を生ずる場
合がある。
Furthermore, the drawback of (3) above is due to the following reason. That is, during once-through operation, the fluid at the inlet of the steam-water separator 6 is usually sufficiently dry steam, so the steam pressure can be controlled by the amount of water supplied. this is,
This is because when the steam pressure decreases, if the amount of water supplied is increased, the amount of evaporation will increase as long as the fluid at the inlet of the steam-water separator 6 is dry. However, an increase in the amount of water supplied decreases the fluid enthalpy at the inlet of the steam separator 6, so in conditions where the fluid at the inlet of the steam water separator 6 has not become sufficiently dry steam, such as near Benson Point, the steam pressure will decrease. If the amount of water supplied is increased in response to a decrease in steam pressure, the fluid at the inlet of the steam-water separator will become a mixed state of steam and water, and the amount of evaporation generated will actually decrease, which may cause a phenomenon called the so-called reverse response of steam pressure control.

このように、蒸気圧力の制御はボイラが循環運
転下にあるかあるいは貫流運転下にあるかに応じ
て適格に行う必要があるが、ベンソンポイント付
近では制御動作によりボイラの運転状態が変わつ
てくるので、蒸気圧力制御が難しくなる。
In this way, steam pressure control needs to be performed appropriately depending on whether the boiler is in circulation operation or once-through operation, but in the vicinity of Benson Point, the operating status of the boiler changes depending on the control action. This makes steam pressure control difficult.

このような困難の解決策として、循環運転から
貫流運転に切替つた直後に水壁給水量を故意に減
らして気水分離器6入口の流体を過熱させ、かく
して発生する蒸気7が過熱器101を通つたのち
に過熱器注水弁104の流量を増加させて蒸発不
足分を補う方法が従来から試みられているが、こ
の方法は必然的に過熱器103出口の蒸気温度に
外乱をもたらすこととなるため好ましくない。
As a solution to this difficulty, immediately after switching from circulating operation to once-through operation, the water wall water supply amount is intentionally reduced to superheat the fluid at the inlet of the steam-water separator 6, and the steam 7 thus generated is heated to the superheater 101. Conventionally, attempts have been made to compensate for the lack of evaporation by increasing the flow rate of the superheater water injection valve 104 after the steam has passed through the water, but this method inevitably causes a disturbance in the steam temperature at the outlet of the superheater 103. Therefore, it is undesirable.

本発明の目的は、上記した従来技術の欠点をな
くし、定常運転に到る迄の中間負荷運用に際し、
起動時間や蒸気圧力の応答性および同安定性等で
代表される負荷特性の向上が可能な水壁系統を有
する貫流ボイラ装置を提供することにある。
The purpose of the present invention is to eliminate the drawbacks of the above-mentioned prior art, and to
It is an object of the present invention to provide a once-through boiler device having a water wall system capable of improving load characteristics represented by startup time, steam pressure responsiveness and stability, etc.

本発明者は、中間負荷運用時における水壁最低
給水量の確保方法について検討した結果、前記の
欠点は水壁を水壁管毎に分割するとともに、これ
らを直列状に接続自在とすることにより解決され
ることを見出した。
As a result of studying a method for securing the minimum water supply amount of water wall during intermediate load operation, the inventor found that the above-mentioned drawbacks can be solved by dividing the water wall into individual water wall pipes and making it possible to freely connect them in series. I found a solution.

本発明は上記知見に基づいてなされたもので、
節炭器の後流に沿つて順次、水壁、気水分離器、
ドレンタンク、ドレン再循環ポンプ、ドレン再循
環流調弁および節炭器の上流部に達するドレン再
循環系統等を備えた貫流ボイラ用水壁系統におい
て、上記水壁系統を水壁管に対応して複数個の同
様構成の系統に分割するとともに、該分割水壁系
統間に上流側分割水壁系統で発生するドレンを後
流側分割水壁系統の水壁へ案内自在とする直列ド
レン案内系統を設けたことを特徴とする。
The present invention was made based on the above findings, and
Along the wake of the economizer, the water wall, the steam separator,
In a water wall system for a once-through boiler that is equipped with a drain tank, a drain recirculation pump, a drain recirculation flow control valve, a drain recirculation system that reaches the upstream part of the energy saver, etc., the water wall system is adapted to correspond to the water wall pipe. The system is divided into a plurality of systems having the same configuration, and between the divided water wall systems there is provided a series drain guide system that can freely guide the drain generated in the upstream divided water wall system to the water wall of the downstream divided water wall system. It is characterized by having been established.

