JPH06229505A - Controlling device for feed water temperature of waste heat recovery heat exchanger - Google Patents

Controlling device for feed water temperature of waste heat recovery heat exchanger

Info

Publication number
JPH06229505A
JPH06229505A JP4075193A JP4075193A JPH06229505A JP H06229505 A JPH06229505 A JP H06229505A JP 4075193 A JP4075193 A JP 4075193A JP 4075193 A JP4075193 A JP 4075193A JP H06229505 A JPH06229505 A JP H06229505A
Authority
JP
Japan
Prior art keywords
water supply
temperature
steam
water
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4075193A
Other languages
Japanese (ja)
Inventor
Takahiko Obayashi
隆彦 大林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4075193A priority Critical patent/JPH06229505A/en
Publication of JPH06229505A publication Critical patent/JPH06229505A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

PURPOSE:To stabilize feed water temperature and utilize excessive steam effectively by a method wherein when a rise in load is small and relatively sufficient pressure is provided, heating steam is caused to flow into a feed water tank, and when a load has risen and sufficient pressure is not provided, excessive steam is prevented from flowing into the feed water tank. CONSTITUTION:When a load is stabilized, main steam is sufficient, and the opening of a steam pressure control valve 11 is kept constant, a feed water control valve 16 is controlled by a control signal to keep the outlet side temperature of a feed water tank 12 at a specified value, whereby superheated steam is injected into the tank 12 from a steam relief pipe system L6, so that the temperature of stored feed water is kept constant. On the other hand, when the main steam is not sufficient and pressure thereof falls due to changes in load and the opening of the valve 11 becomes below certain value, the feed water control valve 16 is closed until the pressure of a main steam pipe system L5 rises, whereby the amount of steam injection into the tank 12 is limited. As a result, fluctuations in the feed water temperature can be minimized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高温の排ガスから熱回
収を行って蒸気を発生させる排熱回収熱交換器の給水温
度制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a feed water temperature control device for an exhaust heat recovery heat exchanger that recovers heat from high temperature exhaust gas to generate steam.

【0002】[0002]

【従来の技術】図8に、従来の排熱回収熱交換器の給水
温度制御の系統図を示す。
2. Description of the Related Art FIG. 8 shows a system diagram of conventional feed water temperature control of an exhaust heat recovery heat exchanger.

【0003】排熱回収熱交換器は、過熱器1と蒸発器2
と節炭器3とから構成され、上流の排ガス配管系L1a
から高温の排ガスが、まず、過熱器1が流入し、ここ
で、熱交換した後に、さらに、蒸発器2で排ガスと熱交
換し、節炭器3を経て下流の排ガス配管系L1bから排
出される。
The waste heat recovery heat exchanger comprises a superheater 1 and an evaporator 2.
And an economizer 3, and an upstream exhaust gas piping system L1a
First, the high-temperature exhaust gas flows into the superheater 1, where it exchanges heat with the exhaust gas, and then heat-exchanges with the exhaust gas in the evaporator 2 and is discharged from the exhaust gas piping system L1b downstream via the economizer 3. It

【0004】一方、給水配管系L3から常温の水が、給
水ポンプ4によって給水され、給水流量調節弁5を経て
節炭器3に流入する。節炭器3では、排ガスと給水とが
熱交換されて昇温した水が、給水配管系L3から蒸発器
2に流入する。昇温した水は、蒸発器2で排ガスと熱交
換して飽和蒸気となり、次の過熱器1に流入すると共
に、一部の飽和水がボイラ水循環配管系L4からボイラ
水循環ポンプ6によって節炭器3の入口側の給水配管系
L3に戻って循環がされる。
On the other hand, normal temperature water is supplied from the water supply piping system L3 by the water supply pump 4 and flows into the economizer 3 through the water supply flow rate control valve 5. In the economizer 3, the water whose temperature has risen due to heat exchange between the exhaust gas and the feed water flows into the evaporator 2 through the feed water piping system L3. The heated water exchanges heat with the exhaust gas in the evaporator 2 to become saturated steam, flows into the next superheater 1, and a part of the saturated water is saved from the boiler water circulation piping system L4 by the boiler water circulation pump 6 to save the coal. 3 is returned to the water supply piping system L3 on the inlet side for circulation.

【0005】過熱器1に流入した飽和蒸気は、高温の排
ガスと熱交換して過熱蒸気となり、主蒸気流量制御弁7
を介して主蒸気配管系L5から図示省略するタービン等
の所定の箇所へ供給されて仕事をする。
The saturated steam flowing into the superheater 1 exchanges heat with the high temperature exhaust gas to become superheated steam, and the main steam flow control valve 7
Is supplied from the main steam piping system L5 to a predetermined location such as a turbine (not shown) for work.

【0006】ところで、ボイラ水循環配管系L4と給水
配管系L3との合流する近傍の給水配管系L3には、給
水温度検出手段8が配置され、さらに、ボイラ水循環配
管系L4には、給水温度制御弁9が配置されて、給水温
度検出手段8が温度制御手段10に接続されている。
By the way, a water supply temperature detecting means 8 is arranged in the water supply pipe system L3 near the confluence of the boiler water circulation pipe system L4 and the water supply pipe system L3, and further, the water supply temperature control is carried out in the boiler water circulation pipe system L4. A valve 9 is arranged and the feed water temperature detecting means 8 is connected to the temperature control means 10.

【0007】温度制御手段10では、給水温度検出手段
8からの給水温度検出信号と、予め設定した温度との偏
差を求め、この偏差を制御演算して制御信号を給水温度
制御弁9へ出力する。これによつて、ボイラ水循環配管
系L4から蒸発器2の飽和水を給水配管系L3へ循環し
て混入する流量が増減され、節炭器3の入口温度が一定
に保持され、節炭器3の入口温度の低下による節炭器3
の配管の低温腐食を防止する。
The temperature control means 10 obtains a deviation between the feed water temperature detection signal from the feed water temperature detection means 8 and a preset temperature, controls the deviation, and outputs a control signal to the feed water temperature control valve 9. . As a result, the flow rate of circulating saturated water of the evaporator 2 from the boiler water circulation piping system L4 to the water supply piping system L3 and mixing it is increased or decreased, the inlet temperature of the economizer 3 is kept constant, and the economizer 3 is saved. Economizer 3 due to lower inlet temperature
Prevents low temperature corrosion of piping.

【0008】なお、主蒸気配管系L5と下流の排ガス配
管系L1bには、両配管を接続する逃がし蒸気配管系L
6がバイパスして形成され、蒸気圧力制御弁11が配置
され、過熱器1の出口圧力を所定値に保つようにしてい
る。
The main steam piping system L5 and the downstream exhaust gas piping system L1b are connected to the escape steam piping system L that connects both pipings.
6 is formed by bypass, and the steam pressure control valve 11 is arranged to keep the outlet pressure of the superheater 1 at a predetermined value.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、図8に
示した従来の装置は、給水温度制御が不安定で、かつ、
プラントの余剰蒸気の有効利用が図れていないという問
題がある。
However, in the conventional apparatus shown in FIG. 8, the feed water temperature control is unstable, and
There is a problem that the excess steam of the plant cannot be effectively used.

【0010】まず、その一つには、給水温度検出手段8
は、熱容量の小さい配管に配置されているから、給水配
管系L3の流量が変動すると、これに応じて給水検出温
度信号が大幅に変動して制御された温度が変動してしま
うという問題がある。
First, as one of them, the feed water temperature detecting means 8
Is placed in a pipe having a small heat capacity, and therefore, if the flow rate of the water supply piping system L3 changes, the water supply detection temperature signal changes correspondingly and the controlled temperature changes. .

