JPH0225603A - Boiler device and operation thereof - Google Patents

Boiler device and operation thereof

Info

Publication number
JPH0225603A
JPH0225603A JP17428988A JP17428988A JPH0225603A JP H0225603 A JPH0225603 A JP H0225603A JP 17428988 A JP17428988 A JP 17428988A JP 17428988 A JP17428988 A JP 17428988A JP H0225603 A JPH0225603 A JP H0225603A
Authority
JP
Japan
Prior art keywords
water
steam
furnace
fluid
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17428988A
Other languages
Japanese (ja)
Inventor
Yoshiaki Yamana
山名 良明
Taro Sakata
坂田 太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP17428988A priority Critical patent/JPH0225603A/en
Publication of JPH0225603A publication Critical patent/JPH0225603A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

PURPOSE:To enable an increasing of water level within a water storage tank to be reduced and further to reduce its capacity during energization of a furnace by a method wherein a fluid passage is provided with a bypassing pipe for bypassing fluid to a gas-water separator and with a valve for opening or closing the bypassing pipe. CONSTITUTION:During a normal operation of a boiler device, a valve 12 arranged in a bypassing pipe 11 is closed. When energized, the valve 12 arranged in the bypassing pipe 11 is opened under an estimation of occurrence of a plugging phenomenon, fluid to be discharged from an outlet 2A of a furnace 2 is flowed to a bypassing pipe 11 having a low, flow resistance and then a ceiling wall 3, a casing wall 4 a flue evaporator 5 are substantially bypassed. Due to this fact, water to flow from the furnace 2 to the gas-water separator 7 is only water left in the furnace 2 and the bypassing pipe 11, resulting in that an amount of water expelled out due to the plugging phenomenon can be restricted. Accordingly, an amount of water discharged from the gas-water separator 7 is reduced and a rapid increasing of water level within the water storage tank 8 is prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、気水分離器を有するボイラ装置及びその運転
方法に係り、特に起動時におけるプロッペン現象により
発生する貯水タンクレベルの上昇を抑えるのに好適なボ
イラ装置及び運転方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a boiler device having a steam-water separator and a method of operating the same, and particularly to a boiler device having a steam-water separator and a method for operating the same. The present invention relates to a boiler device and an operating method suitable for this purpose.

〔従来の技術〕[Conventional technology]

従来のボイラ装置においては、近年の原子力発電の増大
、及び昼夜間の電力需要量の格差増大に伴ない、火力発
電においては中間負荷運用が要求されている。そのため
、この中間負荷運用に適したボイラとして、超臨界圧変
圧運転ボイラが数多く運用されている。このような型式
の部分負荷における効率向上を図る変圧運転を行なうボ
イラにおいては、起動時から低負荷運転時に過熱器に入
るまでの流体は気水混合の状態で送給される。このため
第3図に示されるように、ボイラ給水ポンプ(図示しな
い)から供給された水は1節炭器1、火炉2、天井壁3
.ケージ壁4、煙道蒸発器5を通って過熱器6に入る前
に、この過熱器6の前流に設けられた気水分離器7を通
り、この気水分離器7により気水分離された一方の蒸気
は過熱器6に、他力の水は貯蓄タンク8に入る。そして
貯水タンク8に入った水は再循環ポンプ9により火炉2
内に再循環される。この貯水タンク8は気水分離された
水を貯水して火炉2内に再循環させるときの再循環ポン
プ9への水の供給を調整している。
In conventional boiler devices, intermediate load operation is required in thermal power generation due to the recent increase in nuclear power generation and the increasing disparity in power demand between day and night. Therefore, many supercritical pressure variable pressure operation boilers are being operated as boilers suitable for this intermediate load operation. In such a type of boiler that performs variable voltage operation to improve efficiency under partial load, the fluid is fed in a mixed state of steam and water from the time of startup until it enters the superheater during low load operation. Therefore, as shown in FIG.
.. Before passing through the cage wall 4 and the flue evaporator 5 and entering the superheater 6, it passes through a steam-water separator 7 provided upstream of the superheater 6, and is separated from steam and water by the steam-water separator 7. The steam from one side goes into the superheater 6, and the water from the other side goes into the storage tank 8. The water that has entered the water storage tank 8 is then transferred to the furnace 2 by a recirculation pump 9.
recycled within. This water storage tank 8 adjusts the supply of water to a recirculation pump 9 when storing water separated from steam and water and recirculating it into the furnace 2.