本発明の好適態様においては、上記分割水壁系
統の少くとも1つに自己ドレン再循環系統を設け
ることもでき、この場合には、高温のドレンを再
循環できるので必要により蒸気蒸発量を過渡的に
増加させることが可能となる。
In a preferred embodiment of the present invention, at least one of the divided water wall systems can be provided with a self-drain recirculation system, and in this case, high temperature condensate can be recirculated, so that the amount of steam evaporation can be reduced if necessary. This makes it possible to increase the amount of energy.

上記の構成とすることにより、定常(貫流)運
転時には各分割水壁系統を常法に従つて並列運用
し、貫流運転に到る迄の中間負荷運転時には分割
水壁系統を直列運用し、もつて水壁最低給水量に
基因する種々の問題を解消することが可能とな
る。
With the above configuration, during steady-state (through-flow) operation, each divided water wall system is operated in parallel according to the usual method, and during intermediate load operation up to once-through operation, the divided water wall systems are operated in series. This makes it possible to solve various problems caused by the minimum water supply amount.

以下、図面に示す実施例により本発明をさらに
詳しく説明する。
Hereinafter, the present invention will be explained in more detail with reference to embodiments shown in the drawings.

第4図は、水壁を2分割した場合の本発明系統
例を示すものである。
FIG. 4 shows an example of the system of the present invention in which the water wall is divided into two parts.

この系統において、給水はボイラ給水ポンプ1
で昇圧された後順次、ボイラ給水流調弁2、ドレ
ン再循環混合部3および節炭器4を経て送られ、
その後2経路に分けられ、第1分割水壁35と第
2分割水壁44へ送られ加熱される。該加熱後の
流体はそれぞれ第1気水分離器36と第2気水分
離器45へ送られて気水分離され、分離蒸気はと
もに合流部46で集められて過熱器(図示省略)
へ送られる。
In this system, water is supplied to the boiler feed pump 1.
After being pressurized in
Thereafter, the water is divided into two routes, sent to the first divided water wall 35 and the second divided water wall 44, and heated. The heated fluids are sent to the first steam/water separator 36 and the second steam/water separator 45 to separate steam and water, and the separated steam is collected at a confluence section 46 and then sent to a superheater (not shown).
sent to.

ところで、この水壁系統は第1気水分離器36
および第2気水分離器45におけるドレン回収方
法の差により次の3つのモードに大別される。
By the way, this water wall system includes the first steam separator 36
The mode is roughly divided into the following three modes depending on the difference in the drain recovery method in the second steam separator 45.

(1) 並列運転モード (2) 直列運転モード (3) 直列運転高温流体集中モード なお、これらモードの中間的なものも存在する
ことは言うまでもない。並列運転モード(1)は、第
1ドレン再循環ポンプ38および第2ドレン再循
環ポンプ61の後流にそれぞれ設けられた第1ド
レン再循環直列流調弁39および自己ドレン再循
環用の第2ドレン再循環集中流調弁48を全閉と
した時の運転モードであり、第1ドレンタンク3
7と第2ドレンタンク47のレベルは第1ドレン
再循環ポンプ38および第2ドレン再循環ポンプ
61の後流にそれぞれ分岐して設けられた第1ド
レン再循環並列流調弁40と第2ドレン再循環分
散流調弁49で制御される。そして、この状態下
で、節炭器4と第1分割水壁35間の給水系統に
設けられた流調弁の可動ノズル33および節炭器
4と第2分割水壁44間の給水系統に設けられた
給水並列流調弁42が原則として全開とされる。
(1) Parallel operation mode (2) Series operation mode (3) Series operation high temperature fluid concentration mode It goes without saying that there are intermediate modes between these modes. In the parallel operation mode (1), the first drain recirculation series flow control valve 39 provided downstream of the first drain recirculation pump 38 and the second drain recirculation pump 61, respectively, and the second drain recirculation valve 39 for self-drain recirculation are operated. This is the operation mode when the drain recirculation concentrated flow control valve 48 is fully closed, and the first drain tank 3
7 and the second drain tank 47 are controlled by the first drain recirculation parallel flow control valve 40 and the second drain tank, which are branched and provided downstream of the first drain recirculation pump 38 and the second drain recirculation pump 61, respectively. It is controlled by a recirculation dispersed flow control valve 49. Under this condition, the movable nozzle 33 of the flow control valve provided in the water supply system between the economizer 4 and the first divided water wall 35 and the water supply system between the economizer 4 and the second divided water wall 44 are The provided water supply parallel flow regulating valve 42 is, in principle, fully open.

このモードでは、2つの分割水壁35および4
4に対して保護給水量が常に別々に必要となるた
め、水壁全体としての最低給水量は各分割水壁の
保護給水量の和となる。そのため、水壁の圧力損
失が小さく、第1図の場合と同様な理由で高負荷
帯に適している。
In this mode, two dividing water walls 35 and 4
Since the protective water supply amount is always required separately for each of the divided water walls, the minimum water supply amount for the entire water wall is the sum of the protective water supply amount of each divided water wall. Therefore, the pressure loss in the water wall is small, and for the same reason as in the case of FIG. 1, it is suitable for high load ranges.