【0011】これを解決するために、制御感度を高くす
ることが考えられる。ところが、常温の給水と少量の飽
和温度と混合することにより温度制御されているため、
制御感度が高く、仮に常温の給水流量が少ないと、給水
温度制御弁9が極端に絞られ、却って節炭器3の入口温
度が低下したり、ハンチングを起こして不安定になる。
In order to solve this, it is conceivable to increase the control sensitivity. However, since the temperature is controlled by mixing water at room temperature with a small amount of saturation temperature,
If the control sensitivity is high and the feed water flow rate at room temperature is small, the feed water temperature control valve 9 is extremely narrowed, and rather, the inlet temperature of the economizer 3 is lowered, or hunting occurs, which causes instability.

【0012】このように、負荷変化等で給水流量が変動
すると、節炭器3の入口温度が低下して節炭器3に流入
する排ガスによって配管等がいわゆる低温腐食するとい
う問題があった。
As described above, when the feed water flow rate fluctuates due to a load change or the like, there is a problem that the inlet temperature of the economizer 3 is lowered and the exhaust gas flowing into the economizer 3 causes low-temperature corrosion of pipes and the like.

【0013】もう一つには、負荷変動に応じて図8に示
す蒸気圧力制御弁11の開動作によつて逃がし蒸気配管
系L6から下流の排ガス配管系L1bを経て余剰蒸気が
系外に排出されており、熱の効率的運用がされていない
という問題があった。
Secondly, excess steam is discharged to the outside of the system from the escape steam piping system L6 through the exhaust gas piping system L1b downstream by the opening operation of the steam pressure control valve 11 shown in FIG. However, there is a problem that heat is not efficiently used.

【0014】例えば、排熱回収熱交換器が小規模な燃料
電池発電プラントに適用され、主蒸気配管系L5から供
給される過熱蒸気が改質装置の蒸気源として用いられ
る。一般に、燃料電池発電プラントは、負荷の変動が急
激で大きく、最大負荷に合わせて過熱蒸気を供給できる
ようにしているため、通常時、負荷時には余剰蒸気を系
外に排出させるというエネルギーの無駄があった。
For example, the exhaust heat recovery heat exchanger is applied to a small-scale fuel cell power plant, and the superheated steam supplied from the main steam piping system L5 is used as the steam source of the reformer. Generally, in a fuel cell power plant, the load changes abruptly and largely, and it is possible to supply superheated steam according to the maximum load.Therefore, there is a waste of energy in discharging excess steam to the outside of the system under normal and load conditions. there were.

【0015】そこで、本発明は、給水温度の安定化と余
剰蒸気の有効利用を図る給水温度制御装置を提供するこ
とを目的とする。
Therefore, it is an object of the present invention to provide a feed water temperature control device for stabilizing the feed water temperature and effectively utilizing the surplus steam.

【0016】[0016]

【課題を解決するための手段】請求項1の発明は、給水
配管に接続され熱交換器を内蔵して前記給水配管からの
給水と排ガスと熱交換して昇温した給水を生成する節炭
器と、この節炭器に給水配管が接続され熱交換器を内蔵
して前記昇温した給水と排ガスと熱交換して飽和蒸気を
生成する蒸発器と、この蒸発器に蒸気配管が接続され前
記飽和蒸気と排ガスと熱交換して過熱蒸気を生成して主
蒸気配管から過熱蒸気を熱需要先へ供給する過熱器とを
有し、前記主蒸気配管から分岐され余剰蒸気を排出する
ための蒸気圧力制御弁を介して逃がし蒸気配管を配設す
ると共に、前記蒸発器の入口側と前記節炭器の入口側の
給水配管とを接続して循環ポンプと主給水温度制御弁と
を介してボイラ水循環配管を配設して構成される排熱回
収熱交換器の前記節炭器の入口側の給水配管の給水温度
を検出して給水温度検出信号を出力する主温度検出手段
と、前記給水温度検出信号と給水温度設定信号との偏差
を制御演算して制御信号を前記給水温度制御弁へ出力す
る主温度制御手段とを備えて前記給水温度を所定値に制
御する排熱回収熱交換器の給水温度制御装置において、
補給水を供給するための補給水配管に接続され給水を貯
蔵する給水タンクを設け、この給水タンクを前記給水配
管に接続すると共に、前記主蒸気配管から余剰の過熱蒸
気の供給を前記給水タンクへ受けるために給水温度制御
弁を配置した過熱蒸気供給配管を介して前記主蒸気配管
に接続し、さらに、主蒸気配管に配置され主蒸気圧力を
検出し圧力検出信号を出力する圧力検出器と、前記圧力
検出信号と圧力設定信号との偏差を制御演算して制御信
号を前記蒸気圧力制御弁に出力する圧力制御手段と、前
記熱需要先の負荷上昇時に前記余剰の過熱蒸気の供給を
制限するために前記制御信号を入力して予め設定された
関数に基づいて制限信号を出力する関数設定手段と、前
記給水タンクの出口側の給水配管に設けられ温度検出信
号を出力する温度検出手段と、前記温度検出信号と温度
設定信号との偏差を制御演算して制御信号を出力する温
度制御手段と、前記制限信号と前記制御信号とを入力し
て低値の信号を選択してこの信号によって前記給水制御
弁を開閉する低値選択手段とを設けるようにしたもので
ある。
According to a first aspect of the present invention, there is provided a coal-saving coal which is connected to a water supply pipe and has a built-in heat exchanger for exchanging heat between the water supplied from the water supply pipe and exhaust gas to generate heated water supply. Vessel, a water supply pipe connected to this economizer and a built-in heat exchanger, and an evaporator for exchanging heat with the heated water supply and exhaust gas to generate saturated steam, and a steam pipe connected to this evaporator Steam for exchanging heat with saturated steam and exhaust gas to generate superheated steam and supplying superheated steam from a main steam pipe to a heat demand destination, and steam for discharging excess steam branched from the main steam pipe A relief steam pipe is arranged via a pressure control valve, and the inlet side of the evaporator and the water supply pipe on the inlet side of the economizer are connected to each other through a circulation pump and a main feed water temperature control valve. Exhaust heat recovery heat exchanger configured by arranging water circulation piping Main temperature detecting means for detecting the water supply temperature of the water supply pipe on the inlet side of the charcoal device and outputting a water supply temperature detection signal, and a deviation between the water supply temperature detection signal and the water supply temperature setting signal is control-calculated to control the control signal. In a feed water temperature control device for an exhaust heat recovery heat exchanger, which comprises a main temperature control means for outputting to a feed water temperature control valve and controls the feed water temperature to a predetermined value,
A water supply tank connected to a makeup water pipe for supplying makeup water is provided to store the water supply, the water supply tank is connected to the water supply pipe, and excess superheated steam is supplied from the main steam pipe to the water supply tank. Connected to the main steam pipe through the superheated steam supply pipe in which the feed water temperature control valve is arranged to receive, further, a pressure detector that is arranged in the main steam pipe to detect the main steam pressure and output a pressure detection signal, Pressure control means for controlling and calculating the deviation between the pressure detection signal and the pressure setting signal and outputting a control signal to the steam pressure control valve; and limiting the supply of the surplus superheated steam when the load of the heat demand destination rises. Function setting means for inputting the control signal and outputting a limit signal based on a preset function, and a temperature for outputting a temperature detection signal provided in the water supply pipe on the outlet side of the water tank Output means, temperature control means for controlling and calculating the deviation between the temperature detection signal and the temperature setting signal and outputting a control signal, and inputting the limit signal and the control signal to select a low value signal A low value selecting means for opening and closing the water supply control valve according to this signal is provided.