火炉2の起動点火時は火炉2における蒸気発生量は極め
て少ないが、燃料投入量が増加して入口給水温度が上昇
することにより、火炉2において極めて短時間に蒸気が
発生する。この蒸気の容積は水の約50倍乃至100倍
に相当するため、この容積増加は急激でかつ大きいもの
となる。その結果、下流の火炉2の上部、天井壁3、ケ
ージ壁4及び煙道蒸発器Sなどに流れている多量の水を
押し出す、いわゆるプロッペン現象(膨出現象)が発生
する。このプロッペン現象が発生すると、火炉2から後
流の気水分離器7までの流体経路の水が気水分離器7に
押し出され、貯水タンク8の水位が急上昇してその後急
下降する。そのため−時的に貯水タンク8の水位が上限
値を超えることになり、火炉2への再循環流量を安定制
御する上で大きな外乱を生じることとなる。特に制御が
追従できない場合は、再循環ポンプ9のトリップを生じ
ることになるため、プロッペン現象発生時の貯水タンク
8の水位の急上昇は、ボイラ運用上の大きな支障となっ
ている。
When the furnace 2 is started and ignited, the amount of steam generated in the furnace 2 is extremely small, but as the amount of fuel input increases and the temperature of the inlet water supply rises, steam is generated in the furnace 2 in an extremely short time. Since the volume of this steam corresponds to about 50 to 100 times that of water, this increase in volume is rapid and large. As a result, a so-called Proppen phenomenon (bulging phenomenon) occurs, which pushes out a large amount of water flowing into the upper part of the furnace 2, the ceiling wall 3, the cage wall 4, the flue evaporator S, etc. downstream. When this Proppen phenomenon occurs, the water in the fluid path from the furnace 2 to the downstream steam-water separator 7 is pushed out to the steam-water separator 7, and the water level in the water storage tank 8 rises rapidly and then rapidly falls. Therefore, the water level in the water storage tank 8 sometimes exceeds the upper limit, which causes a large disturbance in stably controlling the recirculation flow rate to the furnace 2. In particular, if the control cannot follow up, the recirculation pump 9 will trip, so a sudden rise in the water level in the water storage tank 8 when the Proppen phenomenon occurs is a major hindrance to boiler operation.

このブロッペン現象に対する従来の対策としては、プロ
ッペン現象時に貯水タンク8に流入する流体が貯水タン
ク8の水位の上限値を超えないように、貯水タンク8の
容量を大きくしていた。
As a conventional measure against this Bloppen phenomenon, the capacity of the water storage tank 8 has been increased so that the fluid flowing into the water storage tank 8 during the Bloppen phenomenon does not exceed the upper limit of the water level of the water storage tank 8.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来のボイラ装置にあっては、火炉の起動時にプロッペ
ン現象が発生し、多量の水が膨出して貯水タンクに流入
し、同時に熱負荷の高い火炉内で瞬時に水が蒸発して、
それに伴なう比容積の増大により、火炉から後流の気水
分ll#器までの流体経路中の水が一度に貯水タンクに
押し出される。この結果、−時的に貯水タンクの水位が
急上昇してボイラ運用上に支障をきたす、そこで貯水タ
ンクの容量を大きくすることは、火炉へ水を再循環しな
い高負荷においては貯水タンクを実質使用しないため、
設備コストの上で無駄が多くなるという問題点があった
In conventional boiler equipment, the Proppen phenomenon occurs when the furnace is started, and a large amount of water swells and flows into the water storage tank. At the same time, the water evaporates instantly in the furnace, which has a high heat load.
Due to the accompanying increase in specific volume, water in the fluid path from the furnace to the downstream steam/moisture vessel is pushed out at once into the water storage tank. As a result, the water level in the water storage tank sometimes rises rapidly, causing problems in boiler operation. Therefore, increasing the capacity of the water storage tank means that the water storage tank is effectively used at high loads when water is not recirculated to the furnace. In order not to
There was a problem that there was a lot of waste in terms of equipment costs.

本発明の目的は、貯水タンクの水位の上昇を少なくし、
貯水タンクの容量を小さくすることのできるボイラ装置
及び運転方法を提供することにある。
The purpose of the present invention is to reduce the rise in the water level of the water storage tank,
An object of the present invention is to provide a boiler device and an operating method that can reduce the capacity of a water storage tank.