次に、直列運転モード(2)は、第1ドレン再循環
並列流調弁40および第2ドレン再循環集中流調
弁48を全閉とした時の運転モードであり、各ド
レンタンク37と47のレベルはそれぞれ第1ド
レン再循環直列流調弁39と第2ドレン再循環分
散流調弁49で制御される。給水並列流調弁42
は第1ドレン再循環直列流調弁39の流量が第2
分割水壁44の保護給水量より不足する分を補う
ように開けていき、また、可動ノズル33は給水
並列流調弁42の差圧を確保するため絞つた状態
とする。
Next, the series operation mode (2) is an operation mode when the first drain recirculation parallel flow control valve 40 and the second drain recirculation concentrated flow control valve 48 are fully closed, and each drain tank 37 and 47 The levels of are controlled by a first drain recirculation serial flow control valve 39 and a second drain recirculation distributed flow control valve 49, respectively. Water supply parallel flow control valve 42
The flow rate of the first drain recirculation series flow control valve 39 is
The divided water wall 44 is opened to compensate for the insufficient water supply amount than the protective water supply amount, and the movable nozzle 33 is closed to ensure the differential pressure of the water supply parallel flow control valve 42.

このモードでは、2つの分割水壁35および4
4に対する保護給水量をある割合で共用できるの
で、特に蒸発量が少ない状態下では、水壁全体と
しての最低給水量を並列モードのそれの約半分に
減らすことが可能となる。
In this mode, two dividing water walls 35 and 4
Since the protective water supply amount for 4 can be shared in a certain proportion, especially under conditions where the amount of evaporation is small, it is possible to reduce the minimum water supply amount for the entire water wall to about half that of the parallel mode.

次に、直列運転高温流体集中モード(3)は、本発
明においても最も特徴的な運転モードである。本
モードも第1ドレン再循環並列流調弁40を全閉
とした上第1ドレンタンク37のレベル制御を第
1ドレン再循環直列流調弁39で行う点は上記直
列運転モードと同様であるが、第2ドレンタンク
47のレベル制御を第2ドレン再循環集中流調弁
48で行なう点が異なる。その際、該流調弁48
を全開してもなお第2ドレンタンク47のレベル
が低下しない場合には第2ドレン再循環分散流調
弁49を開けるようにし、もつて極力節炭器4入
口にドレンを再循環しないようにすることが望ま
しい。
Next, the series operation high temperature fluid concentration mode (3) is the most characteristic operation mode in the present invention. This mode is similar to the series operation mode described above in that the first drain recirculation parallel flow control valve 40 is fully closed and the level control of the first drain tank 37 is performed by the first drain recirculation series flow control valve 39. However, the difference is that the level control of the second drain tank 47 is performed by a second drain recirculation concentrated flow regulating valve 48. At that time, the flow control valve 48
If the level of the second drain tank 47 does not drop even after fully opening the second drain tank 47, open the second drain recirculation distributed flow control valve 49 to avoid recirculating the drain to the inlet of the energy saver 4 as much as possible. It is desirable to do so.

なお、給水並列流調弁42および可動ノズル3
3の動作は直列運転モードの場合と同様である。
In addition, the water supply parallel flow control valve 42 and the movable nozzle 3
The operation in step 3 is the same as in the series operation mode.

このモードでは、後記第9図からも明らかなよ
うに、水壁保護流量を可能な限り各気水分離器か
ら得られるドレンでまかなうことを図つているた
め、節炭器4を経るドレンの再循環を停止可能と
する蒸気蒸発量は並列運転モードのそれの約半分
となる。また、同停止点までの水壁全体としての
最低給水量は、直列運転モードのそれの約半分で
一定である。
In this mode, as is clear from Figure 9 below, the water wall protection flow is covered as much as possible by the drain obtained from each steam separator, so the drain that passes through the economizer 4 is recycled. The amount of steam evaporation that makes it possible to stop the circulation is approximately half that in the parallel operation mode. Furthermore, the minimum water supply amount for the entire water wall up to the same stopping point is constant at about half of that in the series operation mode.