【0017】請求項2の発明は、給水配管に接続され熱
交換器を内蔵して前記給水配管からの給水と排ガスと熱
交換して昇温した給水を生成する節炭器と、この節炭器
に給水配管が接続され熱交換器を内蔵して前記昇温した
給水と排ガスと熱交換して飽和蒸気を生成する蒸発器
と、この蒸発器に蒸気配管が接続され前記飽和蒸気と排
ガスと熱交換して過熱蒸気を生成して主蒸気配管から過
熱蒸気を主蒸気流量制御弁を介して熱需要先へ供給する
過熱器とを有し、前記主蒸気配管から分岐され余剰蒸気
を排出するための蒸気圧力制御弁を介して逃がし蒸気配
管を配設すると共に、前記蒸発器の入口側と前記節炭器
の入口側の給水配管とを接続して循環ポンプと給水温度
制御弁とを介してボイラ水循環配管を配設して構成され
る排熱回収熱交換器の前記節炭器の入口側の給水配管の
給水温度を検出して給水温度検出信号を出力する主温度
検出手段と、前記給水温度検出信号と給水温度設定信号
との偏差を制御演算して制御信号を前記主給水温度制御
弁へ出力する主温度制御手段とを備えて前記給水温度を
所定値に制御する排熱回収熱交換器の給水温度制御装置
において、補給水を供給するため補給水配管に接続され
給水を貯蔵する給水タンクを設け、この給水タンクを前
記給水配管に接続すると共に、前記主蒸気配管から余剰
の過熱蒸気の供給を前記給水タンクへ受けるために給水
温度制御弁を配置した過熱蒸気配管を介して前記主蒸気
配管に接続し、さらに、主蒸気配管に配置され主蒸気圧
力を検出し圧力検出信号を出力する圧力検出器と、前記
圧力検出信号と圧力設定信号との偏差を制御演算して制
御信号を前記蒸気圧力制御弁に出力する圧力制御手段
と、主蒸気配管の主蒸気流量を検出して主蒸気検出信号
を出力する流量検出手段と、流量設定信号と前記主蒸気
検出信号との偏差を制御演算して制御信号を前記主蒸気
流量制御弁に出力する流量制御手段と、前記流量設定信
号とを微分演算して変化率信号を出力する微分演算手段
と、前記熱需要先の負荷上昇時に前記余剰の過熱蒸気の
供給を制限するために前記変化率信号を入力して予め設
定された関数に基づいて制限信号を出力する関数設定手
段と、前記給水タンクの出口側の給水配管に設けられ温
度検出信号を出力する温度検出手段と、前記温度検出信
号と温度設定信号との偏差を制御演算して制御信号を出
力する温度制御手段と、前記制限信号と前記制御信号と
を入力して低値の信号を選択してこの信号によって前記
給水制御弁を開閉する低値選択手段とを設けるようにし
たものである。
The invention of claim 2 is a economizer which is connected to a water supply pipe and has a built-in heat exchanger, which exchanges heat with the exhaust water and exhaust gas from the water supply pipe to generate heated water. An evaporator that is connected to a water supply pipe and has a built-in heat exchanger to exchange heat with the heated water and exhaust gas to generate saturated steam, and a steam pipe connected to this evaporator to heat the saturated steam, exhaust gas and heat. For exchanging superheated steam to supply superheated steam from the main steam pipe to the heat demand destination via the main steam flow control valve, and for discharging excess steam branched from the main steam pipe Of the steam pressure control valve of the escape steam pipe is arranged, and the inlet side of the evaporator and the feed water pipe of the inlet side of the economizer are connected to each other via a circulation pump and a feed water temperature control valve. Exhaust heat recovery heat exchanger configured with boiler water circulation piping Main temperature detecting means for detecting the water supply temperature of the water supply pipe on the inlet side of the economizer and outputting a water supply temperature detection signal, and a control signal by controlling and calculating a deviation between the water supply temperature detection signal and the water supply temperature setting signal. In the feed water temperature control device of the exhaust heat recovery heat exchanger for controlling the feed water temperature to a predetermined value by providing a main temperature control means for outputting to the main feed water temperature control valve, to the makeup water pipe for supplying makeup water. A water supply tank is provided to store connected water supply, the water supply tank is connected to the water supply pipe, and a water supply temperature control valve is arranged to receive supply of excess superheated steam from the main steam pipe to the water supply tank. A pressure detector that is connected to the main steam pipe via a steam pipe and that is arranged in the main steam pipe to detect the main steam pressure and output a pressure detection signal; and a deviation between the pressure detection signal and the pressure setting signal. Pressure control means for performing control calculation and outputting a control signal to the steam pressure control valve, flow rate detection means for detecting a main steam flow rate of the main steam pipe and outputting a main steam detection signal, flow rate setting signal and the main steam A flow rate control means for controlling and calculating a deviation from a detection signal to output a control signal to the main steam flow rate control valve; a differential calculating means for differentially calculating the flow rate setting signal and outputting a change rate signal; Function setting means for inputting the rate-of-change signal and outputting a limiting signal based on a preset function in order to limit the supply of the excess superheated steam when the load on the demand side increases, and the outlet side of the water supply tank Temperature detection means provided in the water supply pipe for outputting a temperature detection signal, temperature control means for controlling and calculating the deviation between the temperature detection signal and the temperature setting signal, and outputting the control signal, the limit signal and the control signal And enter And a low value selecting means for opening and closing the water supply control valve according to this signal.

【0018】[0018]

【作用】請求項1の発明は、負荷の上昇が少なく、比較
的圧力に余裕のあるとき給水タンクの出口側の温度を所
定値とする制御信号により給水温度制御弁が制御されて
過熱蒸気が給水タンクへ流入される。一方、負荷が上昇
して圧力に余裕がないときは、制限信号によって給水制
御弁が制御され、余剰蒸気の給水タンクへの流入を阻止
される。この際、給水タンクは、貯蔵量が大きいから余
剰蒸気の流入がなくとも、給水温度の大幅な変動がな
い。これによって、節炭器の入口側へ供給される給水温
度が安定しているから節炭器の入口側への給水流量が変
動しても給水温度の変動が少ない。したがって、節炭器
の低温腐食が防止されると共に、余剰蒸気の有効利用が
図れる。
According to the first aspect of the present invention, when the increase in load is small and the pressure is relatively large, the feed water temperature control valve is controlled by the control signal that sets the temperature on the outlet side of the feed water tank to a predetermined value, and superheated steam is generated. It flows into the water tank. On the other hand, when the load increases and the pressure has no margin, the water supply control valve is controlled by the restriction signal, and the inflow of excess steam into the water supply tank is blocked. At this time, since the water supply tank has a large storage amount, there is no large fluctuation in the water supply temperature even if the excess steam does not flow in. As a result, the temperature of the feed water supplied to the inlet side of the economizer is stable, so that the variation of the feed water temperature is small even if the flow rate of the water supplied to the inlet side of the economizer is varied. Therefore, low-temperature corrosion of the economizer can be prevented, and excess steam can be effectively used.