〔課題を解決するための手段〕[Means to solve the problem]

前記の目的を達成するため、本発明に係るボイラ装置は
、火炉出口からの流体を気水分離器に流通する流体経路
を備え、気水分離器で分離した一方の蒸気を過熱器に、
他力の水を貯水タンクにそれぞれ送給するボイラ装置に
おいて、流体経路に、流体を気水分離器にバイパスする
バイパス管路と、このバイパス管路を開閉するバルブと
を設けるように構成されている。
In order to achieve the above object, the boiler device according to the present invention is provided with a fluid path for flowing fluid from the furnace outlet to a steam separator, and one of the steams separated by the steam separator is supplied to the superheater.
In a boiler device that supplies external water to water storage tanks, the fluid path is configured to include a bypass pipe that bypasses the fluid to a steam-water separator, and a valve that opens and closes the bypass pipe. There is.

また前記ボイラ装置の運転方法は、流体を気水分離器に
バイパスするバイパス管路とこのバイパス管路を開閉す
るバルブとを流体経路に設け、プロッペン現象が発生す
る起動時に前記バルブを開とし、流体をバイパス管路に
流通して流体経路からの水の膨張量を抑制し、貯水タン
クの水位の急激な上昇を防止するように構成されている
Further, the method for operating the boiler apparatus includes providing a bypass pipe line for bypassing fluid to a steam-water separator and a valve for opening and closing this bypass pipe line in the fluid path, and opening the valve at the time of startup when the Proppen phenomenon occurs; The fluid is configured to flow through the bypass conduit to suppress the amount of water expansion from the fluid path, thereby preventing a rapid rise in the water level of the water storage tank.

〔作用〕[Effect]

本発明によるボイラ装置及び運転方法は、プロッペン現
象の発生する起動時において、バイパス管路のバルブを
開とすることによって、火炉出口の流体は流動抵抗の小
さいバイパス管路を流れ、火炉出口下流側の流体経路中
の天井壁、ケージ壁。
In the boiler device and operating method according to the present invention, by opening the valve of the bypass pipe at the time of startup when the Proppen phenomenon occurs, the fluid at the furnace outlet flows through the bypass pipe with small flow resistance, and the fluid at the furnace outlet flows on the downstream side of the furnace exit. ceiling walls, cage walls in the fluid path of the.

煙道蒸発器が実質バイパスされる。従ってこの間に保有
される水はほとんど気水分離器には膨出されず、従って
貯水タンクに水が急激に流れない。
The flue evaporator is effectively bypassed. Therefore, little of the water held during this period is bulged into the steam-water separator, and therefore water does not flow rapidly into the water storage tank.

〔実施例〕 本発明の一実施例を第1図及び第2図を参照しながら説
明する。
[Embodiment] An embodiment of the present invention will be described with reference to FIGS. 1 and 2.

第1図に示されるように、ボイラ給水ポンプ(図示しな
い)に接続された節炭器1は、配管工0Aを介して火炉
2の入口2Aに接続されている。
As shown in FIG. 1, an economizer 1 connected to a boiler feed pump (not shown) is connected to an inlet 2A of a furnace 2 via a plumber 0A.

この火炉2の出口2Bは天井壁3に接続されておリ、こ
の天井壁3は配管10Bを介してケージ壁4の下端の入
口4Aに接続されている。またケージ壁4の上端の出口
4Bは配管10Gを介して煙道蒸発器5の入口5Aに接
続され、この煙道蒸発器5の出口5Bは配管10Dを介
して気水分離器7に接続されている。さらにこの気水分
離器7には、分離された蒸気を過熱器6に送給する配管
10Eと、分離された水を貯水タンク8に送給する配管
10Fとが設けられており、さらに貯水タンク8は再循
環ポンプ9を介して配管10Gにより節炭器1に接続さ
れている。火炉2の出口2Cからの流体を気水分離器7
に流通する前記部品及び配管からなる流体経路を備え、
気水分離器7で分離した一方の蒸気を過熱器6に、他力
の水を貯水タンク8に送給するボイラ装置において、流
体経路に流体を気水分離器7にバイパスするバイパス管
路11を接続し、このバイパス管路11を開閉するバル
ブ12を設けた構成である。
An outlet 2B of the furnace 2 is connected to a ceiling wall 3, and the ceiling wall 3 is connected to an inlet 4A at the lower end of the cage wall 4 via a pipe 10B. Further, the outlet 4B at the upper end of the cage wall 4 is connected to the inlet 5A of the flue evaporator 5 via a pipe 10G, and the outlet 5B of the flue evaporator 5 is connected to the steam separator 7 via a pipe 10D. ing. Furthermore, this steam water separator 7 is provided with a pipe 10E for feeding the separated steam to the superheater 6, a pipe 10F for feeding the separated water to the water storage tank 8, and a water storage tank. 8 is connected to the economizer 1 via a recirculation pump 9 and a pipe 10G. The fluid from the outlet 2C of the furnace 2 is transferred to the steam separator 7
A fluid path consisting of the parts and piping that flows through the fluid path,
In a boiler device that supplies one steam separated by a steam/water separator 7 to a superheater 6 and the other water to a water storage tank 8, a bypass pipe line 11 that bypasses fluid to the steam/water separator 7 in a fluid path. This configuration includes a valve 12 for opening and closing the bypass pipe 11.

