JPH02260370A - Fuel cell power generating system - Google Patents

Fuel cell power generating system

Info

Publication number
JPH02260370A
JPH02260370A JP1078445A JP7844589A JPH02260370A JP H02260370 A JPH02260370 A JP H02260370A JP 1078445 A JP1078445 A JP 1078445A JP 7844589 A JP7844589 A JP 7844589A JP H02260370 A JPH02260370 A JP H02260370A
Authority
JP
Japan
Prior art keywords
fuel cell
water
pressure
output
pressure loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1078445A
Other languages
Japanese (ja)
Inventor
Masatoshi Tokuno
徳野 正敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1078445A priority Critical patent/JPH02260370A/en
Publication of JPH02260370A publication Critical patent/JPH02260370A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To prevent small void rate two phase flow to operate steady power generation at optional output by varying cooling water pressure within a fuel cell with a variable pressure loss unit. CONSTITUTION:A pressure control valve 12 serving as a variable pressure loss unit is installed on the way of a pipeline 8 (exhaust water pipeline), and a pressure detector 13 is installed between the pressure control valve 12 and a cooling unit 2. Water from the cooling unit 2 flows through the pipeline 8 and its pressure is reduced with the pressure control valve 12, and it returns to a steam separator 7. The pressure control valve 12 is controlled so that pressure (inlet pressure of the pressure control valve 12) in the pipeline 8 is kept in a set value according to fuel cell output detected with a fuel cell output power detector. Continuous operation within a small void rate two phase flow output range can be prevented for steady operation.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は燃料電池を水冷方式の冷却器により冷却する燃
料電池発電装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a fuel cell power generation device in which a fuel cell is cooled by a water-cooled cooler.

(従来の技術) 一般に、燃料電池は単電池では小容量であるので、単電
池を複数個積層したセルスタックを複数組容器内に収納
した構成となっている。又、燃料電池は発電時に発熱す
るので、何等かの手段により冷却する必要があり、この
ため従来空気冷却器あるいは水冷却器が多く使用されて
いる。
(Prior Art) In general, a fuel cell has a small capacity as a single cell, so a cell stack in which a plurality of single cells are stacked is housed in a container. Furthermore, since fuel cells generate heat during power generation, they must be cooled by some means, and for this reason air coolers or water coolers have often been used.

第3図は従来使用されている水冷却器により燃料電池を
冷却するようにした燃料電池発電装置の一例である。燃
料電池1に内蔵されている水冷却器(以下単に冷却器と
称す)2の入口側には、補給水配管3からの補給水が配
管4、ポンプ5、配管6を順次介して供給されるように
、給水配管系を構成している。冷却器2の出口側は配管
8を介して気水分離器7に接続され、この気水分離器7
の下部配管11は前記配管3,4の接続部に接続され、
これらにより排水配管系を構成している。
FIG. 3 is an example of a fuel cell power generation device in which a fuel cell is cooled by a conventionally used water cooler. Makeup water from a make-up water pipe 3 is supplied to the inlet side of a water cooler (hereinafter simply referred to as a cooler) 2 built into the fuel cell 1 via a pipe 4, a pump 5, and a pipe 6 in sequence. This constitutes the water supply piping system. The outlet side of the cooler 2 is connected to a steam separator 7 via a pipe 8.
The lower pipe 11 is connected to the connecting part of the pipes 3 and 4,
These constitute the drainage piping system.

気水分離器7には、電気ヒータ9が配設され、冷却器2
の出口側の配管8の水が保有しているエンタルピーでは
、上部配管工0から取出す蒸気を賄いきれない時に、水
を加熱するためのものである。
An electric heater 9 is installed in the steam/water separator 7, and a cooler 2
This is to heat the water when the enthalpy held by the water in the pipe 8 on the outlet side of the pipe 8 cannot cover the steam taken out from the upper plumber 0.