【0019】請求項2の発明は、負荷の上昇が少なく、
比較的に流量設定値が安定しているとき給水タンクの出
口側の温度を所定値とする制御信号により給水温度制御
弁が制御されて過熱蒸気が給水タンクへ流入される。一
方、負荷が上昇して流量設定値が急上昇するときは、流
量設定値の変化率が大きく低く設定された制限信号によ
って給水温度制御弁が制御され、過熱蒸気の給水タンク
への流入を阻止される。この際、給水タンクは、貯蔵量
が大きいから過熱蒸気の流入がなくとも、給水温度の大
幅な変動がない。これによって、節炭器の入口側へ供給
される給水温度が安定しているから節炭器の入口側への
給水流量が変動しても給水温度の変動が少ない。したが
って、節炭器の低温腐食が防止されると共に、余剰蒸気
の有効利用が図れる。
According to the second aspect of the invention, the increase in load is small,
When the flow rate set value is relatively stable, the feed water temperature control valve is controlled by a control signal that sets the temperature on the outlet side of the water feed tank to a predetermined value, and superheated steam flows into the feed water tank. On the other hand, when the load rises and the flow rate set value rises sharply, the rate of change of the flow rate set value is set to a large and low limit signal that controls the feedwater temperature control valve to prevent the superheated steam from flowing into the feedwater tank. It At this time, since the water supply tank has a large storage amount, even if there is no inflow of superheated steam, the temperature of the water supply does not significantly change. As a result, the temperature of the feed water supplied to the inlet side of the economizer is stable, so that the variation of the feed water temperature is small even if the flow rate of the water supplied to the inlet side of the economizer is varied. Therefore, low-temperature corrosion of the economizer can be prevented, and excess steam can be effectively used.

【0020】[0020]

【実施例】以下、本発明の実施例について図面を参照し
て説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0021】図1は、本発明の第1実施例を示す排熱回
収熱交換器の給水温度制御系統の系統図である。従来技
術を示す図8と同一符号は、同一部分または相当部分を
示し、両者が異なる点は、補給水配管系L2に給水タン
ク12を追設して、この給水タンク12に主蒸気配管系
L5から分岐する過熱蒸気供給配管系L7を接続すると
共に、給水タンク12の出口側の温度を所定値に保つた
めに温度検出手段13と温度制御手段14と低値優先手
段15と過熱蒸気供給配管系L7に配置される給水制御
弁16とを設けたことである。
FIG. 1 is a system diagram of a feed water temperature control system of an exhaust heat recovery heat exchanger showing a first embodiment of the present invention. The same reference numerals as those in FIG. 8 showing the prior art indicate the same or corresponding portions, and the difference between them is that a water supply tank 12 is additionally provided in the makeup water piping system L2, and the main steam piping system L5 is added to this water supply tank 12. Is connected to the superheated steam supply pipe system L7, and in order to maintain the temperature on the outlet side of the water supply tank 12 at a predetermined value, the temperature detection means 13, the temperature control means 14, the low value priority means 15, and the superheated steam supply piping system. The water supply control valve 16 arranged at L7 is provided.

【0022】ここで、給水タンク12は、容量の大きい
貯蔵タンクで補給水配管系L2から補給水を流入させて
滞留させる間に過熱蒸気供給配管系L7から流入する過
熱蒸気と混合させて内部で昇温後に、給水配管系L3か
ら給水ポンプ4によって給水するものである。
Here, the water supply tank 12 is a storage tank having a large capacity, and while the make-up water is made to flow from the make-up water piping system L2 and made to stay therein, it is mixed with the superheated steam flowing from the superheated steam supply piping system L7 inside. After the temperature is raised, water is supplied from the water supply piping system L3 by the water supply pump 4.

【0023】温度検出手段13は、給水タンク12の出
口の温度を検出して温度検出信号を出力するものであ
る。温度制御手段14は、温度検出手段13の温度検出
信号と温度設定信号との偏差を制御演算して制御信号を
出力するものである。低値優先手段15は、温度制御手
段14の制御信号と制限信号S1とのいずれか低値を選
択して給水制御弁16へ制御信号を出力するものであ
る。給水制御弁16は、低値優先手段15からの制御信
号に応じて開閉して過熱蒸気供給配管系L7から給水タ
ンク12に流入する過熱蒸気を増減するものである。
The temperature detecting means 13 detects the temperature at the outlet of the water supply tank 12 and outputs a temperature detection signal. The temperature control means 14 controls and calculates the deviation between the temperature detection signal of the temperature detection means 13 and the temperature setting signal and outputs a control signal. The low value priority means 15 selects one of the control signal of the temperature control means 14 and the limit signal S1 whichever is lower, and outputs the control signal to the water supply control valve 16. The water supply control valve 16 is opened and closed according to a control signal from the low value priority means 15 to increase or decrease the amount of superheated steam flowing into the water supply tank 12 from the superheated steam supply piping system L7.

【0024】以上の構成で、常温の給水が図示省略する
補給水源から補給水配管系L2により給水タンク12に
流入される。給水タンク12では、過熱蒸気供給配管系
L7から過熱蒸気が供給されて常温の水が昇温されて滞
留する。給水タンク12で昇温された給水は、給水ポン
プ4によつて送水され、給水流量調節弁5を経て給水配
管系L3とボイラ水循環配管系L4と合流点に達した後
に排熱回収熱交換器の節炭器3へ流入する。
With the above structure, the water supply at room temperature is introduced into the water supply tank 12 from the makeup water source (not shown) through the makeup water piping system L2. In the water supply tank 12, the superheated steam is supplied from the superheated steam supply pipe system L7, and the water at room temperature is heated and stays therein. The water supply heated by the water supply tank 12 is sent by the water supply pump 4, reaches the confluence point between the water supply pipe system L3 and the boiler water circulation pipe system L4 via the water supply flow rate control valve 5, and then the exhaust heat recovery heat exchanger. Into the economizer 3.

【0025】節炭器3に流入した給水は、排ガスと熱交
換して給水配管系L3から蒸発器2に流入する。
The feed water that has flowed into the economizer 3 exchanges heat with the exhaust gas and flows into the evaporator 2 through the feed water piping system L3.

【0026】ここで、さらに、排ガスと熱交換して飽和
蒸気となって過熱器1に供給され、一部の飽和水がボイ
ラ水循環配管系L4から給水配管系L3に循環される。
飽和蒸気は、過熱器1によって高温の排ガスと熱交換し
て過熱蒸気となって主蒸気流量制御弁7を経て主蒸気配
管系L5から所定の箇所へ供給されて仕事をさせる。こ
の場合、供給される過熱蒸気量は、主蒸気流量制御弁7
によって設定流量に保持される。
Here, heat is further exchanged with the exhaust gas to form saturated steam, which is supplied to the superheater 1, and a part of the saturated water is circulated from the boiler water circulation piping system L4 to the water supply piping system L3.
The saturated steam exchanges heat with high-temperature exhaust gas by the superheater 1 to become superheated steam, is supplied from the main steam flow control valve 7 to a predetermined location through the main steam flow control valve 7, and is allowed to work. In this case, the amount of superheated steam supplied is the main steam flow control valve 7
Is maintained at the set flow rate.

【0027】ここで、給水タンク12の出口側の温度制
御について説明する。
Here, the temperature control on the outlet side of the water supply tank 12 will be described.

【0028】まず、給水タンク12の出口温度が温度検
出手段13に検出され温度検出信号が温度制御手段14
に入力される。温度制御手段14では、温度検出信号と
温度設定信号との偏差を制御演算して制御信号が低値優
先手段15に入力される。
First, the outlet temperature of the water supply tank 12 is detected by the temperature detection means 13 and the temperature detection signal is sent to the temperature control means 14.
Entered in. In the temperature control means 14, the deviation between the temperature detection signal and the temperature setting signal is controlled and calculated, and the control signal is input to the low value priority means 15.