次に前記のように構成されたボイラ装置の運転方法を第
2図を参照しながら説明する。プロッペン現象による貯
水タンク8への水の流入量は使用燃料によっても異なり
、火炉2における熱吸収量が少なく、この不足分を補う
ため煙道蒸発器5が設置されたガス焚ボイラでは、油焚
ボイラに比べ火炉2から気水分離器7に至る流体経路内
の保有水量が多い、このためプロッペン現象による水の
吐出量も多くなる。第1図及び第2図はこのガス焚ボイ
ラが示される。
Next, a method of operating the boiler apparatus constructed as described above will be explained with reference to FIG. 2. The amount of water flowing into the water storage tank 8 due to the Proppen phenomenon differs depending on the fuel used, and the amount of heat absorbed in the furnace 2 is small. Compared to a boiler, the amount of water held in the fluid path from the furnace 2 to the steam-water separator 7 is large, and therefore the amount of water discharged due to the Proppen phenomenon is also large. This gas-fired boiler is shown in FIGS. 1 and 2.

ボイラ装置の起動待以後の通常の運転時は、バイパス管
路11に設けられたバルブ12を閉じ。
During normal operation after the boiler equipment is started, the valve 12 provided in the bypass pipe 11 is closed.

ボイラ給水ポンプからの水は1節炭器1、配管10A、
火炉2.天井壁3、配管10B、ケージ壁4、配管10
C1煙道蒸発器5、配管10Dを通って気水分離器7に
流入される。プロッペン現象が発生する起動時にこの流
路経路を運用すると。
Water from the boiler water pump is 1 economizer, 10A pipes,
Furnace 2. Ceiling wall 3, piping 10B, cage wall 4, piping 10
It flows into the steam/water separator 7 through the C1 flue evaporator 5 and piping 10D. If you operate this flow path during startup, a Proppen phenomenon will occur.

火炉2.天井壁3、ケージ壁4及び煙道蒸発器5内の気
水分離器7を経由して貯水タンク8に流入することにな
る。そこで起動時はプロッペン現象の発生を予測し、バ
イパス管路11に設けられたバルブ12を開くことによ
り、火炉2の出口2Aから排出される流体は、明らかに
流動抵抗の小さいバイパス管路11に流れることになり
、天井壁3、ケージ壁4及び煙道蒸発器5が実質的にバ
イパスされることになる。そのため、火炉2がら気水分
離器7までに流通される水は火炉2とバイパス管路11
の水のみとなり、プロッベン現象によって膨出される水
の量を抑制することができる。
Furnace 2. It flows into the water storage tank 8 via the ceiling wall 3, the cage wall 4, and the steam/water separator 7 in the flue evaporator 5. Therefore, at startup, by predicting the occurrence of the Proppen phenomenon and opening the valve 12 provided in the bypass pipe 11, the fluid discharged from the outlet 2A of the furnace 2 is directed to the bypass pipe 11, which has a clearly lower flow resistance. The ceiling wall 3, the cage wall 4 and the flue evaporator 5 will be substantially bypassed. Therefore, the water flowing from the furnace 2 to the steam water separator 7 is transferred between the furnace 2 and the bypass pipe 11.
The amount of water bulging out due to the Probben phenomenon can be suppressed.