このような構成において、配管3,4から供給された水
は、ポンプ5により加圧されて配管6を介して冷却器2
に送られ、ここで熱交換された温水は配管8を介して気
水分離器7に送られる。
In such a configuration, water supplied from the pipes 3 and 4 is pressurized by the pump 5 and sent to the cooler 2 via the pipe 6.
The hot water heat-exchanged here is sent to the steam-water separator 7 via piping 8.

ここで蒸気と水に分離される。この分離された蒸気は、
上部配管10から図示しない改質装置に導入され、水蒸
気改質用として使用される。また、気水分離器7で分離
された水は、下部配管11を通り補給水配管3からの水
と混合され、この後、水は配管4を通してポンプ5に供
給され、そしてポンプ5により再び配管6を通り冷却器
2に供給される。
Here it is separated into steam and water. This separated steam is
It is introduced into a reformer (not shown) from the upper pipe 10 and used for steam reforming. Further, the water separated by the steam-water separator 7 passes through the lower pipe 11 and is mixed with water from the make-up water pipe 3. After this, the water is supplied to the pump 5 through the pipe 4, and then the water is returned to the pipe by the pump 5. 6 and is supplied to the cooler 2.

前記気水分離器7は高所に配置され、ポンプ5および燃
料電池1は低所に配置されため、水頭圧により配管11
,4.6およびポンプ5には過冷却状態の水が存在する
Since the steam-water separator 7 is placed at a high place, and the pump 5 and the fuel cell 1 are placed at a low place, the water head pressure causes the piping 11 to
, 4.6 and pump 5 have supercooled water.

このようなことから、燃料電池1が発電時に発熱しても
冷却器2により除熱され、所定の動作温度範囲内に保つ
ことができる。
For this reason, even if the fuel cell 1 generates heat during power generation, the heat is removed by the cooler 2, and the temperature can be maintained within a predetermined operating temperature range.

(発明が解決しようとする課題) 今、第3図の構成において、燃料電池1を低出力にする
と、冷却器2で水は温められるが、入熱量が少ないため
、配管8の部分でも水は過冷却状態又は飽和状態となり
、配管10より取出す蒸気に合わせて電気ヒータ9によ
り加熱するようにしている。又、燃料電池1の出力を増
大させていくと、燃料電池1の発熱量も増加し、冷却器
2での熱交換量も増加し、冷却器2内および配管8内の
水のエンタルピーは、飽和水のエンタルピー以上となり
、一部は蒸気となり、気水分離器7に戻ってくる。
(Problem to be Solved by the Invention) Now, in the configuration shown in FIG. 3, if the fuel cell 1 is made to have a low output, the water will be warmed by the cooler 2, but since the amount of heat input is small, the water will not flow even in the piping 8. It becomes a supercooled state or a saturated state, and is heated by the electric heater 9 in accordance with the steam taken out from the pipe 10. Furthermore, as the output of the fuel cell 1 increases, the amount of heat generated by the fuel cell 1 also increases, the amount of heat exchanged in the cooler 2 also increases, and the enthalpy of water in the cooler 2 and the pipe 8 becomes The enthalpy of the saturated water becomes higher than that of the saturated water, and a part of the water becomes steam and returns to the steam-water separator 7.

燃料電池1が低出力時には、冷却器2内および配管8内
の水は過冷却状態であり、燃料電池1が高出力時には一
部蒸気の二相流状態になるが、燃料電池1の出力が低出
力時と高出力時の中間状態では蒸気分の非常に少ない二
相流つまり小ボイド率二相流になることがある。
When the output of the fuel cell 1 is low, the water in the cooler 2 and the pipe 8 is in a supercooled state, and when the output of the fuel cell 1 is high, a part of the water is in a two-phase flow state of steam, but when the output of the fuel cell 1 is In an intermediate state between low output and high output, a two-phase flow with a very small amount of steam, that is, a two-phase flow with a small void ratio, may occur.