【0029】一方、余剰蒸気が発生していないとき温度
制御手段14の制御信号を制限するため予め設定された
制限信号が低値優先手段15に入力される。この結果、
制限信号と温度制御手段14の制御信号との内でいずれ
か低値の信号が低値優先手段15で選択され、給水制御
弁16を開閉制御する。
On the other hand, in order to limit the control signal of the temperature control means 14 when the excess steam is not generated, a preset limit signal is inputted to the low value priority means 15. As a result,
A low value signal is selected by the low value priority means 15 from the limit signal and the control signal of the temperature control means 14, and the water supply control valve 16 is opened and closed.

【0030】すなわち、余剰蒸気が発生している場合
は、温度制御手段14の制御信号に応じて系外に排出し
ている余剰蒸気の一部を給水制御弁16から給水タンク
12へ供給し、その給水量を制御することにより給水タ
ンク12の出口温度が一定に保たれる。また余剰蒸気が
発生していない場合には、最小限に制限された信号によ
り温度制御手段14を制御する。これによって、たとえ
負荷急変時等に給水量が大きく変動した場合、あるい
は、余剰蒸気が無くなっても給水タンク12から給水配
管系L3に供給される給水の温度は上昇され、かつ、熱
容量の大きい給水タンク12から流出するものなので、
給水の温度の変化が少ない。
That is, when the surplus steam is generated, a part of the surplus steam discharged to the outside of the system is supplied from the water supply control valve 16 to the water supply tank 12 in accordance with the control signal of the temperature control means 14, The outlet temperature of the water supply tank 12 is kept constant by controlling the amount of water supply. When the excess steam is not generated, the temperature control means 14 is controlled by the signal limited to the minimum. As a result, even if the amount of water supply greatly changes due to a sudden change in load, or even if there is no excess steam, the temperature of the water supply supplied from the water supply tank 12 to the water supply piping system L3 is increased, and the water supply with a large heat capacity is provided. Because it flows out of the tank 12,
There is little change in the temperature of the water supply.

【0031】次に、節炭器3の入口側に配置される給水
温度検出手段8で検出する温度検出信号は、比較的安定
しているから温度制御手段14からの制御信号によって
給水温度制御弁9を安定して制御がされる。
Next, since the temperature detection signal detected by the feed water temperature detecting means 8 arranged on the inlet side of the economizer 3 is relatively stable, the feed water temperature control valve is controlled by the control signal from the temperature control means 14. 9 is controlled stably.

【0032】このように、給水タンク12内にた貯まっ
た多量の水が設定温度に保たれ、従来方式に比べて熱容
量が増加するため負荷変化等により給水流量が大きく変
動した場合においても給水温度の変動が最小限に抑えら
れる。また、系外に排出する余剰蒸気の一部が利用され
て給水を加熱されるから、今後の小規模、省エネ型のプ
ラントに好適なものである。
As described above, since a large amount of water stored in the water supply tank 12 is maintained at the set temperature and the heat capacity is increased as compared with the conventional method, the water supply temperature is changed even when the water supply flow rate largely changes due to load change or the like. Fluctuations are minimized. Further, since a part of surplus steam discharged to the outside of the system is used to heat the feed water, it is suitable for future small-scale, energy-saving plants.

【0033】次に、本発明の第2実施例を図2を参照し
て説明する。
Next, a second embodiment of the present invention will be described with reference to FIG.

【0034】第2実施例が、図1に示した第1実施例と
異なる点は、圧力検出器17と圧力制御手段18と関数
設定手段19とを追設したことである。
The second embodiment differs from the first embodiment shown in FIG. 1 in that a pressure detector 17, a pressure control means 18 and a function setting means 19 are additionally provided.

【0035】ここで、圧力検出器17は、主蒸気流量制
御弁7の入口側の圧力を検出して圧力検出信号を出力す
るものである。圧力制御手段18は、圧力検出器17の
圧力検出信号と圧力設定信号との偏差を制御演算して制
御信号を出力するものである。関数設定手段19は、後
述するする関数設定に応じて制限信号を出力するもので
ある。
Here, the pressure detector 17 detects the pressure on the inlet side of the main steam flow control valve 7 and outputs a pressure detection signal. The pressure control means 18 controls and calculates the deviation between the pressure detection signal of the pressure detector 17 and the pressure setting signal, and outputs a control signal. The function setting means 19 outputs a limit signal according to the function setting described later.

【0036】上記構成で、まず、主蒸気流量制御弁7の
入口側の圧力が圧力検出器17によって検出され、圧力
検出信号が圧力制御手段18に入力される。この圧力検
出信号は、圧力制御手段18で圧力設定信号との偏差が
算出され、偏差が制御演算されて制御信号によつて蒸気
圧力制御弁11が開閉制御される。
In the above structure, first, the pressure on the inlet side of the main steam flow control valve 7 is detected by the pressure detector 17, and the pressure detection signal is input to the pressure control means 18. A deviation of the pressure detection signal from the pressure setting signal is calculated by the pressure control means 18, the deviation is control-calculated, and the steam pressure control valve 11 is opened / closed by the control signal.

【0037】これによって、主蒸気流量制御弁7の入口
側の圧力が所定の圧力設定値に維持される。続いて、圧
力制御手段18の制御信号が関数設定手段19に入力さ
れる。
As a result, the pressure on the inlet side of the main steam flow control valve 7 is maintained at a predetermined pressure set value. Then, the control signal of the pressure control means 18 is input to the function setting means 19.

【0038】関数設定手段19では、例えば、図3に示
すように制御信号と制限信号の関係を予め実験によって
求められ、設定されており、制御信号がαの値より小さ
いとき、制限信号をα=0%が出力され、制御信号がα
の値より大きいとき制限信号α=100%がされる。
In the function setting means 19, for example, as shown in FIG. 3, the relationship between the control signal and the limit signal is previously obtained by experiment and set, and when the control signal is smaller than the value of α, the limit signal is set to α. = 0% is output and the control signal is α
When it is larger than the value of, the limiting signal α = 100% is given.

【0039】一方、給水タンク12の出口側の温度が、
温度検出手段13によって検出され、温度検出信号が温
度制御手段14に入力される。温度制御手段14では、
温度検出信号と温度設定信号との偏差を制御演算して制
御信号が低値優先手段15に入力される。
On the other hand, the temperature on the outlet side of the water supply tank 12 is
A temperature detection signal detected by the temperature detection means 13 is input to the temperature control means 14. In the temperature control means 14,
The deviation between the temperature detection signal and the temperature setting signal is controlled and calculated, and the control signal is input to the low value priority means 15.

【0040】制限信号と制御信号とが入力された低値優
先手段15では、低値の信号が選択されて、選択された
信号が給水制御弁16へ出力される。
The low value priority means 15 to which the limit signal and the control signal are input selects the low value signal and outputs the selected signal to the water supply control valve 16.