従ってプロッペン現象が発生する起動時において、気水
分離器7から貯水タンク8に排出される水の量は少なく
なり、貯水タンク8の水位の急激な上昇が防止される。
Therefore, at the time of startup when the Proppen phenomenon occurs, the amount of water discharged from the steam separator 7 to the water storage tank 8 is reduced, and a rapid rise in the water level of the water storage tank 8 is prevented.

なお、火炉2から流体をバイパス管路11に通って気水
分離器7に流入させることは、天井壁3、ケージ壁4及
び煙道蒸発器5に水が流れなくなるかまたは少なくなる
が、このようにバイパス管路11を開く操作は熱負荷の
小さい起動時に行なわれるため、水の流れが停滞するこ
とによってメタル温度が許容値を超えるようなことはな
い、この点については1通気前の再熱器管に蒸気が流入
でいない状態と比較すると明白である。またプロッペン
現象が発生するタイミングを予測して、バルブ12を開
く時期を適正に制御することにより。
Note that flowing the fluid from the furnace 2 through the bypass line 11 into the steam/water separator 7 may result in no or less water flowing into the ceiling wall 3, cage wall 4, and flue evaporator 5; Since the operation to open the bypass pipe 11 is performed at startup when the heat load is small, the metal temperature will not exceed the allowable value due to stagnation of water flow. This is obvious when compared with the situation where no steam is flowing into the heating tube. Also, by predicting the timing at which the Proppen phenomenon occurs and appropriately controlling the timing to open the valve 12.

バイパスされた流路経路に水の最低必要量を確保するこ
とは可能である。
It is possible to ensure the minimum required amount of water in the bypassed flow path.

本実施例によれば、プロッペン現象が発生する起動時に
おいて、気水分R1a’lの水量が少なくなるため、貯
水タンク8の水位の急激な上昇が抑えられて貯水タンク
8の容量を小さくすることができる。また起動時間を短
くするために燃料を多量に投入しても、気水分離器7に
流入する水量を少なくすることができる。
According to this embodiment, at the time of startup when the Proppen phenomenon occurs, the amount of water and moisture R1a'l decreases, so a rapid rise in the water level of the water storage tank 8 is suppressed, and the capacity of the water storage tank 8 can be reduced. I can do it. Furthermore, even if a large amount of fuel is injected to shorten the startup time, the amount of water flowing into the steam/water separator 7 can be reduced.

本実施例ではバイパス管路11を火炉2の出口2Cに接
続した場合について説明したが、このバイパス管路11
を第2図に点線で示されるように、天井壁3とケージ壁
4との間、またはケージ壁4と煙道蒸発器5との間に接
続してもよい。またバイパス管路11への水の流入を確
実にするために、天井壁3の下流側に流路経路中にバル
ブ13を設けて、バイパス操作時にこのバルブ13を閉
じるようにしてもよい。
In this embodiment, a case has been described in which the bypass pipe line 11 is connected to the outlet 2C of the furnace 2, but this bypass pipe line 11
may be connected between the ceiling wall 3 and the cage wall 4 or between the cage wall 4 and the flue evaporator 5, as shown in dotted lines in FIG. Further, in order to ensure the inflow of water into the bypass pipe line 11, a valve 13 may be provided in the flow path on the downstream side of the ceiling wall 3, and this valve 13 may be closed during the bypass operation.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、火炉から気水分離器に至る流路経路中
にバイパス管路とバルブとを設けて、プロッペン現象が
発生する起動時にバイパス管路に流体を流すことによっ
て、プロッペン現象発生時の水の膨出量を抑制し、貯水
タンクの水位の急激な上昇を抑制することができるとと
もに、貯水タンクの容量を小さくすることができる。
According to the present invention, a bypass pipe line and a valve are provided in the flow path from the furnace to the steam-water separator, and by flowing fluid through the bypass pipe line at the time of startup when the Proppen phenomenon occurs, it is possible to It is possible to suppress the expansion amount of water in the water storage tank, suppress a sudden rise in the water level of the water storage tank, and reduce the capacity of the water storage tank.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の概略を示す縦断面図、第2
図は本実施例の作用を示すフローチャート、第3図は従
来の技術を示すフローチャートである。 2・・・火炉、6・・・過熱器、7・・・気水分離器、
8・・・貯水タンク、11・・・バイパス管路、12・
・・バルブ。
FIG. 1 is a vertical cross-sectional view schematically showing an embodiment of the present invention, and FIG.
The figure is a flowchart showing the operation of this embodiment, and FIG. 3 is a flowchart showing the conventional technique. 2...furnace, 6...superheater, 7...steam water separator,
8... Water storage tank, 11... Bypass pipe line, 12.
··valve.