しかして、燃料電池1内部に配設されているセルスタッ
ク内部の冷却配管で一部下降流となる配管部分があるが
、複数のセルスタックを使用した燃料電池1では、下降
流配管が複数本並列構成となるため、前述の小ボイド率
二相流程度では蒸気の上昇等による一部セルスタックの
冷却水のつまり、偏流、冷却水の間欠流れ、配管振動等
の現象が生じ、流れの悪いセルスタックは過熱し、燃料
電池1の寿命等に悪影響を与えることがあった。
However, in the cooling piping inside the cell stack disposed inside the fuel cell 1, there is a part of the piping that has a downward flow, but in the fuel cell 1 using multiple cell stacks, there are multiple downflow piping. Because it is a parallel configuration, the above-mentioned low-void two-phase flow can cause phenomena such as clogging of cooling water in some cell stacks due to rising steam, uneven flow, intermittent flow of cooling water, pipe vibration, etc., resulting in poor flow. The cell stack may overheat, which may adversely affect the lifespan of the fuel cell 1.

このため、小ボイド率二相流のとき安定な発電ができな
い。
For this reason, stable power generation cannot be achieved in the case of a two-phase flow with a small void ratio.

本発明は小ボイド率の二相流を防止でき、任意出力で安
定な発電が可能な燃料電池発電装置を提供することを目
的とする。
An object of the present invention is to provide a fuel cell power generation device that can prevent two-phase flow with a small void ratio and can generate stable power at any output.

[発明の構成] (課題を解決するための手段) 本発明は前記目的を達成するため、燃料電池を冷却水に
よって冷却するための水冷却器を備え、この水冷却器に
水を供給する給水配管系および水冷却器の水を排出する
排水配管系を備えた燃料電池発電装置において、前記水
冷却器の排水配管系に前記燃料電池出力に応じて圧力損
失を調節する可変圧力損失調節機器を付加し、前記燃料
電池の発熱量が少ない低出力時には前記可変圧力損失機
器により圧力損失を大きくして前記燃料電池内部の冷却
水圧力を高くし、かつ冷却水を液体状態に保ち、また前
記燃料電池の発熱量が多い高出力時には前記可変圧力損
失機器の圧力損失を小さくして前記燃料電池内部の冷却
水圧力低くし、かつ冷却水を液体・気体混合の二相流状
態することを特徴とするものである。
[Structure of the Invention] (Means for Solving the Problem) In order to achieve the above object, the present invention includes a water cooler for cooling the fuel cell with cooling water, and a water supply that supplies water to the water cooler. In a fuel cell power generation device equipped with a piping system and a drainage piping system for discharging water from a water cooler, the drainage piping system of the water cooler is provided with a variable pressure loss adjustment device that adjusts pressure loss according to the fuel cell output. In addition, at low output when the amount of heat generated by the fuel cell is small, the pressure loss is increased by the variable pressure loss device to increase the pressure of the cooling water inside the fuel cell, and the cooling water is kept in a liquid state. At high output when the battery generates a large amount of heat, the pressure loss of the variable pressure loss device is reduced to lower the pressure of the cooling water inside the fuel cell, and the cooling water is brought into a two-phase flow state of a mixture of liquid and gas. It is something to do.

(作用) 本発明によれば、可変圧力損失機器により冷却器出口側
の排水配管系の圧力損失を調整できることから、燃料電
池内部の冷却水圧力を変化させることにより、燃料電池
内部の冷却水を単相流である過冷却水が安定な流れとな
る比較的大ボイド率二相流となり、任意の発電出力で安
定な発電を行なうことができる。
(Function) According to the present invention, since the pressure loss of the drain piping system on the outlet side of the cooler can be adjusted by the variable pressure loss device, by changing the pressure of the cooling water inside the fuel cell, the cooling water inside the fuel cell can be adjusted. The supercooled water, which is a single-phase flow, becomes a stable two-phase flow with a relatively large void ratio, and stable power generation can be performed at any power generation output.