【0041】この結果、例えば、負荷安定時において、
主蒸気に余裕があり、制御信号が大きくて蒸気圧力制御
弁11が一定開度以上となっていれば、関数設定手段1
9から100%の制御信号が低値優先手段15に入力さ
れる。したがって、温度制御手段14からの制御信号が
低値優先手段15から出力される。このため、従来蒸気
圧力制御弁11から排出されていた余剰蒸気の一部が温
度制御手段14によって制御される。これによって、給
水制御弁16により過熱蒸気が逃がし蒸気配管系L6か
ら給水タンク12に注入され、給水が加熱され、貯水さ
れた給水温度が一定に保たれる。
As a result, for example, when the load is stable,
If the main steam has a margin, the control signal is large, and the steam pressure control valve 11 is at a certain opening or more, the function setting means 1
A control signal of 9 to 100% is input to the low value priority means 15. Therefore, the control signal from the temperature control means 14 is output from the low value priority means 15. Therefore, a part of the surplus steam conventionally discharged from the steam pressure control valve 11 is controlled by the temperature control means 14. Thereby, the superheated steam is released by the water supply control valve 16 and is injected into the water supply tank 12 from the steam piping system L6, the water supply is heated, and the stored water supply temperature is kept constant.

【0042】一方、負荷変化時等により主蒸気に余裕が
なく圧力が低下し、蒸気圧力制御弁11が一定開度以下
になると、関数設定手段19から0%の制限信号が低値
優先手段15へ出力される。このとき、主蒸気配管系L
5の圧力が上昇するまでの間、給水制御弁16は閉動作
とされ、給水タンク12の注入量が制限される。この
際、給水温度は、給水タンク12内の熱容量が大きく、
また、圧力がすぐ回復してくるため給水温度は大きく低
下しない。
On the other hand, when the steam pressure does not have a margin and the pressure drops due to a load change or the like, and the steam pressure control valve 11 becomes less than a certain opening, the function setting means 19 sends a 0% limit signal to the low value priority means 15. Is output to. At this time, the main steam piping system L
Until the pressure of 5 rises, the water supply control valve 16 is closed, and the injection amount of the water supply tank 12 is limited. At this time, the water supply temperature is large because the heat capacity in the water supply tank 12 is large.
Also, since the pressure recovers immediately, the feed water temperature does not drop significantly.

【0043】次に、本発明の第3実施例を図4を参照し
て説明する。
Next, a third embodiment of the present invention will be described with reference to FIG.

【0044】本実施例が、図2に示す第2実施例と異な
る点は、関数設定手段19の代わりに関数設定手段20
を設けたことである。
The present embodiment differs from the second embodiment shown in FIG. 2 in that the function setting means 20 is replaced by the function setting means 20.
Is provided.

【0045】関数設定手段20は、図5に示すように横
軸に圧力検出信号、縦軸に制限信号として関数曲線bが
設定されており、入力する圧力検出信号が圧力値γ以上
の場合には、100%の制限信号が出力され、圧力検出
信号が圧力β値以下の場合は0%が制限信号として出力
される。これにより、図2に示す第2実施例と同様に負
荷の増大等により圧力が低下し、圧力検出信号が圧力値
β以下となると、関数設定手段20の制限信号が0%と
なる。低値優先手段15では、温度制御手段14の制御
信号と制限信号の内の0%の制限信号が選択されて、こ
の信号によって給水制御弁16が閉とされる。このよう
に、余剰蒸気がなくなった場合には、給水タンク12へ
の加熱蒸気量は制限される。
As shown in FIG. 5, the function setting means 20 has a function curve b set as a pressure detection signal on the horizontal axis and a limit signal on the vertical axis, and when the input pressure detection signal is equal to or higher than the pressure value γ. Outputs a 100% limit signal, and 0% is output as the limit signal when the pressure detection signal is less than or equal to the pressure β value. As a result, similarly to the second embodiment shown in FIG. 2, when the pressure decreases due to an increase in the load and the pressure detection signal becomes the pressure value β or less, the limit signal of the function setting means 20 becomes 0%. The low value priority means 15 selects a 0% limit signal from the control signal and the limit signal of the temperature control means 14, and the water supply control valve 16 is closed by this signal. Thus, when the surplus steam is exhausted, the amount of heating steam to the water supply tank 12 is limited.

【0046】次に、本発明の第4実施例を図6を参照し
て説明する。
Next, a fourth embodiment of the present invention will be described with reference to FIG.

【0047】本実施例が図4に示す第3実施例と異なる
点は、主蒸気流量制御弁7と関数設定手段20を除き、
流量検出手段21と流量制御手段22と微分演算手段2
3と関数設定手段20と別構成の関数設定手段24を追
設したことである。
This embodiment differs from the third embodiment shown in FIG. 4 in that the main steam flow control valve 7 and the function setting means 20 are excluded.
Flow rate detecting means 21, flow rate controlling means 22, and differential calculating means 2
3 and the function setting means 20 and the function setting means 24 having a different configuration are additionally provided.

【0048】この構成で、主蒸気流量が流量検出手段2
1と流量制御手段22と主蒸気流量制御弁7とより流量
設定値s2となるように制御される。微分演算手段23
では、この流量設定値s2が入力され、微分演算によっ
て設定値変化率が求められる。関数設定手段24は、図
7に示すように横軸に流量設定値s2の変化率、縦軸に
制限信号とした関数曲線cが設定されている。ここで、
変化率がδよりも大きい場合は、0%の制限信号とな
り、変化率がδ以下の場合には100%がそれぞれ制限
信号として出力される。これにより、負荷上昇時等に流
量設定値s2が増加し、その変化率が所定の値以上にな
ると、関数設定手段24の出力が0%となる。この結
果、低値優先手段15から0%が出力され、給水制御弁
16が全閉となる。したがって、余剰蒸気の不足が懸念
される負荷上昇時等には給水タンク12への加熱蒸気量
が制限される。
With this configuration, the main steam flow rate is detected by the flow rate detecting means 2
1, the flow rate control means 22 and the main steam flow rate control valve 7 control the flow rate set value s2. Differentiating means 23
Then, the flow rate set value s2 is input, and the set value change rate is obtained by the differential operation. In the function setting means 24, as shown in FIG. 7, the change rate of the flow rate setting value s2 is set on the horizontal axis and the function curve c is set as the limit signal on the vertical axis. here,
When the change rate is larger than δ, the limit signal is 0%, and when the change rate is δ or less, 100% is output as the limit signal. As a result, when the flow rate setting value s2 is increased when the load is increased and the rate of change is equal to or greater than a predetermined value, the output of the function setting means 24 becomes 0%. As a result, the low value priority means 15 outputs 0%, and the water supply control valve 16 is fully closed. Therefore, the amount of steam to be heated to the water supply tank 12 is limited when the load rises where there is a concern that the excess steam will be insufficient.

【0049】[0049]

【発明の効果】以上説明したように本発明によれば、給
水と余剰蒸気によって加熱して所定温度に昇温された給
水が給水タンクから節炭器の入口側に供給するため給水
流量が変動しても給水温度の変動が最小限に抑えられ
る。したがって、節炭器に低温の給水がされることな
く、節炭器の低温腐食が防止される。また、従来系外に
排出されていた余剰蒸気が給水の昇温に利用され、エネ
ルギーの効率的な運用ができる。
As described above, according to the present invention, since the feed water heated by the feed water and the surplus steam and heated to a predetermined temperature is supplied from the feed tank to the inlet side of the economizer, the feed water flow rate varies. Even so, fluctuations in the water temperature can be minimized. Therefore, low-temperature water is not supplied to the economizer and low-temperature corrosion of the economizer is prevented. In addition, the surplus steam that has been conventionally discharged to the outside of the system is used to raise the temperature of the feed water, and energy can be used efficiently.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例を示す排熱回収熱交換器の
給水温度制御系統の系統図である。
FIG. 1 is a system diagram of a feed water temperature control system of an exhaust heat recovery heat exchanger showing a first embodiment of the present invention.