Claims (1)

【特許請求の範囲】 1、火炉出口からの流体を気水分離器に流通する流体経
路を備え、該気水分離器で分離した一方の蒸気を過熱器
に、他力の水を貯水タンクにそれぞれ送給するボイラ装
置において、前記流体経路に、前記流体を前記気水分離
器にバイパスするバイパス管路と、該バイパス管路を開
閉するバルブとを設けたことを特徴とするボイラ装置。 2、流体を気水分離器にバイパスするバイパス管路と該
バイパス管路を開閉するバルブとを流体経路に設け、プ
ロッペン現象が発生する起動時に前記バルブを開とし、
前記流体をバイパス管路に流通して流体経路からの水の
膨出量を抑制し、貯水タンクの水位の急激な上昇を防止
することを特徴とするボイラ装置の運転方法。
[Scope of Claims] 1. A fluid path is provided for flowing fluid from the furnace outlet to a steam/water separator, one of the steam separated by the steam/water separator is sent to the superheater, and the other water is sent to the water storage tank. 1. A boiler device for supplying the respective fluids, wherein the fluid path is provided with a bypass pipe line that bypasses the fluid to the steam water separator, and a valve that opens and closes the bypass pipe line. 2. A bypass pipe line for bypassing the fluid to the steam-water separator and a valve for opening and closing the bypass pipe line are provided in the fluid path, and the valve is opened at the time of startup when the Proppen phenomenon occurs;
A method for operating a boiler apparatus, characterized in that the fluid is distributed through a bypass pipe line to suppress the amount of water bulging out from the fluid path, thereby preventing a rapid rise in the water level of a water storage tank.
JP17428988A 1988-07-13 1988-07-13 Boiler device and operation thereof Pending JPH0225603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17428988A JPH0225603A (en) 1988-07-13 1988-07-13 Boiler device and operation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17428988A JPH0225603A (en) 1988-07-13 1988-07-13 Boiler device and operation thereof

Publications (1)

Publication Number Publication Date
JPH0225603A true JPH0225603A (en) 1990-01-29

Family

ID=15976075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17428988A Pending JPH0225603A (en) 1988-07-13 1988-07-13 Boiler device and operation thereof

Country Status (1)

Country Link
JP (1) JPH0225603A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006071166A (en) * 2004-09-01 2006-03-16 Babcock Hitachi Kk Steam temperature control device for once-through boiler

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006071166A (en) * 2004-09-01 2006-03-16 Babcock Hitachi Kk Steam temperature control device for once-through boiler

Similar Documents

Publication Publication Date Title
US9657598B2 (en) Immediate response steam generating system and method
US5048466A (en) Supercritical pressure boiler with separator and recirculating pump for cycling service
JP4507098B2 (en) Fluid circulation operation equipment and operation method for supercritical constant pressure once-through boiler
JP2019128073A (en) Hot water storage water heater
US7827793B2 (en) Power generation system
JPH0225603A (en) Boiler device and operation thereof
US3366093A (en) Start-up system for once-through vapor generators
JPH09236207A (en) Boiler
JP2000337603A (en) Water supply rate control apparatus for heat exchanger
US20100251976A1 (en) Ejector driven steam generator start up system
JP3462235B2 (en) Steam generator
US3240187A (en) Method of starting once-through type boilers
JPS63194110A (en) Once-through boiler
JPH06229505A (en) Controlling device for feed water temperature of waste heat recovery heat exchanger
JPS6380104A (en) Exhaust gas economizer
JP3176435B2 (en) Steam generator
JPH0949606A (en) Variable pressure once-through boiler
CA1202218A (en) Start-up system for once-through boilers
JPH08312903A (en) Once-through boiler device
JPS61223404A (en) Variable pressure operation once-through boiler
JPS61259002A (en) Variable pressure operation once-through boiler
JPS6080005A (en) Method of operating recirculating pump for once-through boiler
JP2000154904A (en) Exhaust heat recovery boiler
JPH0423161B2 (en)
JPS6093205A (en) Method and device for controlling dry heater system of generating plant