このような運転モード例によつてボイラの運転
が行われるが、その際の制御系統を以下に説明す
る。先ず、第5図は、第4図に示す第1ドレンタ
ンク37に係るレベル制御系統53の構成を示す
ものであるが、この構成において、並列運転モー
ド=0、それ以外のモード=1となる水壁直並列
指令62と定数要素66とから後者が出力する1
の値から前者を減じて得られる指令62の補信号
を作り、この補信号と指令62をそれぞれのドレ
ンタンクレベルに比例して弁開度を与える関数要
素64の出力に乗じ、かくして得られる指示信号
により第1ドレン再循環並列流調弁40および第
1ドレン再循環直列流調弁39の操作が行われ
る。また、直列運転時等において、流調弁40が
全閉または低開度となるために関数要素64が全
開指令を出す位置を越えてレベルが上昇する場合
には、関数要素70から送られる弁開指令を高選
択要素71で処理して流調弁40の開度増加がさ
らに関数要素70が全開指令を出すレベルを越え
ると、関数要素72により第1ドレンタンクの後
流分岐系統に設けられた第1ドレンブロー流調弁
52の開度増加がそれぞれ行われる。このような
一連のステツプを踏むことにより、レベル高時で
あつてもなるべくドレンブローを行なわないよう
にすることができる。
The boiler is operated according to such an example of the operation mode, and the control system at that time will be explained below. First, FIG. 5 shows the configuration of the level control system 53 related to the first drain tank 37 shown in FIG. 4, and in this configuration, parallel operation mode = 0 and other modes = 1. The latter outputs 1 from the water wall series/parallel command 62 and the constant element 66.
A complementary signal of the command 62 obtained by subtracting the former from the value of is created, and this complementary signal and the command 62 are multiplied by the output of the function element 64 that gives the valve opening in proportion to the respective drain tank level, and the command thus obtained is The first drain recirculation parallel flow control valve 40 and the first drain recirculation series flow control valve 39 are operated by the signal. In addition, during series operation, etc., when the level rises beyond the position where the function element 64 issues a full open command because the flow control valve 40 is fully closed or has a low opening, the valve sent from the function element 70 When the open command is processed by the high selection element 71 and the opening degree of the flow control valve 40 increases beyond the level at which the function element 70 issues a full open command, the function element 72 causes the high selection element 71 to process the opening command of the flow control valve 40, and then the function element 72 causes the high selection element 71 to process the opening command. The opening degree of the first drain blow flow control valve 52 is increased respectively. By following this series of steps, it is possible to avoid drain blowing as much as possible even when the level is high.

次に、第6図は、第4図に示す第2ドレンタン
ク47に係るレベル制御系統56の構成を示すも
のであるが、この構成においては前記の水壁直並
列指令62に代えて直列運転高温流体集中モード
=1、それ以外のモード=0となる再循環集中分
散指令63を用いる以外は第5図の場合と同様に
して第2ドレン再循環集中流調弁48、第2ドレ
ン再循環分散流調弁49および第2ドレンタンク
の後流分岐系統に設けられた第2ドレンブロー流
調弁55の操作が行われる。
Next, FIG. 6 shows the configuration of the level control system 56 related to the second drain tank 47 shown in FIG. The second drain recirculation concentrated flow regulating valve 48 and the second drain recirculation are operated in the same manner as in the case of FIG. 5 except that the recirculation concentration and dispersion command 63 is used in which the high temperature fluid concentration mode = 1 and the other modes = 0. The dispersed flow control valve 49 and the second drain blow flow control valve 55 provided in the downstream branch system of the second drain tank are operated.

第7図は、節炭器後流の給水系統から分岐した
のち第2分割水壁へ達する系統に設けられた水壁
並列給水流調弁42を操作する流量制御系統57
の回路を示すもので、統括制御系(第4図参照)
から送られる給水指令18を信号定数倍要素73
で1/2の値にしたものを最低値制限要素74で処
理し、これを第2分割水壁44の保護流量目標値
として流調弁42を操作するものである。
FIG. 7 shows a flow rate control system 57 that operates a water wall parallel water supply flow regulating valve 42 provided in a system that branches from the water supply system downstream of the energy saver and then reaches the second divided water wall.
This shows the circuit of the integrated control system (see Figure 4).
The water supply command 18 sent from the signal constant multiplier 73
The value reduced to 1/2 is processed by the minimum value limiting element 74, and the flow control valve 42 is operated using this as the protection flow rate target value of the second divided water wall 44.

また、第8図は、第1分割水壁35へ給水を行
うボイラ給水流調弁2に係る流量制御系統59の
回路を示すもので、考え方は第7図の場合と同様
であるが、ボイラ給水流調弁2は節炭器4への給
水量を変動させる必要があるため、従来技術と同
様な節炭器出口流体温度検出器19および水壁圧
力検出器20を含むスチーミング防止回路が付加
されている。
Further, FIG. 8 shows a circuit of the flow rate control system 59 related to the boiler feed water flow control valve 2 that supplies water to the first divided water wall 35, and the concept is the same as that in FIG. Since the water supply flow control valve 2 needs to vary the amount of water supplied to the economizer 4, a steaming prevention circuit including an economizer outlet fluid temperature detector 19 and a water wall pressure detector 20 similar to the conventional technology is used. It has been added.