【図2】本発明の第2実施例を示す排熱回収熱交換器の
給水温度制御系統の系統図である。
FIG. 2 is a system diagram of a feed water temperature control system of an exhaust heat recovery heat exchanger showing a second embodiment of the present invention.

【図3】図2の関数設定手段の設定内容を示す説明図で
ある。
FIG. 3 is an explanatory diagram showing setting contents of a function setting unit in FIG.

【図4】本発明の第3実施例を示す排熱回収熱交換器の
給水温度制御系統の系統図である。
FIG. 4 is a system diagram of a feed water temperature control system of an exhaust heat recovery heat exchanger showing a third embodiment of the present invention.

【図5】図4の関数設定手段の設定内容を示す説明図で
ある。
5 is an explanatory diagram showing setting contents of a function setting means in FIG.

【図6】本発明の第4実施例を示す排熱回収熱交換器の
給水温度制御系統の系統図である。
FIG. 6 is a system diagram of a feed water temperature control system of an exhaust heat recovery heat exchanger showing a fourth embodiment of the present invention.

【図7】図6の関数設定手段の設定内容を示す説明図で
ある。
7 is an explanatory diagram showing setting contents of a function setting unit in FIG.

【図8】従来例を示す排熱回収熱交換器の給水温度制御
系統の系統図である。
FIG. 8 is a system diagram of a feed water temperature control system of an exhaust heat recovery heat exchanger showing a conventional example.

【符号の説明】[Explanation of symbols]

1 過熱器 2 蒸発器 3 節炭器 8 給水温度検出手段 9 給水温度制御弁 10 温度制御手段 11 蒸気圧力制御弁 12 給水タンク 13 温度検出手段 14 温度制御手段 15 低値優先手段 16 給水制御弁 17 圧力検出器 18 圧力制御手段 19 関数設定手段 20 関数設定手段 21 流量検出手段 22 流量制御手段 23 微分演算手段 24 関数設定手段 1 superheater 2 evaporator 3 economizer 8 feed water temperature detecting means 9 feed water temperature control valve 10 temperature control means 11 steam pressure control valve 12 feed water tank 13 temperature detecting means 14 temperature control means 15 low value priority means 16 feed water control valve 17 Pressure detector 18 Pressure control means 19 Function setting means 20 Function setting means 21 Flow rate detecting means 22 Flow rate controlling means 23 Differentiating operation means 24 Function setting means