(実施例) 以下、本発明の実施例について図面を参照して説明する
。第1図は本発明の燃料電池発電装置の一実施例を示す
冷却水系統図である。これは、第3図の従来例において
、配管8(排水配管系)の途中に可変圧力損失機器とし
て例えば圧力調節弁12を配設し、さらにこの圧力調節
弁12と冷却器2との間の配管8に圧力検出器13を配
設した点のみが異なっている。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings. FIG. 1 is a cooling water system diagram showing an embodiment of the fuel cell power generation device of the present invention. This is because, in the conventional example shown in FIG. 3, a pressure regulating valve 12, for example, is disposed as a variable pressure loss device in the middle of the piping 8 (drainage piping system), and the pressure regulating valve 12 is further disposed between the pressure regulating valve 12 and the cooler 2. The only difference is that a pressure detector 13 is provided in the pipe 8.

このような構成のものにおいて、気水分離器7の下部配
管11と補給水配管3の水が合流し、過冷却状態の水が
配管4を介してポンプ5に供給される。そして、ポンプ
5により水が加圧されるとともに、過冷却状態の水は配
管6を通り燃料電池1内の冷却器2に供給される。この
冷却器2の水は配管8を通り、気水分離器7に供給され
るが、水が冷却器2を通過するとき外部より人熱し、温
度が上昇する。
In such a configuration, the water in the lower pipe 11 of the steam-water separator 7 and the make-up water pipe 3 join together, and supercooled water is supplied to the pump 5 via the pipe 4. Then, the water is pressurized by the pump 5, and the supercooled water is supplied to the cooler 2 in the fuel cell 1 through the pipe 6. The water in the cooler 2 passes through a pipe 8 and is supplied to the steam-water separator 7, but when the water passes through the cooler 2, it is heated from outside and its temperature rises.

前記冷却器2から流出する水は、配管を通り圧力調節弁
12を通り、この圧力調節弁12により減圧され、気水
分離器7に戻される。前記圧力調節弁12は、図示しな
い燃料電池出力電力検出装置により検出された燃料電池
出力に応じて配管8内の圧力(圧力調節弁12の入口圧
力)を予め設定された圧力を保つために制御される。具
体的には、圧力検出器13の圧力が第2図に示す圧力調
節弁入口圧カー燃料電池出力曲線図になるように圧力調
節弁12が制御される。
The water flowing out of the cooler 2 passes through a pipe and a pressure regulating valve 12, is depressurized by the pressure regulating valve 12, and is returned to the steam-water separator 7. The pressure regulating valve 12 controls the pressure in the pipe 8 (the inlet pressure of the pressure regulating valve 12) to maintain a preset pressure according to the fuel cell output detected by a fuel cell output power detection device (not shown). be done. Specifically, the pressure regulating valve 12 is controlled so that the pressure of the pressure detector 13 becomes the pressure regulating valve inlet pressure Kerr fuel cell output curve diagram shown in FIG.

いま、燃料電池出力が0の時は、圧力調節弁12の前圧
(圧力検出器13の検出圧力)はA点にあり、燃料電池
出力の増加とともに入口圧力を増加さ、せて、冷却器2
の入熱による冷却水の温度上昇による過冷却度の減少を
防止している。第2図の例では、圧力調節弁12を全開
した場合の小ボイド率の不安定範囲はGとHの間の燃料
電池出力範囲であるので、出力上昇は0点までの出力時
に圧力を増加し、0点に達すると、圧力調節弁12を全
開し、D点の圧力となり高ボイド率の二相流とし、10
0%出力のE点まで圧力調節弁12は全開のまま運転す
る。燃料電池出力を減少させる場合は、F点まで圧力調
節弁12は全開とし、F点より燃料電池出力を減少させ
る場合は、B点となる様に圧力調節弁12を閉じ、H点
、G点を過冷却の水として通過させる。
Now, when the fuel cell output is 0, the front pressure of the pressure regulating valve 12 (detected pressure of the pressure detector 13) is at point A, and as the fuel cell output increases, the inlet pressure is increased, and the cooler 2
This prevents the degree of supercooling from decreasing due to a rise in the temperature of the cooling water due to heat input. In the example shown in Fig. 2, the unstable range of small void ratio when the pressure control valve 12 is fully opened is the fuel cell output range between G and H, so the output increase is by increasing the pressure when the output reaches the 0 point. When the 0 point is reached, the pressure control valve 12 is fully opened and the pressure becomes the D point, resulting in a two-phase flow with a high void ratio.
The pressure control valve 12 is operated with fully open until point E, which is 0% output. When decreasing the fuel cell output, the pressure regulating valve 12 is fully opened until point F. When decreasing the fuel cell output from point F, the pressure regulating valve 12 is closed to point B, and then the pressure regulating valve 12 is fully opened to point H and point G. is passed through as supercooled water.