本実施例での個別制御系統は第5図〜第8図に
示した通りであるが、これらを統括制御系60の
下で作動させ、次のような制御を行うことが望ま
しい。
Although the individual control systems in this embodiment are as shown in FIGS. 5 to 8, it is desirable to operate these under the integrated control system 60 and perform the following control.

(1) 起動時の運転は直列運転高温流体集中モード
で行い、総ドレンブロー量の最低化を図る。
(1) At startup, operate in series operation high temperature fluid concentration mode to minimize the total drain blow amount.

(2) 再循環運転時の運転は直列運転と直列運転高
温流体中モードの中間位置で運用する。その際
過渡的に蒸発量を増加させたい場合には、直列
運転高温流体集中モードに、逆の場合には直列
運転モードに移行させればよい。
(2) During recirculation operation, operate at an intermediate position between series operation and series operation in high temperature fluid mode. At that time, if it is desired to transiently increase the amount of evaporation, it is sufficient to shift to the series operation high temperature fluid concentration mode, and in the opposite case, it is sufficient to shift to the series operation mode.

(3) 再循環運転から貫流運転へ切替える場合に
は、先ず再循環運転時における直列と直列高温
流体集中モードの中間的状態から直列高温流体
集中モードへ移行させて過渡的蒸発量を増加さ
せ、もつて気水分離器入口の流体乾き度をすみ
やかに上昇させる。
(3) When switching from recirculation operation to once-through operation, first increase the amount of transient evaporation by shifting from an intermediate state between series and series high temperature fluid concentration mode during recirculation operation to series high temperature fluid concentration mode, This quickly increases the dryness of the fluid at the inlet of the steam/water separator.

次いで、切替前に一旦並列運転モードへ移行
して運用した後、直列高温流体集中モードへ切
替、移行させればよい。
Next, after switching to the parallel operation mode and operating it before switching, it is sufficient to switch and shift to the series high temperature fluid concentration mode.

(4) 貫流運転から再循環運転へ切替える場合は、
切替前に一旦直列運転高温流体集中モードとす
ることにより節炭器4入口再循環量が最も発生
しにくい状態にして運用し、その後、直列運転
モードあるいはさらに並列運転モードへ切替、
移行させて気水分離器入口の流体乾き度をすみ
やかに下降させることが望ましい。
(4) When switching from once-through operation to recirculation operation,
Before switching, first set the series operation to high temperature fluid concentration mode to operate in a state where the recirculation amount at the inlet of the economizer 4 is least likely to occur, and then switch to the series operation mode or further to the parallel operation mode.
It is desirable to quickly lower the fluid dryness at the inlet of the steam/water separator.

以下、本発明実施例の効果を確認するため、各
モード別の流体量変化について考察する。
Hereinafter, in order to confirm the effects of the embodiments of the present invention, changes in fluid volume in each mode will be considered.

第9図は、各部における流体量をモード別に示
したものである。図中横軸は各気水分離器36お
よび45から発生する蒸気蒸発量の和で、G点は
1つの分割水壁の保護給水量に等しい値、2G点
はG点の2倍で並列運転モードにおけるベンソン
ポイントに等しい値である。また、図中の上段に
示す区分Aは第2分割水壁44における流量構成
を、同下段に示す区分Bは節炭器4における流量
構成および総ドレンフロー量等を示すものであ
る。先ず、区分Aについて説明するに、第2分割
水壁44における流量75は保護給水量G(一定)
を保つているが、その内訳は各モード毎に異る。
すなわち、並列運転モード(1)では、節炭器から給
水並列流調弁42を通る流量(横線部83参照)
で全てをまかなうのに対し、直列運転モード(2)で
は、一点鎖線77で示す第1気水分離器36のド
レン量を、また、直列運転高温流体集中モード(3)
では、上記に加えさらに破線76で示す第2分割
水壁44蒸発量の上側縦線部78で示す第2気水
分離器45のドレン量をそれぞれ回収することと
なるため、給水並列流調弁42を通る流量の積算
値は図中の横線部83に相当する面積となり、そ
の量は並列運転モードに対し、直列運転モードで
は1/2、直列運転高温流体集中モードでは1/4程度
となる。
FIG. 9 shows the amount of fluid in each part according to mode. The horizontal axis in the figure is the sum of the amount of steam evaporation generated from each steam separator 36 and 45, point G is a value equal to the protective water supply amount of one divided water wall, and point 2G is parallel operation at twice the amount of point G. The value is equal to the Benson point in the mode. Further, section A shown in the upper part of the figure shows the flow rate structure in the second divided water wall 44, and section B shown in the lower part shows the flow rate structure in the economizer 4, the total drain flow amount, etc. First, to explain section A, the flow rate 75 in the second divided water wall 44 is the protective water supply amount G (constant)
However, the breakdown differs for each mode.
That is, in the parallel operation mode (1), the flow rate from the energy saver to the water supply parallel flow control valve 42 (see horizontal line section 83)
In contrast, in the series operation mode (2), the drain amount of the first steam/water separator 36 shown by the dashed line 77 is covered by the series operation high temperature fluid concentration mode (3).
In addition to the above, since the amount of evaporation from the second divided water wall 44 shown by the broken line 76 is recovered from the second steam/water separator 45 shown by the upper vertical line part 78, the water supply parallel flow control valve is The integrated value of the flow rate passing through 42 is the area corresponding to the horizontal line part 83 in the figure, and the amount is about 1/2 in the parallel operation mode in the series operation mode and 1/4 in the series operation high temperature fluid concentration mode. .