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 給水配管に接続され熱交換器を内蔵して
前記給水配管からの給水と排ガスと熱交換して昇温した
給水を生成する節炭器と、この節炭器に給水配管が接続
され熱交換器を内蔵して前記昇温した給水と排ガスと熱
交換して飽和蒸気を生成する蒸発器と、この蒸発器に蒸
気配管が接続され前記飽和蒸気と排ガスと熱交換して過
熱蒸気を生成して主蒸気配管から過熱蒸気を熱需要先へ
供給する過熱器とを有し、前記主蒸気配管から分岐され
余剰蒸気を排出するための主蒸気圧力制御弁を介して逃
がし蒸気配管を配設すると共に、前記蒸発器の入口側と
前記節炭器の入口側の給水配管とを接続して循環ポンプ
と主給水温度制御弁とを介してボイラ水循環配管を配設
して構成される排熱回収熱交換器の前記節炭器の入口側
の給水配管の給水温度を検出して給水温度検出信号を出
力する主温度検出手段と、前記給水温度検出信号と給水
温度設定信号との偏差を制御演算して制御信号を前記給
水温度制御弁へ出力する主温度制御手段とを備えて前記
給水温度を所定値に制御する排熱回収熱交換器の給水温
度制御装置において、 補給水を供給するための補給水配管に入口側が接続され
ると共に、出口側が前記給水配管に接続されて給水を貯
蔵する給水タンクと、前記主蒸気配管に接続され余剰の
過熱蒸気の供給を前記給水タンクへ受けるために給水温
度制御弁を介して前記給水タンクに接続される過熱蒸気
供給配管と、前記主蒸気配管に配置され主蒸気圧力を検
出し圧力検出信号を出力する圧力検出器と、前記圧力検
出信号と圧力設定信号との偏差を制御演算して制御信号
を前記主蒸気圧力制御弁に出力する圧力制御手段と、前
記熱需要先の負荷上昇時に前記余剰の過熱蒸気の供給を
制限するために前記制御信号を入力して予め設定された
関数に基づいて制限信号を出力する関数設定手段と、前
記給水タンクの出口側の給水配管に設けられ温度検出信
号を出力する温度検出手段と、前記温度検出信号と温度
設定信号との偏差を制御演算して制御信号を出力する温
度制御手段と、前記制限信号と前記制御信号とを入力し
て低値の信号を選択してこの信号によって前記給水温度
制御弁を開閉する低値選択手段とを備えたことを特徴と
する排熱回収熱交換器の給水温度制御装置。
1. A economizer that is connected to a water supply pipe and has a built-in heat exchanger to exchange heat between the water supplied from the water supply pipe and exhaust gas to generate heated water, and a water supply pipe connected to the economizer. An evaporator that has a built-in heat exchanger to exchange heat with the heated feed water and exhaust gas to generate saturated steam, and a steam pipe is connected to this evaporator to exchange heat with the saturated steam and exhaust gas and superheated steam. And a superheater that supplies superheated steam from the main steam pipe to the heat demand destination, and escapes steam pipe through a main steam pressure control valve for discharging excess steam branched from the main steam pipe. The boiler water circulation pipe is arranged by connecting the inlet side of the evaporator and the water supply pipe on the inlet side of the economizer, through the circulation pump and the main water temperature control valve. Water supply temperature of water supply pipe on the inlet side of the economizer of the heat recovery heat exchanger Temperature detecting means for detecting the degree of temperature and outputting a feed water temperature detection signal, and a main temperature control for controlling and calculating a deviation between the feed water temperature detection signal and the feed water temperature setting signal and outputting a control signal to the feed water temperature control valve. And a means for controlling the supply water temperature of the exhaust heat recovery heat exchanger to control the supply water temperature to a predetermined value, the inlet side is connected to a makeup water pipe for supplying makeup water, and the outlet side is the supply water pipe. And a superheated steam supply which is connected to the main steam pipe and is connected to the main water supply tank via a water supply temperature control valve to receive supply of excess superheated steam to the main water supply pipe. A pipe, a pressure detector arranged in the main steam pipe for detecting the main steam pressure and outputting a pressure detection signal, and a control signal for controlling the deviation between the pressure detection signal and the pressure setting signal to output the control signal as the main steam pressure. A pressure control means for outputting to a force control valve, and inputting the control signal for limiting the supply of the surplus superheated steam when the load of the heat demand destination increases, and outputs a limiting signal based on a preset function. Function setting means, temperature detecting means for outputting a temperature detection signal provided in the water supply pipe on the outlet side of the water supply tank, and control operation of the deviation between the temperature detection signal and the temperature setting signal to output the control signal. A discharge control device comprising: a temperature control means; and a low value selection means for inputting the limit signal and the control signal to select a low value signal and opening / closing the feed water temperature control valve according to this signal. Water temperature control device for heat recovery heat exchanger.
【請求項2】 給水配管に接続され熱交換器を内蔵して
前記給水配管からの給水と排ガスと熱交換して昇温した
給水を生成する節炭器と、この節炭器に給水配管が接続
され熱交換器を内蔵して前記昇温した給水と排ガスと熱
交換して飽和蒸気を生成する蒸発器と、この蒸発器に蒸
気配管が接続され前記飽和蒸気と排ガスと熱交換して過
熱蒸気を生成して主蒸気配管から過熱蒸気を主蒸気流量
制御弁を介して熱需要先へ供給する過熱器とを有し、前
記主蒸気配管から分岐され余剰蒸気を排出するための蒸
気圧力制御弁を介して逃がし蒸気配管を配設すると共
に、前記蒸発器の入口側と前記節炭器の入口側の給水配
管とを接続して循環ポンプと給水温度制御弁とを介して
ボイラ水循環配管を配設して構成される排熱回収熱交換
器の前記節炭器の入口側の給水配管の給水温度を検出し
て給水温度検出信号を出力する主温度検出手段と、前記
給水温度検出信号と給水温度設定信号との偏差を制御演
算して制御信号を前記主給水温度制御弁へ出力する主温
度制御手段とを備えて前記給水温度を所定値に制御する
排熱回収熱交換器の給水温度制御装置において、 補給水を供給するための補給水配管に入口側が接続され
ると共に、出口側が前記給水配管に接続されて給水を貯
蔵する給水タンクと、前記主蒸気配管に接続され余剰の
過熱蒸気の供給を前記給水タンクへ受けるために給水温
度制御弁を介して前記給水タンクに接続される過熱蒸気
供給配管と、前記主蒸気配管の主蒸気流量を検出して主
蒸気流量検出信号を出力する流量検出手段と、流量設定
信号と前記主蒸気流量検出信号との偏差を制御演算して
制御信号を前記主蒸気流量制御弁に出力する流量制御手
段と、前記流量設定信号とを微分演算して変化率信号を
出力する微分演算手段と、前記熱需要先の負荷上昇時に
前記余剰の過熱蒸気の供給を制限するために前記変化率
信号を入力して予め設定された関数に基づいて制限信号
を出力する関数設定手段と、前記給水タンクの出口側の
給水配管に設けられ温度検出信号を出力する温度検出手
段と、前記温度検出信号と温度設定信号との偏差を制御
演算して制御信号を出力する温度制御手段と、前記制限
信号と前記制御信号とを入力して低値の信号を選択して
この信号によって前記給水制御弁を開閉する低値選択手
段とを備えたことを特徴とする排熱回収熱交換器の給水
温度制御装置。
2. A economizer that is connected to the water supply pipe and has a built-in heat exchanger to exchange heat between the water supply and the exhaust gas from the water supply pipe to generate heated water, and the water supply pipe is connected to the economizer. An evaporator that has a built-in heat exchanger to exchange heat with the heated feed water and exhaust gas to generate saturated steam, and a steam pipe is connected to this evaporator to exchange heat with the saturated steam and exhaust gas and superheated steam. And a superheater for supplying superheated steam from the main steam pipe to the heat demand destination via the main steam flow control valve, and a steam pressure control valve for discharging excess steam branched from the main steam pipe. The escape water steam pipe is installed through the water supply pipe, and the boiler water circulation pipe is connected through the circulation pump and the feed water temperature control valve by connecting the inlet side of the evaporator and the water supply pipe on the inlet side of the economizer. The inlet of the economizer of the heat recovery heat exchanger Main water temperature detection means for detecting the water supply temperature of the side water supply pipe and outputting a water supply temperature detection signal, and a control signal for controlling the deviation between the water supply temperature detection signal and the water supply temperature setting signal to control the main water temperature control signal. In a feedwater temperature control device for an exhaust heat recovery heat exchanger that controls the feedwater temperature to a predetermined value by including a main temperature control means for outputting to a valve, an inlet side is connected to a makeup water pipe for supplying makeup water. Together with the water supply tank, the outlet side of which is connected to the water supply pipe to store water supply, and the water supply tank that is connected to the main steam pipe to receive the supply of excess superheated steam to the water supply tank via the water supply temperature control valve. A superheated steam supply pipe connected to the main steam pipe, a flow amount detection means for detecting a main steam flow amount of the main steam pipe and outputting a main steam flow amount detection signal, and a deviation between a flow amount setting signal and the main steam flow amount detection signal. A flow rate control means for performing a calculation to output a control signal to the main steam flow rate control valve, a differential operation means for performing a differential operation on the flow rate setting signal and outputting a change rate signal, and the above-mentioned method when the load of the heat demand destination increases. Function setting means for inputting the change rate signal in order to limit the supply of excess superheated steam and outputting a limit signal based on a preset function, and a temperature provided in the water supply pipe on the outlet side of the water supply tank. A temperature detection unit that outputs a detection signal, a temperature control unit that controls and calculates a deviation between the temperature detection signal and the temperature setting signal, and outputs a control signal, and a low value by inputting the limit signal and the control signal. And a low value selecting means for opening and closing the water supply control valve in response to the signal, the supply water temperature control device for the exhaust heat recovery heat exchanger.
JP4075193A 1993-02-05 1993-02-05 Controlling device for feed water temperature of waste heat recovery heat exchanger Pending JPH06229505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4075193A JPH06229505A (en) 1993-02-05 1993-02-05 Controlling device for feed water temperature of waste heat recovery heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4075193A JPH06229505A (en) 1993-02-05 1993-02-05 Controlling device for feed water temperature of waste heat recovery heat exchanger

Publications (1)

Publication Number Publication Date
JPH06229505A true JPH06229505A (en) 1994-08-16

Family

ID=12589341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4075193A Pending JPH06229505A (en) 1993-02-05 1993-02-05 Controlling device for feed water temperature of waste heat recovery heat exchanger

Country Status (1)

Country Link
JP (1) JPH06229505A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021135037A (en) * 2020-02-27 2021-09-13 Jfeスチール株式会社 Exhaust heat recovery boiler and operation method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021135037A (en) * 2020-02-27 2021-09-13 Jfeスチール株式会社 Exhaust heat recovery boiler and operation method therefor

Similar Documents

Publication Publication Date Title
US10167743B2 (en) Method for controlling a steam generator and control circuit for a steam generator
JP2016148468A (en) Boiler water supply system, boiler including the same, and boiler water supply method
US4345438A (en) Deaerator level control
Wang et al. Simulation study of frequency control characteristics of a generation III+ nuclear power plant
JPS5963310A (en) Compound plant
JPH06229505A (en) Controlling device for feed water temperature of waste heat recovery heat exchanger
CN114543074B (en) DC coal-fired generator set starting system
KR101982955B1 (en) Boiler, marine steam turbine propulsion system equipped with same, ship equipped with same, and boiler control method
JPH05264072A (en) Device for heating or cooling
JP2000337603A (en) Water supply rate control apparatus for heat exchanger
JPS582403A (en) Control method and its equipment of steam separating reheater
JP4408269B2 (en) Waste heat recovery system and cogeneration system
JP2625422B2 (en) Boiler control device
JPH1151306A (en) Boiler and control method therefor
JPS61116184A (en) Control device of by-pass valve
JPH0330761B2 (en)
JPS59138705A (en) Controller for temperature of supplied water
JPH04148895A (en) Speed controller for coolant recirculation pump
JPS62142903A (en) Variable-pressure operation boiler device
JPS59110811A (en) Steam turbine plant
JPH0225603A (en) Boiler device and operation thereof
JPS6380104A (en) Exhaust gas economizer
JPS60133203A (en) Once-through boiler device
JPH02260370A (en) Fuel cell power generating system
JPS59110810A (en) Water level control device for steam turbine degasifier