このようにすることにより、小ボイド率の二相流出力範
囲での連続的な運転を防止できるので、安定な運転が可
能となる。
By doing so, continuous operation in a two-phase flow output range with a small void ratio can be prevented, and stable operation is therefore possible.

前述の実施例では、可変圧力損失機器として、圧力調節
弁12を使用したが、オリフィスまたは手動弁等の固定
圧力損失機器とこの固定圧力損失機器をバイパスするし
ゃ新井を組合せて使用するようにしてもよい。又、圧力
調節弁12の前の圧力を燃料電池出力電力を基準とした
が、出力電力以外の要素である出力電圧と燃料電池消費
水素量を使用してもよい。さらに、燃料電池冷却水出口
圧力と温度を検出し、過冷却度を負荷要素として使用す
ることにより、精密な制御ができる。
In the above embodiment, the pressure regulating valve 12 was used as the variable pressure loss device, but it is also possible to use a fixed pressure loss device such as an orifice or a manual valve in combination with a shield that bypasses the fixed pressure loss device. Good too. Furthermore, although the pressure in front of the pressure regulating valve 12 is based on the fuel cell output power, elements other than the output power, such as the output voltage and the amount of hydrogen consumed by the fuel cell, may be used. Furthermore, precise control is possible by detecting the fuel cell cooling water outlet pressure and temperature and using the degree of subcooling as a load factor.

[発明の効果] 以上述べた本発明によれば、小ボイド率の二相流を防止
でき、任意出力で安定な発電が可能な燃料電池発電装置
を提供することができる。
[Effects of the Invention] According to the present invention described above, it is possible to provide a fuel cell power generation device that can prevent two-phase flow with a small void ratio and can stably generate power at any output.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による燃料電池発電装置の一実施例を示
す冷却系統図、第2図は第1図の圧力調節弁の動作を説
明するための圧力調節弁入口圧カー燃料電池出力曲線図
、第3図は従来の燃料電池発電装置の冷却系統図である
。 1・・・燃料電池、2・・・冷却器、3・・・補給水配
管、4.6.8・・・配管、5・・・ポンプ、7・・・
気水分離器、9・・・電気ヒータ、10・・・上部配管
、11・・・下部配管、12・・・圧力調節弁、13・
・・圧力検出器。 出願人代理人 弁理士 鈴江武彦 第 図 第 図
Fig. 1 is a cooling system diagram showing one embodiment of the fuel cell power generation device according to the present invention, and Fig. 2 is a pressure control valve inlet pressure car fuel cell output curve diagram for explaining the operation of the pressure control valve shown in Fig. 1. , FIG. 3 is a cooling system diagram of a conventional fuel cell power generation device. 1... Fuel cell, 2... Cooler, 3... Make-up water piping, 4.6.8... Piping, 5... Pump, 7...
Steam/water separator, 9... Electric heater, 10... Upper piping, 11... Lower piping, 12... Pressure control valve, 13.
...Pressure detector. Applicant's Representative Patent Attorney Takehiko Suzue

Claims (1)