次に、区分Bにおいて、破線79は節炭器4の
総流量であるが、これは第1分割水壁35の保護
流量Gと前記横線部83で示される給水並列流調
弁42を通る流量の和であるため、並列運転モー
ドに比して他のモードでは低減されている。さら
に、節炭器4入口への再循環流量80も各気水分
離器36および47のドレンが全量再循環される
並列運転モードに比して、他のモードでは大幅に
低減されることがわかる。ちなみに、節炭器4の
給水量中に再循環されるドレンが3/4以上存在す
る状態において節炭器でのスチーミングを予防す
るためドレンブローを行なう場合を想定すれば、
その総積算量は斜線部81のごとくなる。すなわ
ち、直列運転および同高温流体集中モードでは、
従来技術と同様な並列運転モードに比してドレン
フロー量がそれぞれ1/4および1/8程度になる。
Next, in section B, the broken line 79 is the total flow rate of the economizer 4, which is the protection flow rate G of the first divided water wall 35 and the flow rate passing through the water supply parallel flow control valve 42 indicated by the horizontal line part 83. Therefore, it is reduced in other modes compared to the parallel operation mode. Furthermore, it can be seen that the recirculation flow rate 80 to the inlet of the economizer 4 is also significantly reduced in the other modes compared to the parallel operation mode in which the entire drain of each steam/water separator 36 and 47 is recirculated. . By the way, if we assume that drain blowing is performed to prevent steaming in the economizer in a state where 3/4 or more of the drain is recirculated in the water supply amount of the economizer 4,
The total integrated amount is shown in the shaded area 81. In other words, in series operation and high temperature fluid concentration mode,
Compared to the parallel operation mode similar to the conventional technology, the drain flow amount is about 1/4 and 1/8, respectively.

以上、本発明によれば、水壁系統を水壁管に対
応して複数個の同様構成の系統に分割するととも
に、該各分割水壁系統間に上流側分割水壁系統で
発生するドレンを後流側分割水壁系統の水壁へ案
内自在とする直列ドレン案内系統を設け、かつ好
ましくは上記分割水壁系統の少くとも1つに自己
ドレン再循環系統を設けたことにより、起動時を
含む負荷変化時に、各分割水壁系統の並列運転モ
ード、直列運転モード、直列運転高温流体集中モ
ードおよびこれらの中間モードから選択される任
意のモード運用を可能とし、これによりドレンブ
ロー量の大幅低減にともなう起動時間の短縮化
と、蒸気圧力の制御性向上にともなう蒸気圧力制
御応答の向上および循環一貫流運転切替時に見ら
れる蒸気圧力逆応答の解消を達成することができ
る。
As described above, according to the present invention, the water wall system is divided into a plurality of systems having the same configuration corresponding to the water wall pipes, and the drain generated in the upstream divided water wall system is separated between each divided water wall system. By providing a series drain guide system that can be freely guided to the water wall of the downstream split water wall system, and preferably by providing a self-drain recirculation system in at least one of the split water wall systems, the start-up time is improved. When the load changes, including the following, it is possible to operate each divided water wall system in parallel operation mode, series operation mode, series operation high temperature fluid concentration mode, or any mode selected from these intermediate modes, thereby significantly reducing the amount of drain blow. It is possible to achieve a reduction in start-up time associated with this, an improvement in steam pressure control response associated with improved controllability of steam pressure, and an elimination of reverse steam pressure response that occurs when switching between circulating and continuous flow operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の貫流ボイラ用水壁系統図、第
2図は、第1図の水壁系統に適用されるドレンタ
ンクレベル制御の系統図、第3図は、第1図の水
壁系統に適用される給水制御系統図、第4図は、
本発明実施例に係る貫流ボイラ用水壁系統図、第
5図は、第4図の水壁系統に適用される第1ドレ
ンタンクレベル制御の系統図、第6図は、第4図
の水壁系統に適用される第2ドレンタンクレベル
制御の系統図、第7図は、第4図の水壁系統に適
用される水壁並列給水流調弁の制御系統図、第8
図は、第4図に適用される給水流調弁の制御系統
図、第9図は、本発明の実施例の効果を説明する
ための運転モード別流体量変化図である。 2……ボイラ給水流調弁、3……ドレン再循環
合流部、4……節炭器、5……水壁、6……気水
分離器、8……ドレンタンク、9……ドレン再循
環ポンプ、10……ドレン再循環流調弁、13…
…ドレンタンクブロー流調弁、18……給水指
令、19……節炭器出口流体温度検出器、20…
…水壁圧力検出器、24,27……減算要素、2
5,28……比例積分要素、26……関数要素、
信号高選択要素、33……可動ノズル、35……
第1分割水壁、36……第1気水分離器、37…
…第1ドレンタンク、38……第1ドレン再循環
ポンプ、39……第1ドレン再循環直列流調弁、
40……第1ドレン再循環並列流調弁、42……
給水並列流調弁、44……第2分割水壁、45…
…第2気水分離器、46……蒸気合流部、47…
…第2ドレンタンク、48……第2ドレン再循環
集中流調弁、49……第2ドレン再循環分散流調
弁、52……第1ドレンブロー流調弁、53……
第1ドレンタンクレベル制御系統、55……第2
ドレンタンクブロー流調弁、56……第2ドレン
タンクレベル制御系統、57……水壁並列給水流
量制御系統、59……ボイラ給水流量制御系統、
60……統括制御系、61……第2ドレン再循環
ポンプ、62……水壁直並列指令、63……再循
環集中分散指令、64,65,70,72……関
数要素、66……定数要素、67……信号減算要
素、68,69……信号乗算要素、71……信号
高選択要素、73……信号定数倍要素、74……
最低値制限要素、75……第2分割水壁流量、7
6……第2分割水壁蒸発量、77……第1気水分
離器ドレン量、78……第2気水分離器ドレン
量、79……節炭器総流量、80……節炭器入口
再循環流量、81……ドレンブロー総積算量、8
2……総蒸発量、83……給水並列流調弁流量。
Figure 1 is a water wall system diagram for a conventional once-through boiler, Figure 2 is a system diagram of drain tank level control applied to the water wall system in Figure 1, and Figure 3 is the water wall system in Figure 1. The water supply control system diagram, Figure 4, applied to
A water wall system diagram for a once-through boiler according to an embodiment of the present invention, FIG. 5 is a system diagram of the first drain tank level control applied to the water wall system of FIG. 4, and FIG. 6 is a system diagram of the water wall system of FIG. 4. Figure 7 is a system diagram of the second drain tank level control applied to the system, and Figure 8 is a control system diagram of the water wall parallel water supply flow control valve applied to the water wall system of Figure 4.
4 is a control system diagram of the water supply flow regulating valve applied to FIG. 4, and FIG. 9 is a fluid flow rate change diagram according to operation mode for explaining the effects of the embodiment of the present invention. 2... Boiler feed water flow control valve, 3... Drain recirculation confluence section, 4... Energy saver, 5... Water wall, 6... Steam water separator, 8... Drain tank, 9... Drain recirculation Circulation pump, 10... Drain recirculation flow control valve, 13...
... Drain tank blow flow control valve, 18 ... Water supply command, 19 ... Economizer outlet fluid temperature detector, 20 ...
...Water wall pressure detector, 24, 27...Subtraction element, 2
5, 28...Proportional integral element, 26...Function element,
Signal height selection element, 33...Movable nozzle, 35...
First divided water wall, 36... First steam/water separator, 37...
...first drain tank, 38...first drain recirculation pump, 39...first drain recirculation series flow control valve,
40...First drain recirculation parallel flow control valve, 42...
Water supply parallel flow control valve, 44...Second divided water wall, 45...
...Second steam/water separator, 46...Steam confluence section, 47...
...Second drain tank, 48...Second drain recirculation concentrated flow control valve, 49...Second drain recirculation distributed flow control valve, 52...First drain blow flow control valve, 53...
1st drain tank level control system, 55...2nd
Drain tank blow flow control valve, 56...Second drain tank level control system, 57...Water wall parallel water supply flow rate control system, 59...Boiler feed water flow rate control system,
60...General control system, 61...Second drain recirculation pump, 62...Water wall series/parallel command, 63...Recirculation concentration distribution command, 64, 65, 70, 72...Function element, 66... Constant element, 67... Signal subtraction element, 68, 69... Signal multiplication element, 71... Signal height selection element, 73... Signal constant multiplication element, 74...
Minimum value limiting element, 75...Second divided water wall flow rate, 7
6... Second divided water wall evaporation amount, 77... First steam water separator drain amount, 78... Second steam water separator drain amount, 79... Total flow rate of energy saver, 80... Energy saver Inlet recirculation flow rate, 81...Total cumulative amount of drain blow, 8
2...Total evaporation amount, 83...Water supply parallel flow control valve flow rate.