【特許請求の範囲】 燃料電池を冷却水によって冷却するための水冷却器を備
え、この水冷却器に水を供給する給水配管系および水冷
却器の水を排出する排水配管系を備えた燃料電池発電装
置において、 前記水冷却器の排水配管系に前記燃料電池出力に応じて
圧力損失を調節する可変圧力損失調節機器を付加し、 前記燃料電池の発熱量が少ない低出力時には前記可変圧
力損失機器により圧力損失を大きくして前記燃料電池内
部の冷却水圧力を高くし、かつ冷却水を液体状態に保ち
、 また前記燃料電池の発熱量が多い高出力時には前記可変
圧力損失機器の圧力損失を小さくして前記燃料電池内部
の冷却水圧力を低くし、かつ冷却水を液体・気体混合の
二相流状態にすることを特徴とする燃料電池発電装置。
[Scope of Claims] A fuel comprising a water cooler for cooling a fuel cell with cooling water, a water supply piping system for supplying water to the water cooler, and a drainage piping system for discharging water from the water cooler. In the battery power generation device, a variable pressure loss adjustment device is added to the drainage piping system of the water cooler to adjust the pressure loss according to the output of the fuel cell, and the variable pressure loss is adjusted at low output when the amount of heat generated by the fuel cell is small. The device increases the pressure loss to increase the pressure of the cooling water inside the fuel cell and keeps the cooling water in a liquid state, and also reduces the pressure loss of the variable pressure loss device at high output when the fuel cell generates a large amount of heat. A fuel cell power generation device characterized in that the cooling water pressure inside the fuel cell is reduced by reducing the size of the fuel cell, and the cooling water is brought into a two-phase flow state of a mixture of liquid and gas.
JP1078445A 1989-03-31 1989-03-31 Fuel cell power generating system Pending JPH02260370A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1078445A JPH02260370A (en) 1989-03-31 1989-03-31 Fuel cell power generating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1078445A JPH02260370A (en) 1989-03-31 1989-03-31 Fuel cell power generating system

Publications (1)

Publication Number Publication Date
JPH02260370A true JPH02260370A (en) 1990-10-23

Family

ID=13662242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1078445A Pending JPH02260370A (en) 1989-03-31 1989-03-31 Fuel cell power generating system

Country Status (1)

Country Link
JP (1) JPH02260370A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05326008A (en) * 1992-05-28 1993-12-10 Mitsubishi Electric Corp Fuel cell type power generating apparatus
JP2016157597A (en) * 2015-02-25 2016-09-01 株式会社Ihi Fuel cell power generation device and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05326008A (en) * 1992-05-28 1993-12-10 Mitsubishi Electric Corp Fuel cell type power generating apparatus
JP2016157597A (en) * 2015-02-25 2016-09-01 株式会社Ihi Fuel cell power generation device and method

Similar Documents

Publication Publication Date Title
US7040109B2 (en) Fuel cell system and method of storing hydrogen
JP4296200B2 (en) Hot water system
US20160109185A1 (en) Energy storage system
JP2001065976A (en) Cogeneration system
JP2012057923A (en) Hot water supply system
JPH02260370A (en) Fuel cell power generating system
JPH0249359A (en) Fuel cell power generating system
JP6924099B2 (en) Hydrogen storage system, control program and energy supply system
JP2924671B2 (en) Water treatment system for fuel cell power plant
JP4685553B2 (en) Cogeneration system
JPH044572A (en) Vapor generator of fuel cell power generation system
JP2002277053A (en) Hot-water recovery control device for co-generation system
JPS6139369A (en) Fuel cell power generation plant
JP2002343392A (en) Fuel cell system
JPH06111843A (en) Fuel supply system for fuel cell generator set
JP6643938B2 (en) Distributed power generation system
JPH0773896A (en) Fuel cell power generator
JPH04284365A (en) Fuel cell power generating device
JPH08190925A (en) Cooling system of fuel cell power generating equipment
JP4408269B2 (en) Waste heat recovery system and cogeneration system
JPH0541231A (en) Fuel cell
JPH03159071A (en) Fuel cell power generation system
JP2006342047A (en) Reformer, method for controlling pump in fuel cell system, and control unit
JPS58133784A (en) Control system of fuel cell power generating plant
JPH04267067A (en) Liquid fuel evaporator for fuel cell generating device