Claims (1)

【特許請求の範囲】 1 節炭器の後流に沿つて順次、水壁、気水分離
器、ドレンタンク、ドレン再循環ポンプ、ドレン
再循環流調弁および節炭器の上流部に達するドレ
ン再循環系統を備えた貫流ボイラ装置において、
上記水壁系統を水壁管に対応して複数個の同様構
成の系統に分割するとともに、該各分割水壁系統
間に上流側分割水壁系統で発生するドレンを後流
側分割水壁系統の水壁へ案内自在とする直列ドレ
ン案内系統を設けたことを特徴とする貫流ボイラ
装置。 2 特許請求の範囲第1項において、上記分割水
壁系統の少くとも1つは、自己ドレン再循環系統
を有するものであることを特徴とする貫流ボイラ
装置。
[Claims] 1. A water wall, a steam/water separator, a drain tank, a drain recirculation pump, a drain recirculation flow control valve, and a drain that reaches the upstream part of the energy saver in sequence along the wake of the energy saver. In once-through boiler equipment equipped with a recirculation system,
The above-mentioned water wall system is divided into a plurality of systems having the same configuration corresponding to the water wall pipes, and the drain generated in the upstream divided water wall system is transferred between the divided water wall systems to the downstream divided water wall system. A once-through boiler device characterized by being provided with a series drain guide system that can be guided freely to the water wall of the boiler. 2. A once-through boiler device according to claim 1, wherein at least one of the divided water wall systems has a self-drain recirculation system.
JP23947183A 1983-12-19 1983-12-19 Once-through boiler device Granted JPS60133203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23947183A JPS60133203A (en) 1983-12-19 1983-12-19 Once-through boiler device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23947183A JPS60133203A (en) 1983-12-19 1983-12-19 Once-through boiler device

Publications (2)

Publication Number Publication Date
JPS60133203A JPS60133203A (en) 1985-07-16
JPH0465282B2 true JPH0465282B2 (en) 1992-10-19

Family

ID=17045259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23947183A Granted JPS60133203A (en) 1983-12-19 1983-12-19 Once-through boiler device

Country Status (1)

Country Link
JP (1) JPS60133203A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5147801A (en) * 1974-10-21 1976-04-23 Dainippon Ink & Chemicals HORIBINIRUPIRORIDONKEIHIKARIKOKAMAKUNO HAKURIHOHO
JPS5843308A (en) * 1981-09-07 1983-03-14 三菱重工業株式会社 Boiler

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5147801A (en) * 1974-10-21 1976-04-23 Dainippon Ink & Chemicals HORIBINIRUPIRORIDONKEIHIKARIKOKAMAKUNO HAKURIHOHO
JPS5843308A (en) * 1981-09-07 1983-03-14 三菱重工業株式会社 Boiler

Also Published As

Publication number Publication date
JPS60133203A (en) 1985-07-16

Similar Documents

Publication Publication Date Title
US7827793B2 (en) Power generation system
JPH0942606A (en) Once-through boiler steam temperature control device
JPH0465282B2 (en)
JPH11270305A (en) Turbine bypass valve control device
JP2880558B2 (en) Control method of once-through boiler and control device of once-through boiler
JP2686259B2 (en) Operating method of once-through boiler
US3240187A (en) Method of starting once-through type boilers
JPS6355601B2 (en)
JPS63194110A (en) Once-through boiler
KR850001999Y1 (en) Once through sliding pressure steam generator
JPS6134073B2 (en)
JPH07122485B2 (en) Steamer steam prevention device for once-through thermal power generation boiler system
JPH0423161B2 (en)
JP2955085B2 (en) Transformer once-through boiler
JP2625422B2 (en) Boiler control device
JPH06229505A (en) Controlling device for feed water temperature of waste heat recovery heat exchanger
JPH0225603A (en) Boiler device and operation thereof
JPH05240402A (en) Method of operating waste heat recovery boiler
JPH08327006A (en) Supercritical variable pressure once-through boiler
JP2002081610A (en) Boiler
CA1202218A (en) Start-up system for once-through boilers
JPH08312903A (en) Once-through boiler device
JP2000121004A (en) Drain discharging device for feed water heater
JPH08145306A (en) Method and device for controlling feed water for variable pressure once-through boiler
JPH1137407A (en) Gas vertical flow type exhaust heat recovery boiler and control for the same

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term